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Welcome to the 14th Biennial Conference of the 
Association for Machine Translation in the Americas 

– AMTA 2020 Virtual!

AMTA conferences traditionally provide a unique opportunity for academic and 
commercial researchers to share their results with colleagues as well as to understand 
real-world user requirements. Business and government participants benefit from 
updates on leading-edge R&D in MT and have a chance to present and discuss their use 
cases. At the same time, students who attend gain a broad perspective and 
understanding of the fascinating field of MT. 

This year’s conference, however, is significant in at least two aspects.  The first is that 
neural machine translation (NMT) has become a de facto standard in research and 
industry.  At our last conference in March of 2018, generic NMT systems had just begun 
to be widely used during the preceding year, but it was later in 2018 that customizable 
NMT systems became widely available, enabling many companies, governments, and 
other organizations to benefit from an even higher level of MT quality for their specific 
applications.  Since then, NMT customization and usage across the spectrum from 
individual translators to large corporations has continued to snowball. 

The second aspect has been more of a difficulty than an advantage.  The COVID-19 
pandemic has resulted in transforming AMTA 2020 from an in-person event at a 
spectacular venue in Orlando, Florida to a completely online conference.  While this 
transformation has presented many unique challenges, we now see some silver linings 
in this cloud.  Without the need to travel and its associated costs, our attendance numbers 
have doubled from previous years, and participation has come from around the globe. 
We have been fortunate to receive tremendous support from our many sponsors, for 
which we are most grateful. Notably, Microsoft has provided their Teams platform to 
support the virtual conference sessions. 

I wish to offer my sincerest thanks to our conference organizing committee, without whom 
this virtual conference would not have taken place.  They have worked long hours to 
organize and prepare for this unique format, navigating uncharted waters and overcoming 
various roadblocks.  I trust that all who attend will benefit from the results of their diligent 
efforts. 

Steve Richardson 
AMTA President 
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Introduction 

The AMTA 2020 research track continues the conference’s tradition of 
bringing together machine translation users, developers, and researchers 
from around the world. The proceedings include ten long papers, two short 
papers, and three open source toolkit descriptions covering a broad range 
of topics. Some papers introduce extensions to widely used translation 
models and inference algorithms. Others focus on improving MT 
performance for specific domains and applications, including low resource 
languages and speech translation. Still others explore the connections 
between MT and other language processing tasks such as sentiment 
classification and lexicon induction. 

This track is made possible by the hard work and contributions of many 
individuals. We would like to thank Steve Richardson and all members of 
the conference committee for their organizational support, Alon Lavie and 
the rest of the steering committee for specific advice on the research track, 
and all of the AMTA 2020 authors and reviewers. 

Sincerely, 

Michael Denkowski 
Christian Federmann 
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Investigation of Transformer-based Latent
Attention Models for Neural Machine Translation

Parnia Bahar1,2 bahar@cs.rwth-aachen.de
Nikita Makarov1 nikita.makarov@rwth-aachen.de
Hermann Ney1,2 ney@cs.rwth-aachen.de
1Human Language Technology and Pattern Recognition Group, Computer Science Department,
RWTH Aachen University, 52074 Aachen, Germany
2AppTek GmbH, 52062 Aachen, Germany

Abstract
Current neural translation networks are based on an effective attention mechanism that can
be considered as an implicit probabilistic notion of alignment. Such architectures do not
guarantee a high quality alignment, even though alignments can easily be used for explainable
machine translation. This work describes a latent variable attention model using the transformer
architecture, where we carry out an approximate marginalization over alignments. We show that
the alignment quality in transformer models can be improved by introducing a latent variable
for the alignments. To study the effect of the latent model, we quantitatively and qualitatively
analyze the extracted alignments from the multi-head attention. We demonstrate that this method
slightly improves translation quality on four WMT 2018 shared translation tasks, as well as
generating more focused alignments for better interpretability.

1 Introduction

Current state-of-the-art neural machine translation (NMT) systems are based on attention models
(Bahdanau et al., 2015; Luong et al., 2015; Gehring et al., 2017; Vaswani et al., 2017), where
“soft attention” is used to focus on the most relevant parts of the source sequence while generating
target words. This distribution can be considered as an implicit probabilistic notion of alignment
as an intermediate step of the translation model. However, it does not work in the same way
as its analogous alignment in conventional statistical machine translation (SMT) (Koehn and
Knowles, 2017).

Contrary to SMT, where a “hard alignment” is a transparent process that defines the
correspondence between source and target words, it is often challenging for the fuzzy attention
mechanism to extract a comprehensible alignment. Although the context vector, a weighted
sum of the input states, includes the alignment information implicitly, the alignment model does
not directly influence the final translation probability of a sentence. Hence, it is often hard to
determine the contribution of the attention on the output. In this work,

• we incorporate the attention model into the direct hidden Markov model (HMM) formulation
in the transformer architecture such that the translation posterior distribution has a direct
dependency on the source positions.

• as to the interest in alignment based approaches, we intend to investigate whether the
latent-based models are able to tackle the explainability problem of alignments especially
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for the transformer model. Similar to how some approaches in explainable NMT use the
attention (Stahlberg et al., 2018; Zenkel et al., 2019; Garg et al., 2019), we also incorporate
it as a key interpretation component into our work.

From the statistical perspective, we revisit the formulation of the posterior probability of
a given sentence by computing a separate translation score for every target-source word pair.
Since marginalization is exponential in the order of the model, we only explore a zero-order
assumption, i.e. there is no dependence between subsequent alignments. The marginalization
over the latent variable becomes simple and efficient for zero-order models and can be easily
applied in both training and decoding. Unlike higher order dependence (Alkhouli et al., 2016,
2018; Wang et al., 2018), no dynamic programming and no search for the alignment path is
required, thus a simple beam search decoder is used. We also address the theoretical connection
between our approach and IBM model 2 (Brown et al., 1993). Tackling the costly computation
of the softmax for all source positions, we employ an approximation by taking the topK relevant
positions. To the best of our knowledge, this work explores the first instance of a zero-order latent
variable alignments using the transformer architecture in an end-to-end fashion for machine
translation.

2 Related Works

Similar to IBM and HMM alignments (Brown et al., 1993; Vogel et al., 1996), there are stand-
alone neural approaches based on introducing word alignments as hidden variables, such that
either a full sum over the alignment path or a maximum approximation (Viterbi word alignment)
is used. These models decompose the translation process into two parts, namely the alignment
and lexicon models. Unlike (Wang et al., 2018, 2017) where they use two separate networks,
one for the alignment and one for the lexicon model and they need to jointly train two networks
batch-wise, our work is still a single network trained end-to-end similar to the transformer
model. Due to first-order dependence, Wang et al. (2018) also apply the forward-backward
algorithm to compute the posterior probabilities as true labels, which is not required in our
model. Alkhouli et al. (2016) apply explicit hard alignments to generate a translation using a
maximum approximation. Alkhouli and Ney (2017) compute attention weights using pre-defined
alignments to bias soft attention toward hard alignments. Yang et al. (2013) use lexical and
alignment models, where alignments have no dependence on the lexical context. Tamura et al.
(2014) also introduce a lexicalized neural alignment model to generate word alignments for the
phrase-based translation system. In this work, we use neither pre-computed alignments nor a
phrase table.

As an extension to neural alignment models, Alkhouli et al. (2018) use the transformer
architecture to train both alignment and lexicon models while augmenting the multi-head attention
component with additional hard alignment information. In their work, they train two separate
networks and combine them in decoding with a maximum approximation. In contrast, we train a
single network and sum over source positions.

Inspired by the success of statistical alignment models, Tu et al. (2016); Cohn et al. (2016)
propose fertility and coverage concepts by including dependence on previous attention weights.
Zenkel et al. (2019) try to gain high quality alignments by recomputing the attention heads after
each target word prediction. Peter et al. (2017); Li et al. (2018) employ the full target context to
improve alignment accuracy. Given statistical alignments obtained from Giza++ toolkit (Och
and Ney, 2003), there are some methods in which the soft attention weights are supervised to
behave similarly to the conventional hard alignments. Chen et al. (2016); Mi et al. (2016); Liu
et al. (2016); Garg et al. (2019) add an additional training objective term that is dependent on the
pre-computed alignments like Giza++ to guide neural models in training.

Instead of an objective function, Alkhouli and Ney (2017) modify the attention energy
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computation directly to have dependence on the Giza++ alignment and perform beam search over
both the lexical and alignment hypotheses. Unlike the aforementioned methods, our approach
does not require any pre-computed alignments, and we do not need to search for the alignment
path. It means our zero-order model can be easily applied in both training and decoding.

There are also a number of recent works in which attention is used as a latent alignment
by decomposing the joint distribution between an alignment model and a lexicon model (Wu
et al., 2018; Shankar et al., 2018; Bahar et al., 2020). They mainly use a recurrent neural
network (RNN) parameterization. The main difference of our work, is that we explore the use
of transformer models. They either use character-level output or conduct the experiments on a
small training set where the vocabularies appear to be small, whilst we evaluate our experiments
using relatively large vocabularies. Shankar and Sarawagi (2019) extend the prior into an explicit
posterior attention distribution. Deng et al. (2018) propose a non-differentiable approach, “hard
attention”, where an explicit dependence of a single input to output is taken by the REINFORCE
algorithm (Xu et al., 2015).

In this work, we explore the soft attention as a latent variable alignment to directly calculate
the posterior probability of a sentence. Our idea is a straight-forward application of an under-used
idea from IBM word-based translation modeling, and makes clever use of existing transformer
components to avoid adding parameters to the model. We avoid the temptation to create a separate
distortion model, and just re-use attention heads. The solution is clean and probabilistically
sound.

3 Background

In machine translation, given a source sequence fJ1 = f1, . . . , fj , . . . , fJ of length J , with fj
being a source word, the posterior probability of a target sequence eI1 = e1, . . . , ei, . . . , eI of
length I , is defined as p(eI1|fJ1 ). This conditional distribution, the so-called translation model,
covers the alignment information between source and target words either implicitly or explicitly.

In most NMT methods, including both the recurrent-based attention (Bahdanau et al., 2015)
and the transformer (Vaswani et al., 2017), the encoder scans the entire source sequence and
generates a sequence of vector representation. Then, the decoder generates an output sequence
conditioned on the precomputed encoder states. The posterior probability distribution of the
target sequence is conditioned on the source fJ1 and the target history ei−11 , as:

p(eI1|fJ1 ) =
I∏

i=1

p(ei|ei−11 , fJ1 ) =

I∏
i=1

p
(
ei|ei−11 , ci

(
ei−11 , hJ1 (f

J
1 )
))

(1)

Usually, the dependence on fJ1 is modelled using a soft attention mechanism, where a weighted
sum ci of the input representations hJ1 is used inside a neural network layer. Thus, it is important
to observe that there is no direct dependence on source position in Equation 1. In this equation,
hJ1 is the encoder’s output, and ci is the output of an attention approach at target position i,
summarizing the alignment information implicitly.

4 Latent Attention Model

Similar to (Wang et al., 2018; Wu et al., 2018; Shankar et al., 2018; Bahar et al., 2020), we
introduce a word alignment as a sequence of latent variables that establishes a mapping from
target position i to source position j, i.e. i→ bi = j and decompose the posterior probability
distribution of target sequence into two parts: alignment and lexicon models. To do so, we
marginalize out all possible alignments in Equation 2.

∑
bI1

considers all possible alignment
paths, such that bi aligns the target position i to the source position j. Assuming the zero-order
Markov assumption to simplify the dependencies of the alignment sequences, we decompose the
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posterior probability into alignment and lexicon models, obtaining Equation 4. Here, we note
that, assuming a first-order assumption leads to the first-order hidden Markov model. Performing
the sum over all alignments would lead to a combinatorial problem. Due to the zero-order
dependence, one can re-arrange the sum and the product in Equation 5 by the distributive
property that leads to polynomial complexity. The mathematical proof of swapping between the
sum and product can be found in (Brown et al., 1993).

Since the model combines a mixture of softmaxes, the exact marginalization over all source
positions is infeasible for a large vocabulary. Hence, we choose the topK source positions with
the highest alignment probabilities and compute the corresponding lexicon scores. By doing so,
the computational complexity reduces to O(I ×K) (see Equation 6). We differentiate the topK
approximation by the straight-through estimator (Bengio et al., 2013). We found empirically that
K = 6 is enough and we only get marginal benefits for K > 6 (see Section 7.4 for more details).

p(eI1|fJ1 ) =
∑
bI1

p(eI1, b
I
1|fJ1 ) =

∑
bI1

I∏
i=1

p(ei, bi|ei−11 , bi−11 , fJ1 ) (2)

=
∑
bI1

I∏
i=1

p(bi|ei−11 , bi−11 , fJ1 )︸ ︷︷ ︸
alignment modeling

· p(ei|ei−11 , bi1, f
J
1 )︸ ︷︷ ︸

lexicon modeling

(exponential complexity, JI ) (3)

=
∑
bi

I∏
i=1

p(bi|ei−11 , fJ1 )︸ ︷︷ ︸
alignment model

· p(ei|ei−11 , bi, f
J
1 )︸ ︷︷ ︸

lexicon model

(4)

=
I∏

i=1

J∑
j=1

p(bi = j|ei−11 , fJ1 ) · p(ei|ei−11 , j, fJ1 )

(polynomial complexity, I × J) (5)

≈
I∏

i=1

∑
j∈topK

p(bi = j|ei−11 , fJ1 ) · p(ei|ei−11 , j, fJ1 )

(polynomial complexity, I ×K) (6)

Relation to IBM Model 2
We note the similarity between Equation 5 and IBM model 2 (in Equation 7) as both are

zero-order models with respect to the alignments, however, our model has a dependence on target
history.

p(eI1|fJ1 ) =
I∏

i=1

J∑
j=1

p(j|i, J, I)︸ ︷︷ ︸
alignment

· p(ei|fj)︸ ︷︷ ︸
lexicon

(7)

5 Neural Parameterization

In order to parameterize the individual components of the model, we use a network similar to the
multihead self-attentive transformer. In the transformer architecture both the encoder and decoder
are composed of stacked layers. In the encoder, multihead self-attentive components followed
by a feed forward layer are used to encode the entire source sequence, obtaining a sequence of
encoder states h(Lenc)

1 , . . . , h
(Lenc)
j , . . . , h

(Lenc)
J . Here, Lenc is the number of encoder layers.

