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Abstract

Most natural language processing research
now recommends large Transformer-based
models with fine-tuning for supervised clas-
sification tasks; older strategies like bag-of-
words features and linear models have fallen
out of favor. Here we investigate whether, in
automated essay scoring (AES) research, deep
neural models are an appropriate technological
choice. We find that fine-tuning BERT pro-
duces similar performance to classical models
at significant additional cost. We argue that
while state-of-the-art strategies do match ex-
isting best results, they come with opportunity
costs in computational resources. We conclude
with a review of promising areas for research
on student essays where the unique charac-
teristics of Transformers may provide benefits
over classical methods to justify the costs.

1 Introduction

Automated essay scoring (AES) mimics the judg-
ment of educators evaluating the quality of student
writing. Originally used for summative purposes
in standardized testing and the GRE (Chen et al.,
2016), these systems are now frequently found
in classrooms (Wilson and Roscoe, 2019), typi-
cally enabled by training data scored on reliable
rubrics to give consistent and clear goals for writ-
ers (Reddy and Andrade, 2010).

More broadly, the natural language process-
ing (NLP) research community in recent years
has been dominated by deep neural network re-
search, in particular, the Transformer architec-
ture popularized by BERT (Devlin et al., 2019).
These models use large volumes of existing text
data to pre-train multilayer neural networks with
context-sensitive meaning of, and relations be-
tween, words. The models, which often consist of
over 100 million parameters, are then fine-tuned to
a specific new labeled dataset and used for classi-
fication, generation, or structured prediction.
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Research in AES, though, has tended to pri-
oritize simpler models, usually multivariate re-
gression using a small set of justifiable variables
chosen by psychometricians (Attali and Burstein,
2004). This produces models that retain di-
rect mappings between variables and recognizable
characteristics of writing, like coherence or lex-
ical sophistication (Yannakoudakis and Briscoe,
2012; Vajjala, 2018). In psychometrics more gen-
erally, this focus on features as valid “constructs”
leans on a rigorous and well-defined set of princi-
ples (Attali, 2013). This approach is at odds with
Transformer-based research, and so our core ques-
tion for this work is: for AES specifically, is a
move to deep neural models worth the cost?

The chief technical contribution of this work is
to measure results for BERT when fine-tuned for
AES. In section 3 we describe an experimental
setup with multiple levels of technical difficulty
from bag-of-words models to fine-tuned Trans-
formers, and in section 5 we show that the ap-
proaches perform similarly. In AES, human inter-
rater reliability creates a ceiling for scoring model
accuracy. While Transformers match state-of-the-
art accuracy, they do so with significant tradeoffs;
we show that this includes a slowdown in train-
ing time of up to 100x. Our data shows that these
Transformer models improve on N-gram base-
lines by no more than 5%. Given this result, in
section 6 we describe areas of contemporary re-
search on Transformers that show both promising
early results and a potential alignment to educa-
tional pedagogy beyond reliable scoring.

2 Background

In AES, student essays are scored either on a sin-
gle holistic scale, or analytically following a rubric
that breaks out subscores based on “traits.” These
scores are almost always integer-valued, and al-
most universally have fewer than 10 possible score
points, though some research has used scales with
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as many as 60 points (Shermis, 2014). In most
contexts, students respond to “prompts,” a specific
writing activity with predefined content. Work in
natural language processing and speech evaluation
has used advanced features like discourse coher-
ence (Wang et al., 2013) and argument extraction
(Nguyen and Litman, 2018); for proficient writers
in professional settings, automated scaffolds like
grammatical error detection and correction also
exist (Ng et al., 2014).

