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Abstract

Recently, document-level neural machine
translation (NMT) has become a hot topic in
the community of machine translation. De-
spite its success, most of existing studies ig-
nored the discourse structure information of
the input document to be translated, which
has shown effective in other tasks. In this
paper, we propose to improve document-level
NMT with the aid of discourse structure in-
formation. Our encoder is based on a hier-
archical attention network (HAN) (Miculicich
et al., 2018). Specifically, we first parse the
input document to obtain its discourse struc-
ture. Then, we introduce a Transformer-based
path encoder to embed the discourse structure
information of each word. Finally, we com-
bine the discourse structure information with
the word embedding before it is fed into the
encoder. Experimental results on the English-
to-German dataset show that our model can
significantly outperform both Transformer and
Transformer+HAN.

1 Introduction

Neural machine translation (NMT) has made great
progress in the past decade. In practical applica-
tions, the need for NMT systems has expanded
from individual sentences to complete documents.
Therefore, document-level NMT has gradually
drawn much more attention. Contextual informa-
tion is particularly important for obtaining high-
quality document translation. To get better contex-
tual information, researchers have proposed many
methods (e.g., memory network and hierarchical
attention network) for document-level translation
(Sim Smith, 2017; Tiedemann and Scherrer, 2017;
Wang et al., 2017a; Tu et al., 2017; Wang et al.,
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2017a; Voita et al., 2018; Zhang et al., 2018; Miculi-
cich et al., 2018; Maruf and Haffari, 2018; Maruf
etal., 2019; Yang et al., 2019). Discourse structure,
as well as raw contextual sentences, is a major com-
ponent of the document. And it has been proved
to be effective in many other tasks, such as au-
tomatic document summarization (Yoshida et al.,
2014; Isonuma et al., 2019) and sentiment classifi-
cation (Schouten and Frasincar, 2016; Nejat et al.,
2017). However, to the best of our knowledge,
discourse structure has not been explicitly used in
document-level NMT.

To address the above problem, we propose to
improve document-level NMT with the aid of dis-
course structure information. First, we represent
each input document with a Rhetorical Structure
Theory-based discourse tree (Mann and Thompson,
1988). Then, we use a Transformer-based path en-
coder to embed the discourse structure path of each
word and combine it with the corresponding word
embedding before feeding it into the sentence en-
coder. In this way, discourse structure information
can be fully exploited to enrich word representa-
tions and guide the context encoder to capture the
relevant context of the current sentence. Finally,
we adopt HAN (Miculicich et al., 2018) as our
context encoder to model context information in a
hierarchical manner.

Our contributions are as follows: (i) We pro-
pose a novel and efficient approach to explicitly ex-
ploit discourse structure information for document-
level NMT. Particularly, our approach is applicable
for any other context encoder of document-level
NMT; (ii) We carry out experiments on English-to-
German translation task and experimental results
show that our model outperforms competitive base-
lines.
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Figure 1: The architecture of our proposed encoder

2 Related Work

In the era of statistical machine translation,
document-level machine translation has become
one of the research focuses in the community of
machine translation. (Xiao et al., 2011; Su et al.,
2012; Xiao et al., 2012; Su et al., 2015). Recently,
with the rapid development of NMT, document-
level NMT has also gradually attracted people’s
attention (Voita et al., 2018; Maruf and Haffari,
2018; Miculicich et al., 2018; Maruf et al., 2019;
Yang et al., 2019). Typically, existing studies aim
to improve document-level translation quality with
the help of document context, which is usually ex-
tracted from neighboring sentences of the current
sentence. For example,some researchers applied
cache-based models to selectively remember the
most relevant context information of the document
(Voita et al., 2018; Maruf and Haffari, 2018; Kuang
et al., 2018), while some researchers employed
hierarchical context networks to catch document
context information for Transformer (Miculicich
et al., 2018; Maruf et al., 2019; Yang et al., 2019).
Specifically, Miculicich et al. (2018) proposed a
hierarchical attention network to model contextual
information, Maruf et al. (2019) applied a selective
attention method to select contextual information
that is more relevant to the current sentence, and
Yang et al. (2019) employed capsule network to
model multi-angle context information.

Although these methods have made some
progress in document-level NMT, they all ignored
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the discourse structure information, which can be
used to not only enrich word embedding but also
guide the selection of relevant context for the cur-
rent sentence.

3 Our Encoder

We propose a novel document-level NMT model
based on HAN (Miculicich et al., 2018). The differ-
ence between ours and HAN lies in that we intro-
duce the RST-based discourse structure to represent
the document-level context, which is incorporated
into HAN to refine translation.