The decoder contains an additional multihead attention layer, incorporating the encoder
states and the decoder state s(ldec−1)

i−1 in each decoder layer ldec. Several attention heads are
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ℎ1
(𝐿𝑒𝑛𝑐) ℎ𝑗

(𝐿𝑒𝑛𝑐) ℎ𝐽
(𝐿𝑒𝑛𝑐)… …

… … …

𝑠𝑖−1
(𝐿𝑑𝑒𝑐)

𝑠𝑖−1
(1)…

…

…

𝐿𝑖𝑛𝑒𝑎𝑟

𝑆𝑜𝑓𝑡𝑚𝑎𝑥 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 𝑆𝑜𝑓𝑡𝑚𝑎𝑥

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑣𝑒𝑟 𝐻𝑒𝑎𝑑𝑠

x

𝛴

𝑇𝑜𝑝𝐾

…

…

𝑝 ȁ𝑒i 𝑒0
𝑖−1, 𝑓1

𝐽

Figure 1: Overview of the transformer-based zero-order attention model. In the output layer, at
each target step i, we add the decoder state s(Ldec)

i−1 with all the encoder state hJ1 (or with topK
approximation only the K best ones).

used to attend to the source positions. At every decoder layer, each attention head n, computes
a normalized distribution over the source positions, α(ldec)

n (j|i). These weights are used to
compute the context vectors. The concatenation of these context vectors are fed through a
feed-forward layer to form the decoder representation s(ldec)i−1 . The representation from the last
decoder layer is then passed through a softmax layer, which provides the final distribution over
the vocabulary p(ei|fJ1 , ei−11 ). The latent attention model has two main components. Figure 1
shows an abstract of the model architecture.
Lexicon Model: The lexicon model is fairly straightforward to implement in the transformer.
As shown in Figure 1, we combine the last decoder state of the top layer with the encoder states,
as well as the last target word at each time step, Therefore, we have

p(ei|ei−11 , j, fJ1 ) = g
(
ei−1, s

(Ldec)
i−1 , h

(Lenc)
j

)
(8)

where g is a linear projection followed by the softmax. As seen in this equation, at each target
step i, we add the decoder state si−1 with all the encoder state hJ1 (or with topK approximation
only the K best ones).
Alignment Model: On the other hand, the alignment model is not as trivial to implement.
The first option is to use the existing attention weights of the transformer for the alignment,
but the transformer has not only multiple attention layers, but also multiple heads per layer.
The transformer’s topology with multiple heads in a single layer makes the attention heads
symmetrical, but the different layers might capture different alignment information (Garg et al.,
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German English Chinese English
Sentences 5.9M 14.1M
Running words 160M 157M 314M 427M
vocabularies 45k 33k 38k 32k

Table 1: Corpus statistics.

2019). To form the alignment model, we average over the attention weights across all heads
within each layer of the decoder at each time step, i.e.:

p(ldec)(j|ei−11 , fJ1 ) =
1

N

N∑
n=1

α(ldec)
n (j|i) (9)

where N is the number of attention heads and ldec is the decoder’s lth layer. We have observed
that this way the model has the ability to train the heads of selected layer (see Section 7.1). Other
authors have found that the later attention layers of the transformer perform longer jumps and
generally attend to more different source positions (Irie et al., 2019). Due to these properties and
based on the results in Table 7.1, we focus our experiments on using the last layer’s attention of
the decoder, averaged over the heads, i.e.

p(j|ei−11 , fJ1 ) =
1

N

N∑
n=1

α(Ldec)
n (j|i). (10)

Once we compute the lexicon and alignment probabilities, we sum over j positions as stated
in Equation 6 with topK approximation. The model has almost the same number of parameters
as our transformer baseline. A visualization of model architecture can be seen in Figure 1.

6 Experiments

We carry out the experiments on four WMT 2018 translation tasks1: German↔English and
Chinese↔English. The corpora statistics are shown in Table 1. We do not employ any kind of
synthetic or back-translated data in this work.

For German↔English, after tokenization and true-casing using the Moses toolkit (Koehn
et al., 2007), we apply byte pair encoding (BPE) (Sennrich et al., 2016) with 50k merge operations.
We use the original parallel data consisting of 5.9M sentence pairs (see Table 1).

For Chinese↔English, we apply sentence pieces model (SPM) (Kudo, 2018) with an n-best
size of 30 and 32k merge operations. The original bilingual data consists of almost 26M samples.
We filter out the noisy data by removing illegal characters and duplication, hence we end up with
14M pairs.

For De↔En and Zh↔En, we use the newstest2015 and the newsdev2017 as the
development set respectively and the newstest2017 and newstest2018 as our test sets.
The models are evaluated using case-sensitive BLEU (Papineni et al., 2002) computed by
the official scripts of WMT campaign, i.e. mteval-v13a2 and case-sensitive normalized
TER (Snover et al., 2006) computed by tercom3.

For our experiments, we train both the transformer and the RNN attention models. We
follow a base transformer similar to (Vaswani et al., 2017) where we use 6 layers in both the

1http://statmt.org/wmt18/
2ftp://jaguar.ncsl.nist.gov/mt/resources/mteval-v13a.pl
3http://www.cs.umd.edu/ snover/tercom/
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encoder and the decoder with an internal dimension size of 512. We set the number of heads in
the multi-head attention to 8. Layer normalization, dropout, and residual connections are applied.
We use the same structure as our transformer baseline for the latent attention model with the
almost the same number of parameters.

Given that the proposed latent method can be also applicable to the RNN attention architec-
ture, we intend to apply this technique to the RNN attention to see if meaningful differences will
be observed. However, we focus on our analysis of the difference between the transformer and
the latent attention model. We train the RNN attention models similar to (Bahdanau et al., 2015),
in which all words are projected into a 512-dimensional embedding space. We use a 6-layer
stacked bidirectional LSTM (BLSTM) (Hochreiter and Schmidhuber, 1997) with 1024 hidden
cells to compute a sequence of encoder states hT1 . The decoder is composed of one layer LSTM
of size 1024 with an additive single-head attention layer with attention feedback (Bahar et al.,
2017). In the RNN latent attention model, to form the alignment model, we use the attention
weights itself, α(i|j), as our distribution, i.e.

p(j|ei−11 , fJ1 ) = α(i|j) = ν> tanh(hj , si−1) (11)

For the lexicon scores, similar to the transformer modeling, we combine the decoder state
with the encoder states, as well as the last output token at each time step and write

p(ei|ei−11 , j, fJ1 ) = g(ei−1, si−1, hj) (12)

We note the difference between equations 12 and 13 and direct dependency on source
positions instead of a summary of all inputs as a single vector ci. To compute the lexicon
probabilities, we employ a softmax over the target vocabulary, J times (or K times using the
approximation), while in the attention model, we only do it once as we summarize the encoder
representations using the context vector ci without any dependence on j positions.

p(ei|ei−11 , fJ1 ) = g(ei−1, si−1, ci) (13)

For RNN-based models, we use a layerwise pre-training strategy (Zeyer et al., 2018) for
the first epochs. We start using only the first layer in the encoder of the model and add new
layers during the training progress. We observe that the layer-wise pretraining leads to a strong
RNN attention baseline. The models are trained end-to-end using the Adam optimizer with a
learning rate of 0.0003, and a dropout of 10% for the transformer-based systems, and a learning
rate of 0.001 and a dropout of 30% for the RNN-based attention models. We employ a learning
rate scheduling scheme, where we lower the learning rate with a decay factor of 0.9 if the
perplexity on the development set does not improve for several consecutive checkpoints. We
remove sentences longer than 100 tokens before batching them together. All batch sizes are
specified to be as big as possible to fit in memory. A beam size of 12 is used in inference. We
use our in-house implementation of sequence-to-sequence modeling in RETURNN (Zeyer et al.,
2018). The code4 and the configurations of the setups are available online5.

7 Results

7.1 Averaging Attention Heads
Our latent model is flexible to learn one of the heads, all heads within a single layer or all
heads across all layers. As described in Section 5, the transformer architecture leads to have

4https://github.com/rwth-i6/returnn
5https://github.com/rwth-i6/returnn-experiments/
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Layer newsdev2017 newstest2017
BLEU TER BLEU TER

1 21.9 62.7 23.4 61.2
2 22.5 61.9 23.8 60.6
3 22.6 61.9 23.8 60.6
4 21.9 62.6 23.8 60.8
5 22.5 62.0 24.2 60.3
6 22.6 61.9 24.2 60.5

Table 2: Results measured in BLEU [%] and TER [%] on the Zh→En task.

symmetrical attention heads within a layer, while different layers might learn different alignment
patterns.

To examine which layer can be the most effective one for our latent attention model, we
have chosen our alignment model obtained by layer-wise averaging of attention probabilities of
various layers. Table 2 shows the BLEU and TER scores on the Zh→En task. As listed, for all
selected layers, our model has the ability to learn a mixture of alignment and lexicon scores. For
the rest of our experiments, we average over attention heads of the last layer (6th) for the latent
attention model.

7.2 Translation Performance
In the second set of experiments, we compare the latent attention model with two baselines, both
the transformer baseline and the RNN attention baseline. We additionally apply the RNN latent
attention model on De→En and Zh→En tasks to see if the same behaviour will be observed.
The results can be seen in Table 3. As shown, the latent attention model provides a small
boost of 0.5% BLEU and 0.2% TER on Zh→En, 0.7% BLEU and 0.6% TER on En→Zh, 0.2%
BLEU and 0.2% TER on De→En and 0.1% BLEU and 0.4% TER on En→De, on average. As
expected, the transformer models give a better performance compared to the RNN attention
models. Comparing the RNN latent attention model with its corresponding baseline shows very
similar, yet more mixed results.

In theory, the latent model has more statistical capacity than the attention-based NMT. The
attention-based NMT models are a deterministic interpolation of deterministic features (source
encodings), whereas the latent attention model is a mixture model. With attention, an NMT
system outputs exactly one distribution over target vocabulary per time step, whilst our model
outputs J (or K when using the optimization) distributions, which are mixed probabilistically,
yielding a multimodal marginal distribution. Our interpretation is that equipping a deterministic
soft function with a probabilistic model might lead to better results. In this case, alignments have
direct effects on the final translation scores and the lexicalized alignment model assigns more
appropriate scores for the translation of target-source word pair.

In the third set of our evaluation, we compare our model with similar previous approaches.
The only instance of latent model using the transformer architecture is (Alkhouli et al., 2018)
where a maximum approximation is used instead of summation. Moreover, in their work, they
train two independent networks whilst in our approach a single network is trained. Their model
depends on pre-define alignments using GIZA++ (Och and Ney, 2003) and they hypothesis over
alignments in search, whereas we do not need these steps. For De→En, our model outperforms
theirs on newstest2017 by 1.6% BLEU. We also compare with (Wang et al., 2018) where they
have a full summation, however, a first-order assumption is employed. Our model consistently
outperforms theirs on three tasks. We note that firstly their model is based on the RNN attention
and secondly the number of parameters of their network is half of those of ours.
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Task Model newstest2017 newstest2018
BLEU TER BLEU TER

Chinese→English

(Wang et al., 2018) 20.2 63.7 - -
transformer 24.1 60.7 23.7 -
transformer latent attention 24.2 60.5 24.5 -
RNN attention 22.9 62.0 22.7 -
RNN latent attention 22.6 61.2 23.0 -

English→Chinese
transformer 32.0 57.3 32.8 -
transformer latent attention 32.9 56.7 33.3 -
RNN attention 31.8 57.2 32.5 -

German→English

(Alkhouli et al., 2018) 32.1 - - -
(Wang et al., 2018) 29.6 - - -
transformer 33.5 55.1 40.4 46.8
transformer latent attention 33.7 54.9 40.5 46.7
RNN attention 32.6 54.9 39.6 46.8
RNN latent attention 32.8 55.3 39.2 47.6

English→German

(Wang et al., 2018) 24.6 - - -
transformer 26.5 64.8 39.0 50.7
transformer latent attention 26.5 64.7 39.2 50.1
RNN attention 26.3 64.4 38.9 50.7

Table 3: Results measured in BLEU [%] and TER [%] on the test sets. The TER computation on
newstest2018 fails for Chinese sets.