Natural language processing has historically
used n-gram bag-of-words features to predict la-
bels for documents. These were the standard rep-
resentation of text data for decades and are still in
widespread use (Jurafsky and Martin, 2014). In
the last decade, the field moved to word embed-
dings, where words are represented not as a sin-
gle feature but as dense vectors learned from large
unsupervised corpora. While early approaches to
dense representations using latent semantic anal-
ysis have been a major part of the literature on
AES (Foltz et al., 2000; Miller, 2003), these were
corpus-specific representations. In contrast, re-
cent work is general-purpose, resulting in off-
the-shelf representations like GloVe (Pennington
et al., 2014). This allows similar words to have
approximately similar representations, effectively
managing lexical sparsity.

But the greatest recent innovation has been con-
textual word embeddings, based on deep neural
networks and in particular, Transformers. Rather
than encoding a word’s semantics as a static
vector, these models adjust the representation of
words based on their context in new documents.
With multiple layers and sophisticated attention
mechanisms (Bahdanau et al., 2015), these newer
models have outperformed the state-of-the-art on
numerous tasks, and are currently the most ac-
curate models on a very wide range of tasks
(Vaswani et al.,, 2017; Dai et al., 2019). The
most popular architecture, BERT, produces a 768-
dimensional final embedding based on a network
with over 100 million total parameters in 12 lay-
ers; pre-trained models are available for open
source use (Devlin et al., 2019).

For document classification, BERT is “fine-
tuned” by adding a final layer at the end of the
Transformer architecture, with one output neuron
per class label. When learning from a new set of
labeled training data, BERT evaluates the training
set multiple times (each pass is called an epoch).
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A loss function, propagating backward to the net-
work, allows the model to learn relationships be-
tween the class labels in the new data and the
contextual meaning of the words in the text. A
learning rate determines the amount of change to a
model’s parameters. Extensive results have shown
that careful control of the learning rate in a cur-
riculum can produce an effective fine-tuning pro-
cess (Smith, 2018). While remarkably effective,
our community is only just beginning to identify
exactly what is learned in this process; research in
“BERT-ology” is ongoing (Kovaleva et al., 2019;
Jawahar et al., 2019; Tenney et al., 2019).

These neural models are just starting to be
used in machine learning for AES, especially as
an intermediate representation for automated es-
say feedback (Fiacco et al., 2019; Nadeem et al.,
2019). End-to-end neural AES models are in their
infancy and have only seen exploratory studies
like Rodriguez et al. (2019); to our knowledge, no
commercial vendor yet uses Transformers as the
representation for high-stakes automated scoring.

3 NLP for Automated Essay Scoring

To date, there are no best practices on fine-
tuning Transformers for AES; in this section we
present options. We begin with a classical baseline
of traditional bag-of-words approaches and non-
contextual word embeddings, used with Naive
Bayes and logistic regression classifiers, respec-
tively. We then describe three curriculum learn-
ing options for fine-tuning BERT using AES data
based on broader best practices. We end with
two approaches based on BERT but without fine-
tuning, with reduced hardware requirements.

3.1 Bag-of-Words Representations

The simplest features for document classification
tasks, “bag-of-words,” extracts surface /N-grams
of length 1-2 with “one-hot” binary values indi-
cating presence or absence in a document. In
prior AES results, this representation is surpris-
ingly effective, and can be improved with simple
extensions: N-grams based on part-of-speech tags
(of length 2-3) to capture syntax independent of
content, and character-level N-grams of length 3-
4, to provide robustness to misspellings (Woods
et al., 2017; Riordan et al., 2019). This high-
dimensional representation typically has a cutoff
threshold where rare tokens are excluded: in our
implementation, we exclude N-grams without at



least 5 occurrences in training data. Even after
this reduction, this is a sparse feature space with
thousands of dimensions. For learning with bag-
of-words, we use a Naive Bayes classifier with
Laplace smoothing from Scikit-learn (Pedregosa
et al., 2011), with part-of-speech tagging from
SpaCy (Honnibal and Montani, 2017).