Figure 1 gives the architecture of our proposed
encoder. In addition to the standard encoder for
the current sentence, it contains HAN (Miculicich
et al., 2018) as context encoder, and a novel path
encoder for the discourse structure. We first use
the Transformer-based path encoder to model dis-
course structure information. Then, we combine
the embedding of each input word with its cor-
responding path embedding vector and feed the
combined vector into the sentence encoder. Finally,
we use the hierarchical attention network to cap-
ture the global contextual embedding and update
the hidden states of current sentence as the final
output of the whole encoder.

In our model, the translation of a document is
made by translating each of its sentences sequen-
tially. We introduce discourse structure for both the
current sentence and contextual sentences. Given a
source document X, the translation probability of
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For example, one important achievement of former President Felipe Calderon’s administration was to push through a 140-mile highway]e;
connecting the interior city of Durango and the Pacific port at Mazatlan.]e,

2. [Traversing extremely rough terrain with 200 tunnels and bridges,]e; [it promises to cut the transit time by three or four hours.]e,

3. [Except for the weather, |es [the highway has the feel of Switzerland.]eg

Figure 2: An example discourse tree of with six EDUs. N and S denote the relative importance label NUCLEUS
and SATELLITE, respectively. Sentence 3 is the current sentence to be translated, with two previous context
sentences 1 and 2. On the tree, the path marked with dotted lines from the root node to the leaf node e5 is used to

represent the discourse structure of es.

the target document Y can be defined as:
J
PY | X;0)= [ P(Y? | X7,D7,5:6), (1)
j=1

where X7 and Y7 denote the j-th source sentence
and its target translation respectively, D7 denotes
the contextual sentences, .S represents the discourse
structure of the document to be translated, and 6 is
the parameter set of the model.

3.1 RST-based Discourse Structure

For each document to be translated, we parse it
to obtain its discourse structure based on Rhetori-
cal Structure Theory (RST) (Mann and Thompson,
1988). RST is one of the most influential theo-
ries of document coherence. According to RST,
we represent each document with a hierarchical
tree. As shown in Figure 2, the discourse tree con-
tains some leaf nodes, each of which indicates an
Elementary Discourse Unit (EDU). The adjacent
leaf nodes are recursively connected into units by
certain coherence relations (e.g., ELABORATION,
BACKGROUND) until the entire tree is built. Be-
sides, NUCLEUS or SATELLITE is used to mark
the relative importance of child node units in the
relationship.

In this work, we represent the discourse struc-
ture information of each word using its discourse
path from root node to its corresponding leaf node.
Each path is a mixed label sequence composed
of the discourse relationship and the importance
label (e.g., NUCLEUS_ELABORATION, SATEL-
LITE_BACKGROUND,). Please note that all to-
kens in the same EDU share the same discourse
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structure. For example, the discourse structure of
EDU ej5 is "SATELLITE_ELABORATION SATEL-
LITE_ELABORATION SATELLITE_CONTRAST”.

3.2 Discourse Structure Path Embedding

To integrate the structural information of words into
the our HAN-based document-level NMT model,
we first additionaly introduce a Transformer-based
path encoder to encode discourse structure paths
of words. Specifically, for each word w;, we di-
rectly consider its discourse structure path p; as
a sequence and then employ the path encoder to
learn its contextual hidden states, which can be
finally averaged to produce the overall discourse
embedding vector d;. Then, we enrich each input
word embedding with its corresponding discourse
embedding vector before it is fed into the context
encoder or the translation encoder. Concretely, for
the word w;, we define its enriched vector as the
sum of its word embedding and discourse embed-
ding: z; = x; + d;.

3.3 HAN-based Context Modeling

Following (2018), we apply hierarchical attention
network (HAN) as our context encoder. Due to the
advantage of accurately capturing different levels
of contexts, HAN has been widely used in many
tasks, such as document classification (Yang et al.,
2016), stance detection (Sun et al., 2018), sentence-
level NMT (Su et al., 2018b). Using this encoder,
we mainly focus on two levels of context modeling:

Sentence-level Context Modeling For the i-th
word of the current sentence, we employ muti-head



attention (Vaswani et al., 2017) to summarize the
context from the k-th context sentence:
csi ) = MultiHead(fs(h;), Hy), 2
where fs is a linear transformation function, h;
denotes the hidden state representation of the i-th
token of current sentence. By doing so, our con-
text encoder can exploit different types of relation
between words to better capture sentence-level con-
text. And Hy, is the hidden state representation of

the k-th context sentence and is used as value and
key for attention.

Document-level Context Modeling Unlike the
above modeling, here we mainly on capturing the
context information from previous K sentences for
the 7-th word of the current sentence.

cd; = FFN(MultiHead(f4(h;), CS;i)), (3)
where f; is a linear transformation, and CS; =

[esin,csi, -, cs; k| is the sentence-level context
of K contextual sentences.