7.3 Attention Analysis
As stated in the introduction, we are interested in seeing how the attention weights in the
transformer could be interpreted. As the model utilizes multi-head attention, we use Equation 10
to average over the attention heads to get a single score at each time step. The effect that we have
observed, which is also reported by others (Alkhouli et al., 2018; Zenkel et al., 2019; Garg et al.,
2019), is that the transformer heavily attends to the frequent words like end of sentence (EOS)
token, often having the highest average attention value of the sequence, as seen in the examples
in Figure 2(a) and 2(e). This effect leads to worse interpretation, as well as possibly worse
performance since a large portion of the processing capabilities are spent on a token with limited
information value. However, the intuition behind the original multi-head attention architecture is
that it learns different alignment information, if one head learns bad alignment, other heads may
learn good ones.

In our figures and experiments, we add in RNN attention models as well as the latent model
with RNN attention architecture to verify that the attention issues are specific to the transformer
and are not inherent to the soft attention mechanism. Similar to previous observations, the RNN
attention performs relatively consistently across the datasets, with generally sharper attention
than the transformer baseline. As our work was motivated by the drawbacks of the transformer’s
attention, we focus on our analysis of the difference between the transformer and the latent
attention model.

Alignment Error Rate A large factor of the motivation for the attention latent model is that
the attention distributions can be interpreted as alignments. We assume that the latent attention
model might produce higher quality alignments. To verify this assumption, we use the RWTH
German-English Golden Alignments which provides 504 manually word-aligned sentence pairs
extracted from the Europarl corpus (Vilar et al., 2006). We compare the alignment error rate
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(a) transformer (b) transformer latent (c) RNN attention (d) RNN latent

De→En examples

(e) transformer (f) transformer latent (g) RNN attention (h) RNN latent

Zh→En examples

Figure 2: Comparison of attention distributions on different tasks. On the x-axis is the source
and on the y-axis is the target.

Model Europarl AER[%]
last heads all heads

transformer 71.4 57.1
transformer latent attention 57.8 54.8
RNN attention 51.5
RNN latent attention 49.0

Table 4: AER [%] of different models, while the EOS and the full stop have been ignored.

(AER) of the models as a key quantitative metrics for the analysis of alignments in Table 4. To
calculate the alignments for the transformer-based models, we use the maximum of the attention
weights as the alignment at each time step. We interpret the alignments from the transformer
baseline and the latent attention model by a) averaging over the attention heads in the last layer,
and b) averaging over the attention heads of the all layers and then taking the maximum value to
determine which source token corresponds to each target token.

It is important to highlight that the references are on a word level whereas the alignments
from these models are sub-word based. To make the AER more comparable with traditional
systems, we merge the BPEs together, where we use the average of all tokens. We also note
that, the transformer baseline attends many of its heads to the most frequent tokens (e.g. EOS
token, and the full stop token). To mitigate this effect on the AER, we ignore these two
positions for our computations. The results show that the transformer performs significantly
worse than the attention latent model on the last layer, being 71.4% vs 57.8%. On the other
hand, averaging over all layers considerably improves the AER for the transformer to 57.1%,
whilst only marginally improving for the latent attention model to 54.8%. This improvement
implies that the transformer performs the most interpretable attention not at the last layer, but
at intermediate layers. The finding is supported by the observation of other groups as well
(Voita et al., 2019). The RNN Attention model performs better than both other approaches at
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Figure 3: Speed and translation quality in BLEU vs. different values of K on the development
set (newstest2015) of the De→En task.

51.5%, signifying that the transformer’s attention is still far away from being easily interpreted as
alignments. The RNN latent model is also superior its baseline by 1.5% in AER. The alignment
quality of the proposed model is poorer compared to conventional alignment models such as
IBM Models or other works in the literature (Zenkel et al., 2019; Garg et al., 2019). The main
reason is that in our model, we do not have full dependence on the whole target sequence in
contrast to the conventional alignment models neither on the current target word ei. Since, we
do left-to-right decoding, we keep the dependence only on the predecessor words for an efficient
and simple search.

Qualitative Attention Analysis A large factor of the motivation for the attention latent model
is that the attention distributions can be interpreted as alignments. Based on the quantitative
results, we extract some examples from newstest2018 sets of different tasks of where the
latent attention models performs better than their corresponding baseline. In Figures 2(a)-2(h),
we see the examples side by side where the transformer attends to the EOS token, whereas the
latent attention model has sharper attention distributions. An interesting component of these
examples is that the latent attention model correctly attends to non-monotonic sub-sequences.
The same behaviour can be seen for the RNN-based models, where the latent model results
in a sharper distribution (cf. Figures 2(c) and 2(d) for De→En and Figures 2(g) and 2(h) for
Zh→En).

Although in our model, the alignment’s quality gets better both qualitatively and quanti-
tatively, the final translation seems to be comparative with our baselines. The improvement in
alignment quality does not carry over to better translations, as it is not surprising given prior
work in MT (Koehn and Knowles, 2017). Thus, one important question still remains and that
whether a high quality alignment is relevant and informative for the final translation quality?

7.4 Effect of K

We also plot the effect of K applied in the topK approximation versus the corresponding BLEU
score, as well as the speed ratio in Figure 3 on De→En development set. As it is shown, the
BLEU score goes up from 30.8 to 32.3 by changing K from 2 to 6 respectively, and then it
statures without any further significant improvements. This implies that small values of K are
good enough for training, and we use values around K = 6 for our other training runs. We also
show the speed effect with respect to K. Here, the speed ratio is defined as a proportion between

Proceedings of the 14th Conference of the Association for Machine Translation in the Americas 
October 6 - 9, 2020, Volume 1: MT Research Track

Page  17



Model K=1 K=2 K=3 K=6 K=10 all
latent attention 30.7 31.9 32.2 32.2 32.2 32.2

Table 5: Results measured in BLEU [%] on the development set (newstest2015) with respect
to different values of K during inference. The latent attention model has been trained using
K = 6.

the speed of the transformer baseline and of the latent model with different K values on average
of sub-epochs. Intuitively, as K increases, the training time goes up. But it is not linear with
respect to K.

Similar to (Shankar et al., 2018), we also investigate whether the gain is due to the softmax
bottleneck as well as to check if the larger values of K improves the performance during
inference. To do so, we train the model with K = 6 and deploy it using different K values in
inference. The results are listed in Table 5. The output has only a single softmax vector, when
K = 1. Therefore, we assume that the latent attention model encounters the same bottleneck
as the transformer. As expected, the performance drops compared to the case of K = 6, which
means that the model gives some gains behind the ensembling. Moreover, good performance
requires K = 6 and we do not get benefit for K > 6. The exact marginalization does not help as
well. Applying the same K value in both training and inference meets the model’s requirements.

7.5 Complexity

In order to compute the lexicon scores, we employ a softmax over the target vocabulary V , K
times. The time complexity of the latent model is O(I ×K × V ) compared to O(I × V ) for the
transformer. Thus, the latent attention model can become very slow for a large vocabulary. Using
GPU and optimized matrix operations, the computational cost is significantly compensated by
parallelization as long as everything fits in memory. The model is about 2.7 times slower than
the transformer on a single GPU. Moreover, the space complexity of the model on the output
layer is O(K × V ), rather than O(V ) for the baseline, which requires to decrease the batch size.
This concludes the necessity of multiple GPU training.

8 Conclusion and Future Work

We have investigated the use of a zero-order latent variable attention model based on both
the transformer and the RNN attention architecture. The restructured model makes use of a
lexicalized alignment with the aim to have more focused attention weights, leading to better
explainability. Our results on four WMT 2018 translation tasks show that the model slightly
outperforms over the transformer model on average over all tasks. These are the first experiments
using the latent variable model on both the transformer, as well as larger vocabulary tasks in
comparison to previously conducted experiments. We also believe that due to the highly similar
composition of our models to previously done latent attention experiments, we can conclude that
their approaches would face the same results as shown here, if applied to the transformer.

As future work, we plan to investigate the model with more elaborate dependencies, as well
as further exploration on first-order dependence with respect to the alignments. Additionally, we
intend to approximate the softmax for large vocabularies to further speed up the latent method.
We also would like to explore how the transformer performs so well, even though it attends so
much to the EOS token. Finally, we want to survey further statistical modelling approaches that
improve the explainability of the transformer model.
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NeurIPS, 3-8 December, Montréal, Canada., pages 9735–9747.

Garg, S., Peitz, S., Nallasamy, U., and Paulik, M. (2019). Jointly learning to align and translate with
transformer models. In The 2019 Conference on Empirical Methods in Natural Language Processing
EMNLP, Hong Kong.

Gehring, J., Auli, M., Grangier, D., Yarats, D., and Dauphin, Y. N. (2017). Convolutional sequence to
sequence learning. In Proceedings of the 34th International Conference on Machine Learning, ICML,
Sydney, NSW, Australia, 6-11 August 2017, pages 1243–1252.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8):1735–1780.
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Abstract
We have seen significant improvements in machine translation due to the usage of deep learn-
ing. While the improvements in translation quality are impressive, the encoder-decoder archi-
tecture enables many more possibilities. In this paper, we explore one of these, the generation
of constrained translation. We focus on length constraints, which are essential if the translation
should be displayed in a given format.

In this work, we propose an end-to-end approach for this task. Compared to a traditional
method that first translates and then performs sentence compression, the text compression is
learned completely unsupervised. We address the challenge of data availability as well as inves-
tigate several methods to integrate the constraints into the model. By combining the idea with
zero-shot multilingual machine translation, we are also able to perform unsupervised monolin-
gual sentence compression.

Using the proposed approach, we are able to improve the translation quality for translation with
length constraints as well as for monolingual length compression. In addition, the results are
confirmed by a human evaluation.

1 Introduction

Neural machine translation (NMT) (Sutskever et al., 2014; Bahdanau et al., 2014) exploits neu-
ral networks to directly learn to transform sentences in a source language to sentences in a target
language. This technique has significantly improved the quality of machine translation (Bojar
et al., 2016; Cettolo et al., 2015). The advances in quality also allow for the application of this
technology to new real-world applications.

While research systems tend to purely focus on a high translation quality, real-world ap-
plications often have additional requirements for the output of the system. One example is the
mapping of markup information from the source text to the target text (Zenkel et al., 2019). In
this work, we will focus on another use case, the generation of translations with given length
constraints. Thereby, we focus on compression. That means the target length is shorter than the
actual length of the translation. When translating from one language to another, the length of
the source text is usually different from the length of the target text. While for most applications
of machine translation this does not pose a problem, for some applications this significantly de-
teriorates the user experience. For example, if the translation should be displayed in the same
layout as the source text (e.g. in a website), it is advantageous if the length stays the same. An-
other use case are captions for videos. A human is only capable of reading text up to a certain
speed. For an optimal user experience, it is therefore not only important to present an accurate
translation, but also to present the translation with a maximum number of words.
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A first approach to address this challenge would be to use a cascade of a machine trans-
lation and sentence compression system. In this case, we would need training data to train
the machine translation system and additional training data to train the sentence compression
system. It is very difficult and sometimes even impossible to collect the training data for the sen-
tence compression task. Furthermore, we need a sentence compression model with a parametric
length reduction ratio. For a supervised model, we would therefore need examples with differ-
ent length reduction ratios. Therefore, this work focuses on unsupervised sentence compression.
Compared to related work, in this method we even do not assume to have any compressed sen-
tences. So we need to learn how to compress sentences without having seen any compressed
sentence in training.

While our work focuses on the end-to-end approach to translation combined with sen-
tence compression, monolingual sentence compression is another important task. For example,
human-generated captions are often not an accurate transcription of the audio, but in addition
the text is shortened. This is due to cognitive processing constraints. The user is able to listen to
more words in a given time than he or she can read in the same amount of time. When combin-
ing the length-constrained machine translation with the idea of zero-shot machine translation,
the proposed method is also able to perform monolingual sentence compression. In addition, by
adjusting the loss function we are able to use the same framework to perform text simplification.

The main contribution of this work is an end-to-end approach to length-constrained trans-
lation by jointly performing machine translation and sentence compression. We are able to
show that for this task an end-to-end approach outperforms the cascade of machine translation
and unsupervised sentence compression.

Therefore, two contributions are essential. First, by using pseudo-supervised training on
standard parallel data, we are able to learn to compress without ever showing the model a com-
press sentence. This is achieved by making the model aware of properties (here the maximum
length) that the output must fulfil. The second contribution is the adaptation of the architecture
that the model is able to fulfil the properties also there is a mismatch between its influence in
training and in testing. While it is straightforward to fulfil it during training, it can be difficult
during decoding.

A third contribution of this work is to extend the presented approach to unsupervised
monolingual sentence compression. By combining the presented approach with multilingual
machine translation, we are able to also generate paraphrases with a given length constraint.
The investigation shows that a system that is trained on several languages is able to successfully
generate monolingual paraphrases.

2 Constrained decoding

In the targeted scenario, there is no available training data with the constraints of interest. There-
fore, we need to teach the system something about the output that it cannot directly learn from
the data. We investigate different methods that enable the model to fulfil the constraints without
learning them from the data.