3.2 Word Embeddings

A more modern representation of text uses word-
level embeddings. This produces a vector, typi-
cally of up to 300 dimensions, representing each
word in a document. In our implementation, we
represent each document as the term-frequency-
weighted mean of word-level embedding vectors
from GloVe (Pennington et al., 2014). Unlike one-
hot bag-of-words features, embeddings have dense
real-valued features and Naive Bayes models are
inappropriate; we instead train a logistic regres-
sion classifier with the LibLinear solver (Fan et al.,
2008) and L2 regularization from Scikit-learn.

3.3 Fine-Tuning BERT

Moving to neural models, we fine-tune an uncased
BERT model using the Fast.ai library. This li-
brary’s visibility to first-time users of deep learn-
ing and accessible online learning materials' mean
their default choices are the most accessible route
for practitioners.

Fast.ai recomends use of cyclical learning rate
curricula for fine-tuning. In this policy, an upper
and lower bound on learning rates are established.
I7maz 1 @ hyperparameter defining the maximum
learning rate in one epoch of learning. In cyclical
learning, the learning rate for fine-tuning begins at
the lower bound, rises to the upper bound, then de-
scends back to the lower bound. A high learning
rate midway through training acts as regulariza-
tion, allowing the model to avoid overfitting and
avoiding local optima. Lower learning rates at the
beginning and end of cycles allow for optimization
within a local optimum, giving the model an op-
portunity to discover fine-grained new information
again. In our work, we set 7,4, = 0.00001. A
lower bound is then derived from the upper bound,
ITmin = 0.04 % lry,q,; this again is default behav-
ior in the Fast.ai library.

We assess three different curricula for cyclical
learning rates, visualized in Figure 1. In the de-
fault approach, a maximum learning rate is set and

'https://course. fast.ai/

153

0.00001

o /\ / \ /\
w© 0.0000075 \ /
4
= / / \ \
£ 0.000005 / \ \ / \
€ \
2 0.0000025 / \/ .‘ \/
. ‘
Epoch N
High Period Low Period
000001
0000005
)
[}
m 0.000001
o
. 0.0000005
E
L]
@
-l 0.0000001
0.00000005 |
N, N +N,
Epoch
0.00001 .
£ 0.000008 / \\.‘
& ™~
2 0000008 S N
£ 0000004 e AN
g p” ~
0000002 - o
N N
Epoch
Figure 1: Illustration of cyclical (top), two-period

cyclical (middle, log y-scale), and 1-cycle (bottom)
learning rate curricula over N epochs.

cycles are repeated until reaching a threshold; for
a halting criterion, we measure validation set ac-
curacy. Because of noise in deep learning train-
ing, halting at any decrease can lead to premature
stops; it is preferable to allow some occasional,
small drop in performance. In our implementa-
tion we halt when accuracy on a validation set,
measured in quadratic weighted kappa, decreases
by over 0.01. In the second, “two-rate” approach
(Smith, 2018), we follow this algorithm, but when
we would halt, we instead backtrack by one epoch
to a saved version of the network and restart train-
ing with a learning rate of 1 x 10~ (one order of
magnitude smaller). Finally, in the “1-cycle” pol-
icy, training is condensed into a single rise-and-fall
pattern, spread over IV epochs. Defining the exact
training time NV is a hyperparameter tuned on val-
idation data. Finally, while BERT is optimized for
sentence encoding, it is able to process documents
up to 512 words long. In our data, we truncate a
small number of essays longer than this maximum,
mostly in ASAP dataset #2.

3.4 Feature Extraction from BERT

Fine-tuning is computationally expensive and can
only run on GPU-enabled devices. Many prac-



titioners in low-resource settings may not have
access to appropriate cloud computing environ-
ments for these techniques. Previous work has de-
scribed a compromise approach for using Trans-
former models without fine-tuning. In Peters et al.
(2019), the authors describe a new pipeline. Doc-
ument texts are processed with an untuned BERT
model; the final activations from network on the
[CLS] token are then used directly as contex-
tual word embeddings. This 768-dimensional fea-
ture vector represents the full document, and is
used as inputs for a linear classifier. In the edu-
cation context, a similar approach was described
in Nadeem et al. (2019) as a baseline for evalua-
tion of language-learner essays. This process al-
lows us to use the world knowledge embedded in
BERT without requiring fine-tuning of the model
itself, and without need for GPUs at training or
prediction time. For our work, we train a logistic
regression classifier as described in Section 3.2.