Integrating Document-level Context into the
Translation Encoder Finally, we integrate the
above-mentioned document-level context into the
translation encoder via a gating operation:

N = U(Whhi + chcdi) (4)

hi = Aihi + (1 — \)ed; (5)

where Wy, and ch~denote parameter matrices
for h; and cd;, and h; is the final output of the
encoder.

4 Experiments

4.1 Settings

Datasets We conduct our experiments on
English-to-German translation task. The sentence-
aligned document-delimited News Comment v11
corpus !, the WMT16 newstest2015 and the new-
stest2016 are used as the training set, development
and test set, respectively.

We download all the above corpus from (Maruf
et al., 2019), of which statistics are provided in
Table 1.

'http://www.casmacat.eu/corpus/news-commentary.htm]
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#Sentences Document length

Training 236,287 38.93
Development 2,169 26.78
Test 2,999 19.35

Table 1: The statistical of our datasets. #Sentence in-
dicates the number of sentences, and Document length
means the average number of sentences in document.

Settings We use Transformer (Vaswani et al.,
2017) as our context-agnostic baseline system and
Transformer+HAN (Miculicich et al., 2018) as our
context-aware baseline system. We conduct ex-
periments using the same configuration as HAN.
Specifically, both sentence encoder and decoder
are composed of 6 hidden layers, while path en-
coder is composed of 2 hidden layers. We use
three previous sentences as contextual sentences
for current sentence. The hidden size and point-
wise FFN size are 512 and 2048 respectively. The
dropout rates for all hidden states are set to 0.1.
The source and target vocabulary sizes are both
30K. At the training phase, we use the Adam opti-
mizer (Kingma and Ba, 2015) and the batch sizes of
context-agnostic model and context-aware model
are 4096 and 1024, respectively. Finally, we use
case-sensitive BLEU (Papineni et al., 2002) and
TER (Snover et al., 2006) to measure the transla-
tion quality.

Data Preprocessing All datasets are tokenized
and truecased using the scripts of Moses Toolkit
(Koehn et al., 2007). We split them into subword
units using a joint bye pair encoding model with
30K merge operations. To get discourse structure
of the input documents, we first apply the open-
source tool NeuralEDUSeg (Wang et al., 2018)
obtaining non-overlapping EDUs. Then, we em-
ploy StageDP (Wang et al., 2017b) to obtain dis-
course structure trees of segmented documents. Af-
terwards, we extract the path from root node to
leaf node as the discourse structure information for
the corresponding EDU, where all words share the
same discourse structure path.

4.2 Results and Analysis

Table 2 shows the experimental results for different
models. The sentence-level Transformer, context-
agnostic baseline, obtains a result of 22.78 BLEU
and 59.3 TER, while the context-aware baseline
Transformer+HAN (Miculicich et al., 2018) ob-
tains 24.45 BLEU and 56.9 TER. The sentence-



Model BLEU TER
Transformer 22.78 59.3
Transformer+DS 23.61 (+0.83) 58.5 (-0.8)
Transformer+HAN 24.45 (+1.67) 56.9 (-2.4)
Transformer+HAN+DS 24.84 (+2.06) 56.4 (-2.9)

Table 2: BLEU and TER scores for different models. The best scores are marked in bold. HAN denotes Hierarchi-
cal Attention Network which is used to get context information while DS denotes Discourse Structure information.

level Transformer integrated with discourse struc-
ture achieves an improvement of 0.83 on BLEU
and a decline of 0.8 on TER. By contrast, our
model integrated with contextual information and
discourse structure information further gains a bet-
ter performance, 2.06 higher than Transformer and
0.39 higher than Transformer+HAN on BLEU, 2.9
lower than Transformer and 0.5 lower than Trans-
former+HAN on TER.

Our experimental results show that discourse
structure features indeed provide helpful informa-
tion to enhance the translation quality of both
context-agnostic and context-aware document-
level NMT models. Please note that our approach
is also applicable to other document-level NMT
models.

5 Conclusion

This paper has presented a novel discourse
structure-based encoder for document-level NMT.
The main idea of our encoder lies in enriching the
input word embeddings with their path embeddings
based on discourse structure. Experimental results
on English-to-German translation verify the effec-
tiveness of our proposed encoder.

In the future, we plan to extend our encoder to
other NLP tasks, such as simultaneous translation.
Simultaneous translation, as well as document-
level NMT, has difficulty in modeling the long
context so that it may be effective to improve the re-
translation with the structure information modeled
by our encoder. Finally, we will focus on refin-
ing document-level NMT with variational neural
networks, which has shown effecitive in previous
studies of sentence-level NMT (Zhang et al., 2016;
Su et al., 2018a).
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