The main application is length-constrained translation. That means that we want to gen-
erate a translation with a given target length. Therefore we focus on the case of shortening
the translations. While the length can be measured in words, subword tokens or letters, in the
experiments we measured the length by subword tokens.

A straightforward approach is to disregard the constraints during training and search for the
most probable translation respecting the constraints during decoding. We do this by restricting
the search space to generate only translations with a given length. The length of the output is
modeled by the probability of the end-of-sentence (EOS) token. By modifying this probability,
we introduce a hard constraint that is always fulfilled.
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Afterwards, we propose the length-aware model. This uses two techniques that are able
to learn how to fulfil the constraints without ever seeing a sentence that was generated with the
constraints. This enables us to train the model on standard parallel data.

We use pseudo-supervised training and assign the matching constraints to existing parallel
data. Furthermore, by adapting the architecture, we address the train-test mismatch between the
constraints in training and in decoding.

It is worth noting that the length-aware model uses the constraints as soft constraints,
where translations fulfilling the constraints are preferred but other ones could also be gener-
ated. In contrast, they are modeled as hard constraints when adapting the search. In this case,
only translation that fulfill the constraints are generated. Therefore, both methods can also be
combined.

2.1 Restricted search space

A first strategy to incorporate the additional length constraints is to ignore them during training
and restrict the inference-time search space to hypotheses that fulfill the constraint. For length
constraints, this can be achieved by manipulating the end-of-sentence token probability. First,
we need to ensure that the EOS token is not generated before the desired length of output J . This
can be ensured by setting the probability for the end-of-sentence token to zero for all positions
before the desired length and re-normalizing the probability.

p′(yj |x1, . . . , xI , y1, . . . , yj−1) =

{
p(yj |x1,...,xI ,y1,...,yj−1)

1−p(EOS|x1,...,xI ,y1,...,yj−1)
yj 6= EOS

0 yj = EOS
(1)

Finally, we ensure to stop the search at the desired length by setting the probability of the
end-of-sentence token to one if the output sequence has reached this length.

p′(yj |x1, . . . , xI , y1, . . . , yj−1) =

{
0 yj 6= EOS
1 yj = EOS

(2)

While this approach will guarantee that the output of the translation systems always meets
the length condition (hard constraint), it also has one major drawback. Until the system reaches
the constrained length, the system is not aware of how many words it is still allowed to generate.
Therefore, it is not able to shorten the beginning of the sentence in order to fulfil the length
constraint.

Motivated by this observation, we investigate methods to integrate the length constraint
into the model and not only apply it during inference.

2.2 Length-aware model

The main idea of the length-aware model is that it should be aware of the output length through
the whole decoding process. Therefore, the model needs as input in addition to the source sen-
tence X = x1, . . . , xI the desired target length J . Then the model can decide what to generate
based on the source text as well as only the available space given by the length constraint. How-
ever, this poses the challenge that we also need to train the model using data with constraints.
These challenges are addressed by using pseudo-supervised training, where the constraints are
added to existing parallel data and by integrating the length into the model. We will investigate
methods to encode the length globally for the full sentence as well as methods to encode the
remaining length locally at each decoding step.
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2.2.1 Pseudo-supervised training
In contrast to only restricting the search space, for the length-aware model we also need the
target length during training. Therefore, the first challenge we need to address when including
the length constraints into the model itself is the question of training data. While there is large
amounts of parallel training data, it is hard to acquire training data with length constraints.
Therefore, we investigate methods to train the model with standard parallel training data. In
contrast to other unsupervised methods, we are missing not only parallel data between the input
and the output, but we have no data for the output. So we need to learn how to compress a
sentence without ever seeing a compressed sentence.

Motivated by the success of adding the length in the use case where the output length
should not be shortened but similar to the input length (Lakew et al., 2019), we perform the
training by a type of pseudo-supervision. For each source sentence, in training, we also know
the translation and therefore its length. The main idea is that we now assume this sentence
was generated with the constraint to generate a translation with exactly the length of the given
translation. Of course, this is mostly not the case. The human translator generated a translation
that appropriately expresses the meaning of the source sentence and not a sentence that fulfills
the length constraints.

Therefore, we have a mismatch between training and testing conditions and the learning is
more difficult. While during training the given length can relatively easily be predicted by the
expected length when expressing all source content in the target language, this is no longer true
for testing. Due to the condition in training the system might learn to simply ignore the length
information and instead generate a normal translation putting all the information of the source
sentence into the target sentence. In this case, we would not have the possibility to control the
target length by specifying our desired length.

2.2.2 Length representation
To address this problem, we investigate three different methods to represent the target length in
the model. The motivation is thereby to ensure that the model uses the additional length infor-
mation although it might not strictly necessary during training. Thereby, the training examples
consist of a source sentence X = x1, . . . , xI , a target sentence Y = y1, . . . , yJ and the target
length J .

Source embedding A first method is to model the target length globally for the whole sen-
tence. This can be achieved by including the target length into the source sentence as an addi-
tional token. This is motivated by successful approaches for multilingual machine translation
(Ha et al., 2016), domain adaptation (Kobus et al., 2017) and formality levels (Sennrich et al.,
2016a). We change the training procedure to not use X as the input to the encoder of the NMT
system, but instead J,X . In this way, the encoder will learn an embedding for each target length
seen during training.

There are two challenges using this approach. First, the dependency between the described
length J and the output Y is quite long within the model. Therefore, the model might ignore the
information and just learn to generate the best translation for a given source sentence. Secondly,
the representations for all possible target lengths are independent from each other. This poses a
special challenge for long sentences which occur less frequently, e.g. there will be less sentence
with length 63 than with length 9 and therefore the embedding of these lengths will not be
learned as well as the frequent ones.

Target embedding We address the first challenge by integrating the length constraint directly
into the decoder. In this case we model locally at each decoding step by encoding the number
of words remaining to be generated. This is motivated by similar approaches to supervised
sentence compression (Kikuchi et al., 2016) and zero-shot machine translation (Ha et al., 2017).
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We incorporate the information of the number of remaining target words at each target position.
For one, this should ensure that the length information is not lost during the decoding process.
Secondly, by embedding smaller numbers which occur more frequently in the corpus towards
the end of the sentence, the problem of rare sentence lengths does not matter that much.

Formally, at each decoder step j the baseline model starts with the word embedding of the
last target word yj−1. In the original transformer architecture (Vaswani et al., 2017), the posi-
tional encoding is applied on top of the embedding to generate the first hidden representation

h0 = pos(emb(yj−1), j). (3)

In our proposed architecture, we include the number of remaining target words to be generated
J − j. We concatenate h0 with the length embedding and then apply a linear translation and a
non-linearity to reduce the hidden size to the one of the original word embedding

h′0 = relu(lin(cat(h0, lenEmb(J − j))). (4)

The proposed architecture allows the model to consider the number of remaining target
words at each decoding step. While the baseline model will only cut the end of the sentences,
the model is able to shorten already at the beginning of the sentence.

Positional encoding Finally, we also address the challenge of representing sentence lengths
that are less frequent. The transformer architecture introduced the positional encoding. This
encodes the position within the sentence using a set of trigonometric functions. While their
method encodes the position relative to the start of the sentence, we follow Takase and
Okazaki (2019) to encode the position relative to the end of the sentence. Thereby, at each
position we encode the number of remaining words of the sentence. Formally, we replace
h0 = pos(emb(yj−1), j) by h∗0 = pos(emb(yj−1), J − j).

2.3 Additional constraints

Besides constraining the number of words, other constraints can be implemented as easily using
the same framework. In this work, we show this by limiting the number of complex and difficult
words. One use case is the generation of paraphrases in simplified language. A metric to
measure text difficulty, the Dale-Chall Readability metric (Chall and Dale, 1995), for example,
counts such difficult words. In an NMT system, longer words are typically split into subword
units by Byte Pair Encoding (BPE) (Sennrich et al., 2016b). A complex word like marshmallow
is split into several parts, for instance mar@@ shm@@ allow, where @@ indicates that the
word is not yet finished.

The idea to generate simpler text is now to limit the sub-word tokens that do not end a
word (the ones ending on @@). This can be implemented by only counting the words that end
on @@. If the target sentence would for example by I like mar@@ shm@@ allow, the target
count would be 2.

When encoding the remaining length in the decoder, we would now not reduce it by 1 at
each step, but only if the token is ending on @@. So the length sequence used in decoding
would be 2 2 2 1 0.

During inference, we would now always try to generate sequences without splitted words
by inputting the target length of 0. Since it is a soft constraint, the model can still generate
subwords, if the other model strongly suggests that.

As for the length constrained decoding, we also would perform pseudo-supervised training
and thereby be able to train our model on the default parallel data.
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Reference: It might sound like it’s a bad thing.
Baseline: But it might sound like
Constrained: It sounds really bad .

Table 1: Example of constrained translation

3 Evaluation

The lack of suitable data is not only a challenge for training but also for evaluation. The default
approach to evaluating a machine translation system is to compare the output of the system with
human translation using some automatic metric, e.g. BLEU (Papineni et al., 2002).

In our case, we would need to have a human-generated translation, which also fulfills the
additional constraints. For example, translation with a length that is shortened to 80% of the
input. Since this type of translation data is not available, we investigate methods to compare the
length-constrained output of the system with standard human translation that do not fulfill any
specific constraints.

3.1 Word matching metrics

While there is a significant amount of research in automatic metrics for machine translation (Ma
et al., 2018, 2019), BLEU is still the most commonly used metric. Therefore, a first approach
would be to use BLEU to compare the automatic translation with length constraints with the
human translation without constraints. If we were using length constraints, this would lead to
low BLEU scores due to the length penalty of the metric. But since all systems must fulfill
the length constraint, the penalty would be the same for all output and we could still compare
between the different outputs.

A problem of using BLEU scores as evaluation metrics in this task is illustrated by the
example translations in Table 1. The baseline system only uses the length constraint for re-
stricting the search space. In the constrained system, we are using the length constraint also
as additional embeddings in the decoder. Looking at this example sentence, a human would
rate the constrained translation better than the baseline translation. The problem of the latter
model is that it often generates a prefix of a full translation. While this does not lead to a good
constrained translation, it still leads to a relatively high BLEU score. In this case, we have one
matching 4-gram, 2 tri-gram, 3 bigrams and four unigrams.

In contrast, the length-constrained model only contains words matching the reference scat-
tered over the sentence. Therefore, in this case, we only have two unigram matches. Guided by
this observation, we used different metrics to evaluate the models.

3.2 Embedding-based metrics

In order to address the challenges mentioned in the last subsection, we used metrics that are
based on sentence embeddings instead of word or character-based representation of the sen-
tence. This way it is no longer important that the words occur in the same sequence in auto-
matic translation and reference. Based on the performance of the automatic metrics in the WMT
Evaluation campaign in 2018, we used RUSE (Shimanaka et al., 2019) metric. It uses sentence
embeddings from three different models: InferSent, Quick-Thought and Universal Sentence
Encoder. Then the quality is estimated by an MLP based on the representation of the hypoth-
esis and the reference translation. The hyper parameters (number of layers, hidden size, batch
size, dropout rate) were optimized on the development set of the WMT Evaluation campaign
and the MLP was not retrained for this task.
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4 Experiments

4.1 Data
We train our systems on the TED data from the IWSLT 2017 multilingual evaluation campaign
(Cettolo et al., 2017). The data contains parallel data between German, English, Italian, Dutch
and Romanian. We create three different systems. The first system is only trained on the
German-English data, the second one is trained on German-English and English-German data
and the last one is trained on {German, Dutch, Italian, Romanian} and English data in the both
directions.

The data is preprocessed using standard MT procedures including tokenization, truecasing
and BPE with 40K codes. For model selection, the checkpoints performing best on the vali-
dation data (dev2010 and tst2010 combined) are averaged, which is then used to translate the
tst2017 test set.

In the experiments, we address two different targeted lengths. Thereby the length of a
sentence is measured by the number of subword tokens. In order to not use any information
from the reference, we measure length limits relative to the source sentence length. We aim to
shorten the translation to produce output that is 80% and 50% of the source sentence length.
While in the first case, most information can still be conveyed, we wanted to see if the model is
able to concentrate really on the important parts when shorting by half the length.

4.2 System
We use the standard transformer architecture (Vaswani et al., 2017) and increase the number
of layers to eight. The layer size is 512 and the inner size is 2048. Furthermore, we apply
word dropout (Gal and Ghahramani, 2016) with p = 0.1. In addition, layer dropout is used
with p = 0.2 as in Pham et al. (2019). We use the same learning rate schedule as in the
original work. The implementation is available on github1. All systems were always trained
from scratch with random initialization.

4.3 Task difficulty
In an initial set of experiments, we assess the difficulty of having the additional length con-
straints. Therefore, we used the length of the human reference translation as a first target length.
One could even argue that should make the typical machine translation easier, since some in-
formation about the translation is known. The results of this experiment are shown in Table
2. Since we do not perform compression in this experiment, the aforementioned problem with
BLEU should not apply here.