3.5 DistilBERT

Recent work has highlighted the extreme car-
bon costs of full Transformer fine-tuning (Strubell
et al., 2019) and the desire for Transformer-based
prediction on-device without access to cloud com-
pute. In response to these concerns, Sanh et al.
(2019) introduce DistilBERT, which they argue is
equivalent to BERT in most practical aspects while
reducing parameter size by 40% to 66 million, and
decreasing model inference time by 60%. This
is accomplished using a distillation method (Hin-
ton et al., 2015) in which a new, smaller “stu-
dent” network is trained to reproduce the behav-
ior of a pretrained “teacher” network. Once the
smaller model is pretrained, interacting with it for
the purposes of fine-tuning is identical to interact-
ing with BERT directly. DistilBERT is intended
for use cases where compute resources are a con-
straint, sacrificing a small amount of accuracy for
a drastic shrinking of network size. Because of
this intended use case, we only present results for
DistilBERT with the “1-cycle” learning rate pol-
icy, which is drastically faster to fine-tune.

4 Experiments

To test the overall impact of fine-tuning in the
AES domain, we use five datasets from the ASAP
competition, jointly hosted by the Hewlett Foun-
dation and Kaggle.com (Shermis, 2014). This set
of essay prompts was the subject of intense pub-
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lic attention and scrutiny in 2012 and its pub-
lic release has shaped the discourse on AES ever
since. For our experiments, we use the origi-
nal, deanonymized data from Shermis and Hamner
(2012); an anonymized version of these datasets is
available online?. In all cases, human inter-rater
reliability (IRR) is an approximate upper bound
on performance, but reliability above human IRR
is possible, as all models are trained on resolved
scores that represent two scores plus a resolution
process for disagreements between annotators.

We focus our analysis on the five datasets that
most closely resemble standard AES rubrics, dis-
carding three datasets - prompts #1, 7, and 8 -
with a scale of 10 or more possible points. Re-
sults on these datasets are not representative of
overall performance and can skew reported re-
sults due to rubric idiosyncracies, making compar-
ison to other published work impossible (see for
example (Alikaniotis et al., 2016), which groups
60-point and 4-point rubrics into a single dataset
and therefore produced correlations that cannot be
aligned to results from any other published work).
Prompts 2-6 are scored on smaller rubric scales
with 4-6 points, and are thus generalizable to more
AES contexts. Note that nevertheless, each dataset
has its own idiosyncracies; for instance, essays
in dataset #5 were written by younger students in
7th and 8th grade, while dataset #4 contains writ-
ing from high school seniors; datasets #3 and 4
were responses to specific texts while others were
open-ended; and scores in dataset #2 was actually
scored on two separate traits, the second of which
is often discarded in followup work (as it is here).
Our work here does not specifically isolate effects
of these differences that would lead to discrepan-
cies in performance or in modeling behavior.

4.1 Metrics and Baselines

For measuring reliability of automated assess-
ments, we use a variant of Cohen’s x, with
quadratic weights for “near-miss” predictions on
an ordinal scale (QWK). This metric is standard
in the AES community (Williamson et al., 2012).
High-stakes testing organizations differ on exact
cutoffs for acceptable performance, but threshold
values between 0.6 and 0.8 QWK are typically
used as a floor for testing purposes; human reli-
ability below this threshold is generally not fit for
summative student assessment.

*https://www.kaggle.com/c/asap-aes



In addition to measuring reliability, we also
measure training and prediction time, in seconds.
As this work seeks to evaluate the practical trade-
offs of the move to deep neural methods, this is
an important secondary metric. For all experi-
ments, training was performed on Google Colab
Pro cloud servers with 32 GB of RAM and an
NVideo Tesla P100 GPGPU.

We compare the results of BERT against several
previously published benchmarks and results.

Human IRR as initially reported in the
Hewlett Foundation study (Shermis, 2014).

Industry best performance, as reported by
eight commercial vendors and one open-
source research team in the initial release of
the ASAP study. (Shermis, 2014).

An early deep learning approach using a
combination CNN+LSTM architecture that
outperformed most reported results at that
time (Taghipour and Ng, 2016).

Two recent results using traditional non-
neural models: Woods et al. (2017), which
uses n-gram features in an ordinal logistic re-
gression, and Cozma et al. (2018), which uses
a mix of string kernels and word2vec embed-
dings in a support vector regression.

Rodriguez et al. (2019), the one previously-
published work that attempts AES with a va-
riety of pretrained neural models, including
BERT and the similar XLNet (Yang et al.,
2019), with numerous alternate configura-
tions and training methods. We report their
result with a baseline BERT fine-tuning pro-
cess, as well as their best-tuned model after
extensive optimization.

4.2 Experimental Setup

Following past publications, we train a separate
model on each dataset, and evaluate all dataset-
specific models using 5-fold cross-validation.
Each of the five datasets contains approximately
1,800 essays, resulting in folds of 360 essays
each. Additionally, for measuring loss when fine-
tuning BERT, we hold out an additional 20% of
each training fold as a validation set, meaning that
each fold has approximately 1,150 essays used for
training and 300 essays used for validation. We
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report mean QWK across the five folds. For mea-
surement of training and prediction time, we re-
port the sum of training time across all five folds
and all datasets. For slow-running feature ex-
traction, like N-gram part-of-speech features and
word embedding-based features, we tag each sen-
tence in the dataset only once and cache the re-
sults, rather than re-tagging each sentence on each
fold. Finally, for models where distinguishing
extraction from training time is meaningful, we
present those times separately.

5 Results

5.1 Accuracy Evaluation

Our primary results are presented in Table 1. We
find, broadly, that all approaches to machine learn-
ing replicate human-level IRR as measured by
QWK. Nearly eight years after the publication of
the original study, no published results have ex-
ceeded vendor performance on three of the five
prompt datasets; in all cases, a naive N-gram ap-
proach underperforms the state-of-the-art in indus-
try and academia by 0.03-0.06 QWK.

Of particular note is the low performance of
GloVe embeddings relative to either neural or V-
gram representations. This is surprising: while
word embeddings are less popular now than deep
neural methods, they still perform well on a wide
range of tasks (Baroni et al., 2014). Few publi-
cations have noted this negative result for GloVe
in the AES domain; only Dong et al. (2017) uses
GloVe as the primary representation of ASAP
texts in an LSTM model, reporting lower QWK
results than any baseline we presented here. One
simple explanation for this may be that individ-
ual keywords matter a great deal for model per-
formance. It is well established that vocabulary-
based approaches are effective in AES tasks (Hig-
gins et al., 2014) and the lack of access to specific
word-based features may hinder semantic vector
representation. Indeed, only one competitive re-
cent paper on AES uses non-contextual word vec-
tors: Cozma et al. (2018). In this implementation,
they do use word2vec, but rather than use word
embeddings directly they first cluster words into
a set of 500 “embedding clusters.” Words that ap-
pear in texts are then counted in the feature vector
as the centroid of that cluster - in effect, creating a
500-dimensional bag-of-words model.

Our results would suggest that fine-tuning with
BERT also reaches approximately the same level



Table 1: Performance on each of ASAP datasets 2-6, in
QWK. The final row shows the gap in QWK between
the best neural model and the N-gram baseline.