Model BLEU RUSE
Baseline 30.80 −0.085
Only Search 28.32 −0.124
Source Emb 28.56 −0.126
Decoder Emb 27.88 −0.140
Decoder Pos 28.80 −0.138

Table 2: Using oracle length

However, the results indicate that the baseline system achieves the best BLEU score as
well as the best RUSE score. All other models generate translations that perfectly fit the desired
target length, but this leads to a drop in translation quality. Therefore, even if the target length

1https://github.com/jniehues-kit/NMTGMinor/tree/DbMajor
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is the same as the one of the reference translation, the restriction increases the difficulty of the
problem. One reason could be that the machine translation system rarely generates translations
which exactly match the reference. By forcing the translation to have an exact predefined length,
we are increasing the difficulty of the problem.

4.4 Length representation

In a first series of experiments for length constrained output, we analyzed the different tech-
niques to encode the length of the output. First, we are interested in whether the different
length representations are able to enforce an output that has the length we are aiming at (soft
constraints). For the German to English translation task, the length of the different encoding
versions are shown in Table 3. We define the length as the average difference between the
targeted output given in BPE units and the output of the translation system.

First, without adding any constraints, the models generate translations that differ by 3.9
and 10.29 words from the targeted length. By specifying the length in the source side, we can
reduce the length difference to half a word in the case of a targeted length of 80% and one and a
half words in the case of 50% of the source length. The models using the decoder embeddings
and the decoder positional encoding were able to nearly perfectly generate translation with the
correct number of words.

Encoding Avg. length difference
80% 50%

Baseline 3.90 10.29
Source Emb 0.55 1.40
Decoder Emb 0.07 0.16
Decoder Pos 0.09 0.19

Table 3: Avg. Length distance

Besides fulfilling the length constraints, the translations need to be accurate. Since we
wanted to have a fair comparison, we evaluated the output when using a restricted search space,
so that only translations with the correct number of words are generated (hard constraints). The
results are summarized in Table 4

Encoding RUSE
80% 50%

Baseline −0.272 −0.605
Source Emb −0.263 −0.587
Decoder Emb −0.2469 −0.555
Decoder Pos −0.2598 −0.577

Table 4: German-English translation quality

As shown in the results, we see improvements in translation quality when using the source
embedding within the encoder. We have further improvements if we represent the targeted
length within the decoder. In this case, we can improve the RUSE score by 2% and 5% absolute.
The decoder encodings perform similarly, with small advantage for using embeddings and not
positional encodings.Therefore, in the remaining of the experiments we use the embeddings.
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4.5 Multi-lingual
In a second series of experiments, we combine the constrained translation approach with multi-
lingual machine translation. The combination of both offers the unique opportunity to perform
unsupervised sentence compression. We can treat the translation of English to English as a zero-
shot direction (Johnson et al., 2017; Ha et al., 2016). This has not been addressed in traditional
multi-lingual machine translation, since in this case the model will often just copy the source
sentence to the target one. By adding the length constraints, we force the mode to reformulate
the sentence in order to fulfil the length constraint.

The results for these experiments are shown in Table 5. In this case, we compared three
scenarios. First, a model trained only on translations from German to English. Secondly, a
model trained to translate from German to English and English to German. Finally, a model
trained on four languages to and from English.

Target Length 0.8 Target Length 0.5
Baseline Dec. Emb Baseline Dec. Emb

Model DE-EN EN-EN DE-EN EN-EN DE-EN EN-EN DE-EN EN-EN
DE-EN −0.272 −0.247 −0.587 −0.554
DE+EN −0.264 −0.817 −0.223 −0.905 −0.598 −0.954 −0.523 −0.978
All −0.225 −0.102 −0.214 0.020 −0.560 −0.525 −0.548 −0.481

Table 5: Multi-lingual systems

First of all, since the models are trained on relatively small data, we always gain when using
more language pairs. Secondly, for all models training from German to English, the decoder
embedding is clearly better than the baseline. Finally, to perform paraphrasing, we need a
multilingual system with several language pairs. Both models trained only on the German to
English and English to German data fail to generate adequate translation. In contrast, if we
look at the translation from English to English for the multilingual model, the scores are clearly
better than the ones from German to English. Furthermore, again, the system with decoder
embeddings is clearly better than the baseline system.

In addition, we performed the same experiment with a target length of half the source
length (Table 5). Although the absolute scores are significant lower since the model has to
reduce the length further, the tendency is the same for this direction.

4.6 End2End vs. Cascaded

Length Model DE-EN EN-EN

0.8
End2End −0.247 0.020
Cascade −0.259 −0.118
Cascade Fix. Pivot −0.166

0.5
End2End −0.555 −0.481
Cascade −0.575 −0.521
Cascade Fix. Pivot −0.544

Table 6: Comparison of End-to-End and Cascaded approach

In this work, we are able to combine machine translation and sentence compression. In a
third series of experiments, we wanted to investigate the advantage of modelling it in an end-to-
end fashion compared to a cascade of different models. We performed this investigation again
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for two tasks: German to English and English to English.
The cascade system for German to English, first translates the German text to English

with a baseline machine translation system. In a second step, the output is compressed with
the multi-lingual MT system. For the English-to-English system, the cascade system removes
the zero-shot condition. Therefore, we first translate from English to German with the baseline
system and then translate with length contrasted from German to English. In cascade fix pivot
also the English to German system already fulfills the length constraint.

As shown in Table 6, in all conditions, the end-to-end approach outperforms the cascaded
version. This is especially the case for the English-to-English machine translation. Compared
to multi-lingual machine translation, for these tasks it seems to be beneficial to perform the
zero-shot tasks instead of using a pivot language.

4.7 Simplification

Metric DE-EN DE+EN All
Base Simp. Base Simp. Base Simp

BPE tokens 1961 1053 1978 1041 1899 991
DCR 7.63 7.47 7.69 7.5 7.66 7.45
FRE 83.86 86.18 84.31 85.49 82.98 85.59
BLEU 30.80 30.62 32.25 31.38 32.84 31.29
RUSE −0.085 −0.092 −0.082 −0.080 −0.042 −0.084

Table 7: Simplification

In the last series of experiments (Table 7), we investigate the ability of our method to
generate simpler sentences. As described in Section 2.3, we used the proposed framework to
reduce the number of rare and complex words. Again, we are using the decoder embedding
to represent the amount of BPE units in the sentences. We use a system for 1 language pair,
2 language pairs and the system using 8 language pairs. First, the system is able to reduce
the number of BPE tokens in the text significantly. The amount of tokens is reduced by up
to 48%. Since the number of tokens is nearly kept the same, this is also reflected in a better
readability. This highlights also the importance of having soft constraints. In this use case,
we cannot generate reasonable translations without using rare words that get split into separate
subword units. However, the proposed framework is able to reduce the amount of these words.

We measure the readability using the Dale-Chall readability formula (DCR) (Chall and
Dale, 1995) and the Flesch Reading Ease (FRE) (Flesch, 1948) .2 As shown in the table, both
scores indicate that the readability is increased by the proposed method. On the other hand, we
see that the translation quality is only affected slightly.

4.8 Human Evaluation

In addition to the automatic evaluation, a human evaluation of the output was performed. This
evaluation was performed using the multilingual machine translation system translating from
German to English. Thereby, a length constraint of 80% of the source sentence was used.

Two evaluators were asked to assign a score between 0 and 100 to the translations of 15
sentences each. In Table 8 we summarized the results. We calculate the average score of both
systems as well as how often the system from one model was evaluated better than the other.
First, the proposed methods were evaluated better by around 5%. Secondly, when comparing

2The scores were calculated by the tool https://github.com/mmautner/readability
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the scores for the individual sentences, the proposed method generated better translations nearly
three times as often as the baseline model did.

Evaluation Baseline Decoder Emb
Score 68% 73%
Wins 6 17

Table 8: Human Evaluation

4.9 Qualitative Results
For the length restricted system, we also present examples in Table 9. The translations were
generated with the multi-lingual system using restricted search space with 0.8 times and 0.5
times the length of the source length. The length is thereby measured using the number of
subword tokens.

Source: Und, obwohl es wirklich einfach scheint, ist es tatsächlich richtig schwer,
weil es Leute drängt sehr schnell zusammenzuarbeiten.

Reference: And, though it seems really simple, it’s actually pretty hard because it
forces people to collaborate very quickly.

Base 0.8: and even though it really seems simple , it is actually really hard , because
it really pushes

Dec. Emb. 0.8 : and although it really seems simple , it is really hard because it drives
people to work together .

Base 0.5 : and even though it really seems simple , it is really hard
Dec. Emb. 0. 5: it is really hard because it drives people to work together .
Source: Konstrukteure erkennen diese Art der Zusammenarbeit als Kern eines

iterativen Vorgangs.
Reference: Designers recognize this type of collaboration as the essence of the

iterative process.
Base 0.8: now , traditional constructors recognize this kind of collaboration as the core
Dec. Emb. 0.8 designers recognize this kind of collaboration as the core of iterative .
Base 0.5: now , traditional constructors recognize this kind
Dec. Emb: 0.5 developers recognize this kind of collaboration .

Table 9: Examples

In the examples we see clearly the problem of the baseline model when using a restricted
search space. The model mainly outputs the prefix of the long translation and does not try to put
the main content into the shorter segment. In contrast, the system using the decoder embeddings
is aware when generating a word how much space it still has to fill the content. Therefore, it
does not just cut part of the sentence, but compress the sentence and extract the most important
part of the sentence. While the first example is more concentrating on the second part of the
original sentence, the second one is focusing at the beginning. Although the model reducing
the length by 50% has to remove some content of the original sentence, the sentence is still
understandable.

5 Related Work

The most common approach to model the target length within NMT is the use of coverage
models (Tu et al., 2016). More recently, (Lakew et al., 2019) used similar techniques to generate
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translation with the same length as the source sentence. Compared to these works, we tried
to reduce the length of the sentence by a larger margin and thereby have the situation where
the training and testing conditions differ more. Furthermore, the use of multi-lingual machine
translation allows also the generation of compressed sentences in the same language. This work
on length-controlled machine translation is strongly related to sentence compression, where the
compression is performed in the monolingual case. First approach used rule-based approaches
(Dorr et al., 2003) for extractive sentence compression. In abstractive compression methods
using syntactic translation (Cohn and Lapata, 2008) and phrase-based machine translation were
investigated (Wubben et al., 2012). The success of encoder-decoder models in many areas
of natural language processing (Sutskever et al., 2014; Bahdanau et al., 2014) motivated their
successful application to sentence compression. (Kikuchi et al., 2016) and (Takase and Okazaki,
2019) investigated an approach to directly control the output length. Although their methods use
similar techniques to ours, the model is trained in a supervised way. Motivated by recent success
in unsupervised machine translation (Artetxe et al., 2018; Lample et al., 2018), a first approach
to learn text compression in an unsupervised fashion was presented in Fevry and Phang (2018).
Text compression in a supervised fashion for subtitles was investigated in Angerbauer et al.
(2019).

In contrast to text compression, the combination of readability and machine translation
has been researched recently. (Agrawal and Carpuat, 2019) presented an approach to model
the readability using source side annotation. In contrast to our work, they concentrated on the
scenario where manually created training data is available. In Marchisio et al. (2019) the authors
specified the desired readability difficulty either by a source token or through the architecture
by different encoders. While they concentrate on a single task and have only a limited number
of difficulty classes, the work presented here is able to handle a huge number of possible output
classes (e.g. in text compression the number of words) and can be applied for different tasks.

6 Conclusion

In this work, we investigated the challenge of generating translation with additional constraints.
The main difficulty we addressed is the availability of training data. It is not only hard to ac-
quire parallel data with target sides constraints, but even monolingual data which was generated
respecting additional constraints is rarely available.

We address this problem by using pseudo-supervised training on standard parallel data.
Instead of generating the translation with constraints, we set the constraints in a way that they
are fulfilled by the existing translation. Thereby, we are able to learn to generate compressed
sentences without ever seeing compressed sentences in training.

The approach results in a mismatch between training and test conditions. While in training
the translation can also be correctly generated by ignoring the constraints, this is no longer the
case in testing. We address this issue by adapting the architecture of the sequence-to-sequence
model. A detailed evaluation using automatic and human evaluation shows the success of the
presented approach.

Finally, we show the possibility to extend the presented approach to related tasks. In com-
bination with zero-shot multi-lingual machine translation, the method is also able to perform
monolingual sentence compression. Furthermore, by varying the cost function, we are able to
also address other tasks like text simplification.
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Abstract

Constrained decoding forces a certain set words or phrases to appear in the translation results
and is very useful when adapting MT to a certain domain. In recent years, the Transformer
model has outperformed other neural machine translation models to become the state-of-the-
art paradigm. However, constrained decoding for domain adaptation remains an open problem
under the Transformer model. In this paper, we first investigate how a constrained decoding
method – Grid Beam Search (GBS) – performs in the Transformer model, and then propose a
source-informed heuristic method that can fully take advantage of the alignment information
from the multi-head attention mechanism in Transformer to speed up the decoding in the GBS
method and guide the placement of constraints during the expansion of hypotheses in GBS. Ex-
periments on English–Chinese and English–German translation domain adaptation tasks show
that the proposed method significantly outperforms the basic Transformer model in terms of
BLEU and METEOR score, and prunes up to 30% hypotheses to save up to 20% decoding
time compared to the GBS model while maintaining comparable translation performance.