Model 2 3 4 5 6
Human IRR 80 77 85 74 T4
Hewlett 74 75 82 83 .78
Taghipour 69 69 81 .81 .82
Woods g1 71 81 .82 .83
Cozma 73 68 .83 .83 .83

Rodriguez (BERT) .68 .72 .80 .81 .81
Rodriguez (best) Jo 72 82 .82 .82

N-Grams J1 71 78 .80 .79
Embeddings 42 41 .60 49 36
BERT-CLR .66 70 .80 .80 .79
BERT-1CYC 64 71 82 81 .79
BERT Features .61 59 75 15 74
DistilBERT .65 70 .82 .81 .79
N-Gram Gap -05 .00 .04 .01 .00

of performance as other methods, slightly un-
derperforming previous published results. This
is likely an underestimate, due to the complex-
ity of hyperparameter optimization and curricu-
lum learning for Transformers. Rodriguez et al.
(2019) demonstrate that it is, in fact, possible
to improve the performance of neural models to
more closely approach (but not exceed) the state-
of-the-art using neural models. Sophisticated ap-
proaches like gradual unfreezing, discriminative
fine-tuning, or greater parameterization through
newer deep learning models in their work consis-
tently produces improvements of 0.01-0.02 QWK
compared to the default BERT implementation.
But this result emphasizes our concern: we do
not claim our results are the best that could be
achieved with BERT fine-tuning. We are, in fact,
confident that they can be improved through opti-
mization. What the results demonstrate instead is
that the ceiling of results for AES tasks lessens the
value of that intensive optimization effort.

5.2 Runtime Evaluation

Our secondary evaluation of models is based on
training time and resource usage; those results are
reported in Table 2. Here, we see that deep learn-
ing approaches on GPU-enabled cloud compute
produce an approximately 30-100 fold increase in
end-to-end training time compared to a naive ap-
proach. In fact, this understates the gap, as approx-
imately 75% of feature extraction and model train-
ing time in the naive approach is due to part-of-
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Table 2: Cumulative experiment runtime, in seconds,
of feature extraction (F), model training (T), and pre-
dicting on test sets (P), for ASAP datasets 2-6 with 5-
fold cross-validation. Models with 1-cycle fine-tuning
are measured at 5 epochs.

Model F T P Total
Embeddings 93 6 1 100
N-Grams 82 27 2 111
BERT Features 213 10 1 224
DistilBERT 1,972 108 2,080
BERT-1CYC 2,956 192 3,148
BERT-CLR 11,309 210 11,519

speech tagging rather than learning. Using BERT
features as inputs to a linear classifier is an in-
teresting compromise option, producing slightly
lower performance on these datasets but with only
a 2x slowdown at training time, all in feature ex-
traction, and potentially retaining some of the se-
mantic knowledge of the full BERT model. Fur-
ther investigation should test whether additional
features for intermediate layers, as explored in Pe-
ters et al. (2019), is merited for AES.

We can look at this gap in training runtime more
closely in Figure 2. Essays in the prompt 2 dataset
are longer persuasive essays and are on average
378 words long, while datasets 3-6 correspond to
shorter, source-based content knowledge prompts
and are on average 98-152 words long. The need
for truncation in dataset #2 for BERT, but not for
other approaches, may explain the underperfor-
mance of the model in that dataset. Additionally,
differences across datasets highlight two key dif-
ferences for fine-tuning a BERT model:

e Training time increases linearly with number
of epochs and with average document length.
As seen in Figure 2, this leads to a longer
training for the longer essays of dataset 2,
nearly as long as the other datasets combined.

e Performance converges on human inter-rater
reliability more quickly for short content-
based prompts, and performance begins to
decrease due to overfitting in as few as 4
epochs. By comparison, in the longer, per-
suasive arguments of dataset 2, very small
performance gains on held-out data contin-
ued even at the end of our experiments.