1 Introduction

With recent advances in neural machine translation (NMT), The Transformer model (Vaswani
et al., 2017) has outperformed other NMT architectures, like RNN (Luong et al., 2015) and
CNN (Gehring et al., 2017), to become the state-of-the-art paradigm. The Transformer model
mainly consists of layers of self-attention and a feed-forward network. It is capable of being
fully parallelised and is faster both in training and inference. Its multi-layer and multi-head
attention mechanism enable it to capture deep syntactic and semantic relations in sentences to
produce better translation results.

Constrained decoding is an approach that exerts some constraints to a decoding process
(often a beam search process) and enforces the constraints to appear in the decoding results.
For translation tasks, constraints are normally some target words or phrases which are acquired
in advance through domain knowledge or other methods. Constrained decoding ensures con-
straints partially or fully appear in the translation results by means of certain algorithms. The
translation results of constrained decoding are often better than the normal decoding results, as
those constraints are actually some external knowledge besides the source sentences.

∗This work was done while the co-author were working with us in the ADAPT Centre at Dublin City University.
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Different constrained decoding approaches have been proposed. Luong and Manning
(2015), Sennrich et al. (2016a) adapted NMT systems with domain-specific data by adjust-
ing their output vocabulary to better match the target domain. Besides, Wang et al. (2017) tried
early attempts to improve translation consistency for NMT models with discourse-level context.
However, these methods do not strictly enforce a constraint, so constraints are not guaranteed
to appear in the output.

Anderson et al. (2017) extended beam search with a finite state acceptor (FSA) whose
states mark the completed subsets of the set of constraints. However, their algorithm has an
exponential complexity of O(Nk2C), where n is the sentence length, k is beam size, and C is
the constraint count. This results in a very slow decoding speed when the number of constraints
increased.

Hokamp and Liu (2017) proposed a novel grid beam search (GBS) method that can enforce
any constraints to appear in the translation results. In order to ensure the constraints are placed
in the right positions in the translation results, GBS assumes that all constraints may appear at
each decoding step and extends a beam vertically to grid beams. This means there are several
beams at each step rather than a single beam. As a result, the number of hypotheses increases
linearly according to the number of constraints. GBS can adapt a general NMT model to a
domain translation task and improve the translation quality (Hokamp and Liu, 2017). Even
though it has a complexity of O(NkC), it may expand a very large search space when the
number of constrains increases, which also results in a slow and computationally expensive
decoding process.

Post and Vilar (2018) proposed a fast lexically constrained decoding method with dynamic
beam allocation (DBA) for NMT. This method groups together hypotheses that meet the same
number of constraints into banks, and dynamically divides a fixed-size beam across these banks
at each time step, which results in a complexity of O(Nk), so the DBA is faster and can pro-
cess large constraint sets easily. The disadvantage of DBA is that the translation quality strongly
depends on some factors, such as the beam size k. Their experiments show that system perfor-
mance experiences a significant decrease compared to the original GBS system. DBA can be
regarded as a better trade-off between translation quality and decoding time when applying
constrained decoding to NMT.

There are two common problems in the above methods. First, all are based on the RNN
model. Whether term constraints are necessary and whether those constraining algorithms are
effective on the Transformer model are still open problems and deserve to be verified. Second,
when decoding, only the constraints’ own information is exploited to guide the placement of
constraints, and no other information, such as source-side words, is used. An obvious deficiency
of these algorithms is that all possible constraints of a sentence have to be considered at each
decoding step. Furthermore, only the decoding score is used to rank and prune hypotheses in
the beams. This mechanism might place a constraint in the wrong position and generate an
output with a low score due to the enforced inclusion of all constraints in the output. Intuitively,
a better strategy is to guide the constrained decoder to place constraints in the correct positions
with the help of more useful information, so to avoid the extensive exploration of a very large
search space and obtain better decoding results. As target-side constraints are actually deduced
from the source sentences, if we can utilize some source-side information, we may be able to
confine the search space or guide the decoding process to locate target-side constraints more
accurately.

Confronting these two problems, this paper first investigates the feasibility and effective-
ness of performing constrained decoding using GBS in Transformer. We then propose a source-
informed heuristic method to reduce the search space of the GBS method so to speed decod-
ing while maintaining comparable translation performance. We propose a simple but effective
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lexically constrained decoding strategy for Transformer, which makes use of the alignment in-
formation from the multi-head attention in Transformer to place probably correct constraints at
time step t. In doing so, we can control the number of paths to expand in the GBS, and speed
up the decoding process.

The main contributions of this paper include: (1) to the best of our knowledge, our work
is the first to implement constrained decoding in the Transformer model and verify its perfor-
mance; (2) we propose an effective and efficient method for the constrained Transformer model
which fully uses source-side information from the multi-head attention in Transformer to guide
the placement of constraints at each time step for a better balance between translation quality
and decoding time; (3) we compare the proposed method with unconstrained Transformer and
GBS Transformer via extensive experiments, and demonstrate that our model significantly out-
performs the basic Transformer model in terms of BLEU (Papineni et al., 2002) and METEOR
score (Denkowski and Lavie, 2014), and significantly saves up to 20% decoding time compared
to the GBS model with no deterioration in performance.

2 Transformer and Grid Beam Search

2.1 Neural Transformer Model

Figure 1: Transformer model

As shown in Figure 1, Transformer makes use of self-attention as the basic computa-
tional block. It uses a combination of self-attention and feed-forward layers in the encoder
and additional source attention layers on the decoder side. In the standard Transformer model,
the encoder is composed of a stack of Nx = 6 identical layers, with each layer having two
sub-layers, namely a multi-head self-attention mechanism and a position-wise fully connected
feed-forward network. A residual connection is employed around each of the two sub-layers,
followed by layer normalisation. The decoder is also composed of a stack of Nx = 6 identi-
cal layers. In addition to the two sub-layers in each encoder layer, the decoder inserts a third
sub-layer, which performs multi-head attention over the output of the encoder stack. Similar to
the encoder, residual connections are also employed around each of the sub-layers, followed by
layer normalization. Transformer’s self-attention includes attention between decoder layers and
the encoder’s outputs, which is similar to the attention in RNN and can be regarded as alignment
between source and target. Please refer to Vaswani et al. (2017) for more details.
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2.2 Grid Beam Search for Constrained NMT
In normal beam search (Lowerre, 1976; Sutskever et al., 2014), the decoder maintains a beam
with a fixed size k containing a set of expanded hypotheses. As mentioned, the decoding in
RNN-based and Transformer NMT models is an auto-regressive process, so at each time step
t, the decoder produces a distribution over the target-language vocabulary for each of these
hypotheses, depending on the previous time step t − 1. As each beam contains k hypotheses,
this produces a large matrix of dimension k × |VT |.

In order to integrate external knowledge into NMT without intervening in its learning
process, constrained decoding can be adopted by NMT, which we call constrained NMT. By
definition, constraints in constrained NMT indicate a set of pre-specified words, phrases or
terms, which are acquired by automatic extraction from the corpus or via manually compilation.
Constrained NMT can enforce constraints in the hypotheses and select from the set of complete
hypotheses the best one that satisfies all constraints.

Hokamp and Liu (2017) formalise the notion of lexical constraints, and propose the grid
beam search decoding algorithm which forces constraints to appear in the output. It organises
the decoding process by expanding the beam of each step to grid beams which contain more than
one beam. The beam count inside a grid beam corresponds to the token number of constraints.
This method puts each constraint in all potential positions during decoding and it uses a kind of
traversal method to find the best result.

To be specific, each beam in the grid is indexed by time step t and constraint variable c. c
indicates how many constraint tokens have been covered so far by the current active hypothesis
in the current beam. At each time step, only one single constraint token is covered, i.e. the
set of constraints is an array of sequences, where each token can be indexed as constraintsij ,
indicating tokenj in the constrainti. numC is used to represent the total number of tokens in
all constraints C.

The hypotheses in a beam can be separated into two types:

(1) open hypotheses: the next token can be generated either from the model, or from the
available constraints;

(2) closed hypotheses: the next token can only be generated from a currently unfinished con-
straint.

At each step t of the search process, the beam at Grid[t][c] is filled with candidates which may
be created in three ways:

(1) the open hypotheses in the beam to the left (Grid[t − 1][c]) may generate continuations
from the model’s distribution pθ(yi|x, y0...yi−1);

(2) the open hypotheses in the beam to the left and below (Grid[t− 1][c− 1]) may start new
constraints;

(3) the closed hypotheses in the beam to the left and below (Grid[t−1][c−1]) may continue
constraints.

The beams at the top level of the grid (beams where c = numC) contain hypotheses which
cover all constraints. Once a hypothesis at the top level generates the 〈EOS〉 token, it can be
added to the set of finished hypotheses (cf. Hokamp and Liu (2017) for more detail).

3 Multi-Head Attention-Guided Source Information as Heuristics for
Constrained Transformer

Our motivation to use source-side information as heuristics is that in both GBS and DBA, only
the constraints’ own information (often some target-side words) is used. The methods do not
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decide which constraint should be placed at time step t, so all available constraints need to be
considered during the decoding process. The fact is that constraints extracted from the corpus
or via terminology entries are bilingual, while source-side information is simply discarded in
current constrained decoding methods.

Following the work of GBS in RNN-based NMT (Hokamp and Liu, 2017), we re-
implement it in the Transformer model, and then take advantage of the alignment information
from the multi-head attention mechanism to obtain corresponding source-side positions at time
step t, and then guide the decoder to place corresponding constraints in the beam, which we call
“Heuristic GBS (HGBS)”.

3.1 Algorithm

Algorithm 1 Pseudo-code for Heuristic Grid Beam Search
1: procedure HEURISTIC SEARCH(model, input, constraints,maxLen, numC, k)
2: if hyp.isOpen() then . Start from Line 15 of GBS Algorithm
3: for c in constraints do
4: if c not used then
5: pA = multiHeadSearch(t, c)
6: if pA >= pth then
7: n← n ∪ model.start(hyp, input, c) . Only the constraint c is placed in

the beam

When we use Pointwise Mutual Information (PMI) method (Hokamp and Liu, 2017) to
extract a constraint, we actually obtain a segment pairs which contains both the source segment
and target segment, which we call a “constraint pair”. A Chinese–English constraint pair with
source positions is shown in Table 1. There is a source sentence “传统劳动密集型产品因价格
下降带来的出口值减少” whose reference target sentence is “The export value of traditional
labor-intensive products decreased due to the price drop”. PMI method can extract a constraint
pair “劳动密集型产品 ||| labor intensive products” where “labor intensive products” is sup-
posed to appear in the translation. This constraint pair is underlined in both source and target
sentence in the table. The table also shows that the position of the source part of the constraint
in the source sentence is 1, 2 and 3.

At time step t in decoding, before we want to take this target constraint as a candidate to
start new constraints in the beam, we first retrieve the source word positions {1, 2, 3}. With this
position information, we can look at the multi-head attention, and obtain the weights at time
step t pointing to these three source word positions. By using these weights, we can decide
whether we should start a new hypothesis of this constraint in the beam or not.

Source sentence 传统劳动密集型产品因价格下降带来的出口值减少

Target sentence
The export value of traditional labor intensive products decreased due
to the price drop

Target side of constraint labor intensive products
Source side of constraint 劳动密集型产品

Position in source {1, 2, 3}

Table 1: An example of a Chinese–English constraint pair

Obviously, there is a risk that if the alignment is incorrect, then we might put the constraint
in the wrong place. However when hypotheses in the beam compete with each other via the
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model score, the possibility of generating a hypothesis with wrongly placed constraints in the
output will greatly reduce.

Algorithm 1 shows the core parts of our proposed HGBS method, which is modified based
on Line 15 and 16 of the GBS Algorithm (Hokamp and Liu, 2017) by adding alignment infor-
mation to guide the grid search.

3.2 Multi-Head Attention for Source-Informed Constraints
An attention function can be described as mapping a query and a set of key-value pairs to
an output, where the query, keys, values, and output are all vectors. The output is computed
as a weighted sum of the values, where the weight assigned to each value is computed by a
compatibility function of the query with the corresponding key (Vaswani et al., 2017).

From Figure 1 we can see that there are multiple layers for the encoder and decoder, re-
spectively. The multi-head self-attention from the last layer of the encoder is fed to each layer
of the decoder to construct the soft attention alignment between the target and source posi-
tions. We found that the alignment in the last layer of the decoder works best, so we only use
the alignment information from the last multi-head attention layer of the decoder to guide our
constrained decoding approach.

By applying the multi-head attentions to the HGBS algorithm, we follow the steps below:

• S1: at each decoding step, we retrieve the attention weight distribution at the current time
step t;

• S2: multiple weight distributions from the multi-head attention are averaged to obtain one
single attention distribution;

• S3: taking a target constraint c as a candidate to start new constraints in the beam, we
derive the source-word positions of its corresponding source constraint;

• S4: we sum up the probabilities of all links to the source word positions in S3. The sum is
denoted as pA;

• S5: if pA > pth, where pth is a pre-defined threshold, then put c in the beam to start a
new constraint.

• S6: loop from S3 to S6 until all available target constraints are traversed.

From Algorithm 1 and the above steps, the source-side information derived from the multi-
head attention mechanism acts as a filter to remove those constraints that are not necessary to
expand the hypothesis at the current time step t. The source-side alignment information helps
place constraints in more reasonable positions. In this way, a number of hypotheses in GBS are
pruned, and the search space decreases significantly.

4 Experiments

4.1 Translation Tasks
In our view, the most interesting finding in Hokamp and Liu (2017) is that GBS-based con-
strained decoding has a significant role to play in domain adaptation via terminology, which is
a very important issue in application scenarios in which the translation process has to comply
with specific terminology and/or style guides (Chatterjee et al., 2017).

Therefore, in order to compare the proposed HGBS method with GBS, we focus in our
experiments on the domain adaptation task for constrained decoding via terminology. We use
WMT English–German (EN-DE) and Chinese–English (ZH-EN) translation tasks to perform
the comparison experiments.
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4.2 Data
We use the same data settings for the domain adaptation experiment as in Hokamp and Liu
(2017) in terms of the EN-DE task:

• the training corpus consists of 4.4 Million segments from Europarl (Koehn, 2005) and
CommonCrawl (Smith et al., 2013);

• for the target domain data, the Autodesk Post-Editing corpus (Zhechev, 2012) from the
domain of software localisation is used, which is quite different from the WMT data. The
corpus is divided into 100,000 training sentences and 1,000 test sentences. Constraints
are extracted automatically using PMI between source and target n-grams. The maximum
length of a constraint or terminology is set to 5-gram as in Hokamp and Liu (2017).

For the ZH-EN translation task, in terms of the training data and testing data,

• we use LDC corpora to train the general domain Transformer, which consists of 1.25 Mil-
lion segments;∗ Most sentences in this corpus come from the News domain.

• for the target domain data, we also use the Autodesk Post-Editing corpus. 159,816 sen-
tences are extracted as the training set for PMI and constraint extraction. An additional
1,000 sentences are extracted as the test set for our constrained Transformer experiment.
The maximum length for PMI constraint extraction is set to 5-grams.

All English and German sentences are preprocessed using tools from Moses (Koehn et al.,
2007). Chinese sentences are segmented into words using Jieba,† a popular Python toolkit for
Chinese word segmentation. Finally, the parallel pre-processed data are segmented to subwords
by applying Byte Pair Encoding (Sennrich et al., 2016b), which is capable of encoding open
vocabularies with a compact symbol vocabulary of variable-length subword units.

4.3 Systems
We use the Transformer model in the open source toolkit THUMT as our baseline sys-
tem (Zhang et al., 2017).‡ For the constrained Transformer model, we first reimplement the
GBS method under Transformer model, which we call GBS-T, and we then apply our HGBS
algorithm to GBS-T to improve its decoding speed, which we call HGBS-T. The evaluation
metrics are case-insensitive BLEU and METEOR.

In all our experiments, we employ the base Transformer configuration with embedding
size and hidden size both 512, 6 encoder and decoder layers, 8 attention heads, the standard
ReLu activation function and sinusoidal positional embedding, maximum sentence length 80,
batch size 4096 tokens, beam size 10. The vocabulary sizes in EN-DE are 80,711 for English
and 88,990 for German. The vocabulary sizes in ZH-EN are 30,568 for Chinese and 24,585 for
English. The maximum number of constraints in a sentence is 6, and the alignment threshold
pth is set to 0.1.§

4.4 Results
Table 2 shows the results of three Transformer systems in terms BLEU and METEOR score on
two translation tasks. From Table 2 we can see that:
∗The segments are extracted from LDC2003E07, LDC2003E14, LDC2004T07, LDC2005E83, LDC2005T06,

LDC2006E24, LDC2006E34, LDC2006E85, LDC2006E92, LDC2007E87, LDC2007E101, LDC2007T09,
LDC2008E40, LDC2008E56, LDC2009E16 and LDC2009E95.
†https://github.com/fxsjy/jieba
‡https://github.com/thumt/THUMT
§Our implementation of GBS-T and HGBS-T is available at https://github.com/gdxie1/THUMT-GBS.
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System
EN-DE ZH-EN

BLEU METEOR BLEU METEOR
Baseline 34.82 0.29 5.94 0.12
GBS-T 37.92* 0.33* 11.38* 0.23*

HGBS-T 37.13* 0.33* 11.43* 0.22*

Table 2: Comparison of three Transformer systems. ∗ indicates a significantly better result
compared to the Baseline.

• GBS-T significantly outperforms the baseline on the EN-DE task by absolute 3.10 (8.9%)
points and 0.04 (13.8%) points in terms of BLEU and METEOR score, respectively, and on
the ZH-EN task by absolute 5.44 points and 0.11 points in terms of BLEU and METEOR
score. The low Baseline score on ZH-EN confirms that the domain of the Autodesk data
is significantly different from that of the LDC data. This big improvement also shows that
using constrained decoding for domain adaptation via constraints is a feasible solution for
the scenario of low-resource domain translation.

• HGBS underperforms GBS-T by absolute 0.79 points on EN-DE in terms of BLEU score.
However, we can see that it has the same METEOR score as GBS-T. HGBS-T significantly
outperforms the Baseline on EN-DE in terms of BLEU and METEOR as well, and it has a
comparable performance with GBS-T.

• For ZH-EN, HGBS-T is slightly better than GBS-T in terms of BLEU, and has almost the
same result as GBS-T in terms of METEOR.

From the above observations, we can conclude that (1) our HGBS-T model has a comparable
translation performance to GBS-T in terms of BLEU and METEOR score; (2) our constrained
Transformer model is effective for domain adaptation, especially when the domains of the train-
ing data and testing data are significantly different.

Figure 2: Comparison of decoding time consumption (seconds/constraints)

Figure 2 compares speed as a function of the number of constraints for the EN-DE task.
We divide the sentences into different groups where each sentence in the same group contains
the same number of constraints, and then we average decoding time over all sentences in the
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same group. The numbers on the vertical axis represent the average decoding time, i.e. seconds
per sentence.

We can see that by using source information to prune hypotheses in the GBS, our HGBS
has significantly decreased decoding time, especially when a sentence contains more than 3
constraints. In our experiments, we observed that the averaged hypotheses of each sentence in
GBS-T is 4,887, while our HGBS-T has 3560, so about 30% paths are removed, as shown in
Figure 3, where we can see that there is a significant decrease in the number of hypotheses in
the beam that need to be expanded. As a result, in this figure, when constraints are up to 6, the
average saving in decoding time can up to 20% compared to GBS.

Figure 3: Comparison of number of hypotheses expanded in the decoding

4.5 Analysis
From the above experimental results, we can see that it is feasible to use the multi-head
attention-guided source information for GBS in Transformer to save decoding time while main-
taining comparable translation performance. To obtain this result, we carried out some exper-
iments to look into the multi-head attention mechanism and layers of Transformer to optimise
and determine some key hyper-parameters, such as the threshold pth, averaging weights of the
multi-head attention of the last layer to provide alignment information. In this section, we
describe these experiments and provide an analysis of the results obtained.

4.5.1 Effects of Attention on Different Thresholds
Table 3 shows how the performance of HGBS changes with different settings for the alignment
threshold pth on the EN-DE task. The BLEU scores for HGBS-T are based on applying different
thresholds pth on the same test set in our experimental setting.

From Table 3, we can see that:

• our HGBS-T model achieves similar performance to GBS-T when pth is set to small
values. It can be seen that with the increase in threshold, translation quality decreases
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Baseline 34.82

GBS-T 37.92

HGBS-T 37.13 36.40 36.16 35.64 35.11 34.65 34.92 35.11 35.45

Threshold pth 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Table 3: Performance changes with different thresholds at Layer 5

significantly. When pth = 0.6, HGBS-T drops to almost the same performance as the
baseline.

• based on the above observations, we set pth = 0.1 in HGBS-T for all our experiments.

4.5.2 How Word Alignment Quality Affects BLEU Score
In our HGBS method, the placement of a constraint is guided by the multi-head attention infor-
mation. Therefore, we infer that the quality of word alignment between the target and source
is closely correlated with translation quality, i.e. a better quality word alignment will produce
a higher quality of translations. In this section, we look into this issue by evaluating the word
alignment of multi-head attention mechanism and measuring their correlations.

Figure 4: Correlations of the alignment error and BLEU score

To evaluate the quality of the word alignment from the multi-head attention, we use the
word alignment links generated from FastAlign (Dyer et al., 2013) as the “Ground Truth”. Since
the word alignment from the multi-head attention is a probability distribution of the time step
t in the decoder against all source words, we use Mean Square Error (MSE) as the metric to
evaluate the alignment quality as in Equation (1):

Emse(A,α) =
1

T

T∑
t=1

It∑
i=1

(Ati − αti)2 (1)
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whereA is the alignment from FastAlign, α is the alignment from the multi-head attention. T is
the total time steps for the target sequence, and It is the number of alignment links of time step
t against the source words. The alignment model of FastAlign is trained with the same EN-DE
training corpus as in Section 4.2. Table 4 shows the relationship between the alignment error
Emse and the BLEU score with different thresholds for heads at Layer 5. “Relative BLEU”
indicates that we scale the values of the column “BLEU” by subtracting an offset of 34 so that
we can plot all curves in one figure in order to compare their trends. In Figure 4, the top-left
curve shows the changes of relative BLEU against the changes of alignment error (bottom-left)
at each head of Layer 5 when the threshold is set to 0.1. The top-right curve shows the changes
of relative BLEU against the changes of alignment error (bottom-right) at each head of Layer 5
when the threshold is set to 0.2.

Layer Head Threshold Alignment Error Emse BLEU Relative BLEU

5 0 0.1 0.707 36.33 2.33
5 1 0.1 0.825 36.22 2.22
5 2 0.1 0.832 36.10 2.10
5 3 0.1 0.704 36.88 2.88
5 4 0.1 0.819 36.19 2.19
5 5 0.1 0.618 37.14 3.14
5 6 0.1 0.748 36.25 2.25
5 7 0.1 0.833 36.09 2.09

5 0 0.2 0.708 36.23 2.23
5 1 0.2 0.821 35.46 1.46
5 2 0.2 0.822 35.11 1.11
5 3 0.2 0.700 36.48 2.48
5 4 0.2 0.815 35.76 1.76
5 5 0.2 0.616 36.81 2.81
5 6 0.2 0.745 35.43 1.43
5 7 0.2 0.830 35.70 1.70

Table 4: Alignment Error and BLEU score of different heads at Layer 5 of Transformer model

We can see that for “threshold:0.1” and “threshold:0.2”, the Pearson coefficients are−0.89
and −0.86, respectively, and the Spearman’s coefficients are −0.98 and −0.76, respectively,
which show that the BLEU score of the translations has high negative linear and monotonic
correlations with the alignment errors, i.e. if the quality of word alignment is better, the transla-
tion quality is better. From this observation and analysis, regarding the proposed HGBS method,
the hypothesis will be that if we can improve the quality of word alignment of multi-head atten-
tion mechanism, we would further improve translation quality and better guide the placement
of constraints during the decoding to further improve translation quality.

5 Refining the model with alignmental guiding training

In order to verify the effect of alignment (or attention) on our HGBS method, we refined the
Transformer model using Guided Alignment Training (Chen et al., 2016). Currently the general
Transformer model normally uses 6 layers and 8 heads in each layer. We average all the atten-
tion of the 6 layers and 8 heads as a whole attention value, as the Ati in Equation (1). Similar to
Chen et al. (2016), we combine decoder cost and alignment cost to build the new loss function
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H(y, x,A, α) in Equation (2):

H(y, x,A, α) = HD(y, x) + ωEmse(A,α) (2)

Here HD(y, x) is the normal decoder cost of the Transformer model, and ω is the weights for
Emse. In our experiments, we set ω as 0.05 and obtain the best performance. Our refining pro-
cess is as follows: first we train a normal Transformer NMT model. Then we use H(y, x,A, α)
as our model loss function to continue to train the model beginning from the best checkpoint.
During training, all the parameters will be updated so the model will gradually output better
multi-head alignment attentions. After about 200,000 more iterations, we obtain a new model
refined from the alignment information. We perform this experiments in the previous section
again and obtain the results shown in Table 5. We insert the previous result in the the table for
convenience. From that table, we can see that the refined baseline system’s performance is even

System
BLEU of EN-DE

not refined refined
Baseline 34.82 34.85
GBS-T 37.92 38.16*

HGBS-T 37.13 38.12*

Table 5: Comparison of three Transformer systems after refining training. ∗ indicates a better
result compared to the unrefined system.

better than the original baseline system. When we apply the GBS method and HGBS method on
the refined baseline model, both produce higher BLEU scores. The GBS method obtains 0.24
increment and HGBS obtains 0.99 increment. Comparing with the refined baseline, the GBS
obtains 3.31 increment and HGBS almost achieves the same performance as GBS. However on
the unrefined system, HGBS obtains a lower score of 37.13 than the GBS’s 37.92.

6 Conclusions and Future Work

In this paper, we first reimplement and investigate the grid beam search (GBS) method based on
the Transformer model, and then propose heuristic GBS – a source-informed heuristic method
guided by the multi-head attention mechanism – to speed up decoding while maintaining com-
parable translation performance. We compare our proposed method with unconstrained Trans-
former and GBS Transformer via a range of experiments on domain adaptation translation tasks,
and demonstrate that our model significantly outperforms the basic Transformer model in terms
of BLEU and METEOR, and at the same time significantly prunes up to 30% hypotheses and
saves up to 20% decoding time with comparable results. Experimental results also show that
our method is more practical for application to the scenario of low-resource domain adaptation
translation compared with GBS.