Figure 2 also presents results for DistilBERT.
Our work verifies prior published claims of speed



BERT DistilBERT

QWK

1000

Runtime (s)

4

51
Epoch

4
ASAP Dataset

— — 5

Figure 2: QWK (top) and training time (bottom, in sec-
onds) and for 5-fold cross-validation of 1-cycle neural
fine-tuning on ASAP datasets 2-6, for BERT (left) and
DistilBERT (right).

improvements both in fine-tuning and at prediction
time, relative to the baseline BERT model: train-
ing time was reduced by 33% and prediction time
was reduced by 44%. This still represents at least
a 20x increase in runtime relative to N-gram base-
lines both for training and prediction.

6 Discussion

For scoring essays with reliably scored, prompt-
specific training sets, both classical and neural ap-
proaches produce similar reliability, at approxi-
mately identical levels to human inter-rater relia-
bility. There is a substantial increase in techni-
cal overhead required to implement Transformers
and fine-tune them to reach this performance, with
minimal gain compared to baselines. The pol-
icy lesson for NLP researchers is that using deep
learning for scoring alone is unlikely to be justifi-
able, given the slowdowns at both training and in-
ference time, and the additional hardware require-
ments. For scoring, at least, Transformer architec-
tures are a hammer in search of a nail.

But it’s hardly the case that automated writing
evaluation is limited to scoring. In this section we
cover major open topics for technical researchers
in AES to explore, focusing on areas where neural
models have proven strengths above baselines in
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other domains. We prioritize three major areas:
domain transfer, style, and fairness. In each we
cite specific past work that indicates a plausible
path forward for research.

6.1 Domain Transfer

A major challenge in AES is the inability of
prompt-specific models to generalize to new es-
say topics (Attali et al., 2010; Lee, 2016). Col-
lection of new prompt-specific training sets, with
reliable scores, continues to be one of the ma-
jor stumbling blocks to expansion of AES sys-
tems in curricula (Woods et al., 2017). Rel-
atively few researchers have made progress on
generic essay scoring: Phandi et al. (2015) in-
troduces a Bayesian regression approach that ex-
tracts N-gram features then capitalizes on cor-
related features across prompts. Jin et al.
(2018) shows promising prompt-independent re-
sults using an LSTM architecture with surface and
part-of-speech N-gram inputs, underperforming
prompt-specific models by relatively small mar-
gins across all ASAP datasets. But in implemen-
tations, much of the work of practitioners is based
on workarounds for prompt-specific models; Wil-
son et al. (2019), for instance, describes psycho-
metric techniques for measuring generic writing
ability across a small sample of known prompts.

While Transformers are sensitive to the data
they were pretrained on, they are well-suited to
transfer tasks in mostly unseen domains, as ev-
idenced by part-of-speech tagging for historical
texts (Han and Eisenstein, 2019), sentiment clas-
sification on out-of-domain reviews (Myagmar
et al., 2019), and question answering in new con-
texts (Houlsby et al., 2019). This last result is
promising for content-based short essay prompts,
in particular. Our field’s open challenge in scor-
ing is to train AES models that can meaningfully
evaluate short response texts for correctness based
on world knowledge and domain transfer, rather
than memorizing the vocabulary of correct, in-
domain answers. Promising early results show
that relevant world knowledge is already embed-
ded in BERT’s pretrained model (Petroni et al.,
2019). This means that BERT opens up a poten-
tially tractable path to success that was simply not
possible with NV-gram models.

6.2 Style and Voice

Skepticism toward AES in the classroom comes
from rhetoric and composition scholars, who ex-



press concerns about its role in writing pedagogy
(NCTE, 2013; Warner, 2018). Indeed, the rela-
tively “solved” nature of summative scoring that
we highlight here is of particular concern to these
experts, noting the high correlation between scores
and features like word count (Perelman, 2014).

Modern classroom use of AES beyond high-
stakes scoring, like Project Essay Grade (Wilson
and Roscoe, 2019) or Turnitin Revision Assistant
(Mayfield and Butler, 2018), makes claims of sup-
porting student agency and growth; here, adapt-
ing to writer individuality is a major current gap.
Dixon-Roman et al. (2019) raises a host of ques-
tions about these topics specifically in the context
of AES, asking how algorithmic intervention can
produce strong writers rather than merely good es-
says: “revision, as adjudicated by the platform,
is [...] a re-direction toward the predetermined
shape of the ideal written form [...] a puzzle-doer
recursively consulting the image on the puzzle-
box, not that of author returning to their words to
make them more lucid, descriptive, or forceful.”

This critique is valid: research on machine
translation, for instance, has shown that writer
style is not preserved across languages (Rabi-
novich et al., 2017). There is uncharted territory
for AES to adapt to individual writer styles and
give feedback based on individual writing rather
than prompt-specific exemplars. Natural language
understanding researchers now argue that “...style
is formed by a complex combination of different
stylistic factors” (Kang and Hovy, 2019); Style-
specific natural language generation has shown
promise in other domains (Hu et al., 2017; Prab-
humoye et al., 2018) and has been extended not
just to individual preferences but also to overlap-
ping identities based on attitudes like sentiment
and personal attributes like gender (Subramanian
et al.). Early work suggests that style-specific
models do see major improvements when shifting
to high-dimensionality Transformer architectures
(Keskar et al., 2019). This topic bridges an im-
portant gap: for assessment, research has shown
that “authorial voice” has measurable outcomes on
writing impact (Matsuda and Tardy, 2007), while
individual expression is central to decades of peda-
gogy (Elbow, 1987). Moving the field toward indi-
vidual expression and away from prompt-specific
datasets may be a path to lending legitimacy to
AES, and Transformers may be the technical leap
necessary to make these tasks work.
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6.3 Fairness

Years ago, researchers suggested that demo-
graphic bias is worth checking in AES systems
(Williamson et al., 2012). But years later, the
field has primarily reported fairness experiments
on simulated data, and shared toolkits for measur-
ing bias, rather than results on real-world AES im-
plementations or high-stakes data (Madnani et al.,
2017; Loukina et al., 2019).

Prompted by social scientists (Noble, 2018),
NLP researchers have seen a renaissance of fair-
ness research based on the flaws in default im-
plementations of Transformers (Bolukbasi et al.,
2016; Zhao et al., 2017, 2018). These works typ-
icallly seek to reduce the amplification of bias in
pretrained models, starting with easy-to-measure
proof that demographic bias can be “removed”
from word embedding spaces. But iterating on in-
puts to algorithmic classifiers — precisely the in-
tended use case of formative eeedback for writ-
ers! — can reduce the efficacy of “de-biasing” (Liu
et al., 2018; Dwork and Ilvento, 2019). More re-
cent research has shown that bias may simply be
masked by these approaches, rather than resolved
(Gonen and Goldberg, 2019).

What these questions offer, though, is a well-
spring of new and innovative technical research.
Developers of learning analytics software, includ-
ing AES, are currently encouraged to focus on
scalable experimental evidence of efficacy for
learning outcomes (Saxberg, 2017), rather than fo-
cus on specific racial or gender bias, or other eq-
uity outcomes that are more difficult to achieve
through engineering. But Transformer architec-
tures are nuanced enough to capture immense
world knowledge, producing a rapid increase in
explainability in NLP (Rogers et al., 2020).

Meanwhile, in the field of learning analytics, a
burgeoning new field of fairness studies are learn-
ing how to investigate these issues in algorithmic
educational systems (Mayfield et al., 2019; Hol-
stein and Doroudi, 2019). Outside of technol-
ogy applications but in writing assessment more
broadly, fairness is also a rich topic with a history
of literature to learn from (Poe and Elliot, 2019).
Researchers at the intersection of both these fields
have an enormous open opportunity to better un-
derstand AES in the context fairness, using the lat-
est tools not just to build reliable scoring but to
advance social change.
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