In future work, we will further optimise the proposed HGBS method in terms of trans-
lation quality, decoding time and reducing the complexity by better exploiting the multi-head
alignment information.
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Abstract
Adapting machine translation systems in the real world is a difficult problem. In contrast
to offline training, users cannot provide the type of fine-grained feedback (such as correct
translations) typically used for improving the system. Moreover, different users have different
translation needs, and even a single user’s needs may change over time.

In this work we take a different approach, treating the problem of adaptation as one of selection.
Instead of adapting a single system, we train many translation systems using different architec-
tures, datasets, and optimization methods. Using bandit learning techniques on simulated user
feedback, we learn a policy to choose which system to use for a particular translation task. We
show that our approach can (1) quickly adapt to address domain changes in translation tasks,
(2) outperform the single best system in mixed-domain translation tasks, and (3) make effective
instance-specific decisions when using contextual bandit strategies.

1 Introduction

Recent advances in machine translation have greatly improved translation quality on in-domain
data (Vaswani et al., 2017). But choosing the best system to deploy for a given translation task
can be difficult, as many different systems could be considered approximately state-of-the-art,
and there is not a single system which is best for all situations. For instance, while neural
machine translation (NMT) traditionally excels in big data scenarios, when data is scarce it is
not uncommon for a statistical phrased-based translation (SMT) to be the better choice. Even
different hyperparameter settings of the same model may yield systems which each excel at
different translations tasks.

In this work we explore the practical question of how best to deploy and improve an MT
service over time. One solution to this problem is adaptation, where the model continues to
train in an online manner during deployment, and the model parameters are updated in response
to new types of data. However, adapting a system in this manner has the potential to cause
catastrophic forgetting (Kirkpatrick et al., 2016): the model parameters shift too much, and
performance on the original translation task declines.

A second practical concern is that for translation services deployed in the real world, the
degree of feedback is often limited. Users of Google Translate can rate the quality of a trans-
lation as “helpful” or “wrong”, and Facebook users can use an ordinal scale from 1 to 5, but
neither can realistically ask a user to provide a reference translation. Furthermore, the user
provides feedback only a single time per translation, and multiple users are unlikely to ask for
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Figure 1: Basic setup: Bandit Learning Agent selects the MT system to use at time t. Based on
user feedback (e.g. thumbs up/down or other signals), the bandit learning agent adapts to the
stream of successive source sentences. The goal is to adapt quickly from limited user feedback.

translations of the same text. To what extent can we leverage such feedback to quickly adapt
our system to the user’s translation needs?

Here we turn to bandit learning, a class of strategies for learning a decision policy in an
online setting from such limited feedback. We assume access to a number of pre-trained ma-
chine translation systems, which vary in terms of architecture, training data, and optimization
method. The policy must then determine which translation system to use for a given source sen-
tence. In contrast to adaptation, the parameters of each translation system are fixed, preventing
the possibility of catastrophic forgetting.

The bandit learning setup is illustrated in Figure 1. We assume no prior knowledge of the
domain(s) of sentences that the user wants to translate. Source sentences are fed to the system
in sequence, and at each time step the bandit learning agent chooses one pre-built MT system to
generate translations. The user provides simple feedback for each translation (such as a thumbs
up/down), and the goal of the agent is to converge to the best MT system as quickly as possible.

We compare several bandit methods across three data domains (and mixtures of these
domains), and find that:

• Even simple bandit algorithms can quickly adapt to new domains, and converge to choos-
ing optimal/near-optimal systems after a few hundred examples.

• For the case of contextual bandits, where we can condition on a particular source sentence
when making a decision, simple features derived from sentence length, vocabulary, and
BERT, are effective. In comparison to an oracle which chooses the single best arm for a
given test set, our contextual system can vastly outperform it on mixed-domain settings.

• The methods are robust to different forms of simulated human feedback proposed in the
machine translation literature.

We present bandit-based translation system selection as a viable alternative to deploying or
adapting a single MT system.
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2 Bandit Learning

We now provide a brief overview of bandit algorithms. Borrowing terminology from casino
slot-machines, which are sometimes referred to as “one-armed bandits”, a bandit problem
presents the gambler with a choice: given a bandit with multiple arms, which should be pulled
to maximize overall earnings? Assume that each arm has its own payoff distribution. Even
though this distribution is not observed, the gambler may start preferring a particular arm over
time, associating it with higher reward than others.

Formally, let there be a K-arm bandit, where each arm corresponds to an action. At each
timestep t, an agent must choose an action k, corresponding to selecting an arm 1 ≤ k ≤ K.
Each arm k is associated with a reward rtk, where higher values are desired. The agent’s goal
is to minimize cumulative regret (the amount of reward lost by making suboptimal decisions)
over the course of T timesteps:

Regret =

T∑
t

(max
k′∈K

rtk′)− rtπ (1)

where rtπ denotes the reward of the arm chosen by the agent’s policy, π. Note the agent does
not necessarily minimize regret in the sense that it is an objective function to optimize. It does
not have access to the oracle action nor the value (maxk′ r

t
k′); instead, the agent receives

information only on the arm it chooses (rtπ). Intuitively, one can imagine that the agent needs
to try different actions in order build up a profile of rewards for each arm.

Thus a K-arm bandit is a classic exploration vs. exploitation problem. Exploring new
or infrequent actions improves our understanding of their effects, and may lead us to discover
better strategies. However, doing so comes at the cost of not exploiting the actions we currently
believe to be the best. There are many established algorithms for solving bandit problems,
each approaching this trade-off in a different way. We introduce some of these methods later
in Section 4.3, before applying them to the practical problem of simulated human-in-the-loop
translation system selection.

3 Translation Bandits

We now define online translation system selection as a bandit learning problem. In our formu-
lation, each arm is a translation system, i.e., pulling a bandit arm is equivalent to selecting a
pre-trained translation system and applying it to a given source sentence. Learning takes place
across a series of rounds, and our goal is to continually adapt the choice of translation system to
changing user needs (represented by the source domain), thereby maximizing user satisfaction.

We assume that the source sentences that need to be translated are in a queue, and we
process them in sequential order. The bandit selection process (at time t) is as follows:

1. Observe a source sentence st

2. (Optionally) Compute features φ(st)

3. Choose a MT system kt = π(st) and generate a translation gt = kt(st) for the user

4. The user gives feedback in the form of a reward rtπ based on the quality of the translation.
This can be, for example, a thumbs up/down rating. In our simulation experiments, we
compute reward as et = SentenceBLEU(st, gt) based on reference translation gt and
perturb it to approximate coarse, noisy human feedback.1

1We compute sentence-level BLEU because rewards are defined per example for standard bandits. Nevertheless, our
final evaluation is in terms of corpus-level BLEU. Note that we use perturbed SentenceBLEU only as a way to simulate
human feedback; we do not assume sentence-level feedback to be consistent with corpus-level metrics.
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5. Update selection policy π

Contextual Bandits One of the major distinctions between classes of bandit algorithms is
whether the policy can condition its decision on a time-specific observation. Methods which
do are referred to as contextual bandits, and are able to make more nuanced, instance-specific
decisions. In other words, whereas simple bandits attempt to learn which arm is best, contextual
bandits also learn when it is best. However, this necessitates computing a feature representation
from the source sentence (Step 2).

Simulated Feedback In a real world deployment, user satisfaction is obtained directly from
the user, but for the purpose of conducting this study in a tractable and repeatable manner, we
simulate the human-in-the-loop. In this simulated setting we have access to reference transla-
tions, and can compute the true SentenceBLEU score (Step 4). However, using such a metric
would not be a realistic approximation of real user feedback. Previous work (Nguyen et al.,
2017) identified several ways in which human judgements may differ from more traditional
continuous MT evaluation metrics:

• (1) granularity (thumbs-up vs. thumbs-down, or scoring on a 1-5 scale)

• (2) variance (different users may rate the same output differently)

• (3) skew (a user might be a harsher critic in general, and be prone to giving lower scores
on average than other users)

In the experiments, we simulate use feedback by transforming raw SentenceBLEU scores
into lower granularity bins on a 1-5 rating scale (Step 4). In Section 5.3 we further assess the
effect of different simulated feedback to bandit learning.

4 Experiments

We aim to study the effectiveness of bandit algorithms on the task of MT system selection,
across a variety of domains (and domain mixtures). Here we introduce the MT systems, the
datasets used to train them, and the bandit algorithms used to learn the system selection policy.

4.1 Datasets
Our experiment data consists of three different tasks, translating from German to English:

1. The General-Domain task includes data from a range of domains, and is meant to be re-
flective of the kind of data used in public deployed systems. Specifically, we include Open-
Subtitles2018 (Lison and Tiedemann, 2016) and WMT 2017 (Bojar et al., 2017), which
contains data from e.g. parliamentary proceedings (Europarl, UN), political/economic
news, and web-crawled parallel corpus (Common Crawl). After filtering out long sen-
tences (>80 tokens), we obtain a training set of 28 million sentence pairs.

2. The TED task focuses on translating captions from TED Talks, which contains specialized
vocabulary in various professional fields (e.g. technology, entertainment, design) in the
form of monologue speeches. We use the WIT3 data distribution (Cettolo et al., 2012)
with the train/dev/test splits provided by Duh (2018).

3. The WIPO task focuses on patent translation, which contains even more specialized jar-
gon, written in a formal style. We use the COPPA V2.0 distribution (Junczys-Dowmunt
et al., 2016). We held out 3000 random sentences each for dev and test, leaving 821 thou-
sand sentences as training data.
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GENERAL TED WIPO ALL

BLEU↑ TER↓ BLEU↑ TER↓ BLEU↑ TER↓ BLEU↑ TER↓
nmt-general 29.4 50.5 34.2 42.6 36.0 49.3 33.9 48.7
smt-general 23.9 54.9 30.7 45.8 26.7 56.9 26.5 53.8

smt-ted 16.5 62.3 28.7 47.9 12.0 69.5 15.6 61.6
nmt-ted 16.5 67.3 31.5 46.3 8.4 90.1 14.0 69.8

nmt-cont-ted 27.5 53.0 39.3 38.2 29.5 61.5 30.2 52.6

smt-wipo 9.9 79.3 9.7 77.5 51.2 36.0 35.2 66.6
nmt-wipo 6.6 101.2 7.7 92.1 61.9 25.4 39.0 77.8

nmt-cont-wipo 8.0 99.4 10.0 88.3 62.3 25.0 39.6 76.0

Table 1: Overview of translation performance (DE → EN) for the eight systems which con-
stitute the arms of the bandit. Three architectures (nmt, nmt-cont, and smt) are trained and
evaluated across three different domains. Typically NMT with continued training (nmt-cont)
is the highest performing system on in-domain data, but other systems offer more consistent
performance.

4.2 MT Systems

The training and development data described above are used to build machine translation sys-
tems. Bandit experiments are run on the test data, which has 1982, 3000, and 5504 sentences
for the TED, WIPO, and General tasks respectively. All data is tokenized by the Moses tok-
enizer (Koehn et al., 2007), then split into subwords by BPE (Sennrich et al., 2016) indepen-
dently with 30k merge operations for the English and German sides.

Neural machine translation Models are built with Sockeye (Hieber et al., 2017), using com-
mon settings for LSTM seq2seq models (Bahdanau et al., 2015): 2 layer encoder, 2 layer de-
coder, 512 hidden nodes, 512 word embedding sizes.

Statistical machine translation Models are built with Joshua (Post et al., 2013). This rep-
resents a strong phrase-based SMT model with GIZA++ alignments, 4-gram language model,
and MIRA-based discriminative tuning.

Systems For each task, we train SMT and NMT models from scratch using only the training
data in the respective domains, resulting in 6 models: {nmt,smt}-{general,ted,wipo}. Addition-
ally we include two improved NMT models for WIPO and TED (nmt-cont-{ted,wipo}), which
starts with nmt-general as initializaton and fine-tunes on WIPO or TED training data. This con-
tinued training process usually achieves strong translation performance in the target domain,
but shows increased risk of catastrophic forgetting in the original general domain task (Luong
and Manning, 2015; Thompson et al., 2019). This brings the total number of systems (also the
number of bandit arms, K) to 8. The baseline performance of each system on the test sets in
each domain is shown in Table 1.

Metrics The bandit learning agents are updated on-the-fly on the aforementioned test sets,
using perturbed/granularized sentence-level BLEU as feedback. However, for final evaluation
we collect all the resulting translations and compute corpus-level BLEU (Papineni et al., 2002)
(implemented via SacreBLEU (Post, 2018)) and TER (Snover et al., 2006). We experiment with
different ways to mix the test sets to illustrate different scenarios for bandit learning. For error
analysis, we computed regret as in Eq. 1.
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GENERAL TED WIPO AVG

R↓ B↑ T↓ R↓ B↑ T↓ R↓ B↑ T↓ R↓ B↑ T↓
random 16.9 17.9 70.9 20.8 24.7 59.3 32.2 36.7 52.4 23.3 26.4 60.9

best-arm-oracle 5.9 29.4 50.5 6.2 39.3 38.2 4.5 62.3 25.0 5.5 43.7 37.9
oracle 2.2 31.6 49.9 1.8 42.1 37.2 2.3 61.7 24.1 2.1 45.1 37.0

epsilon-greedy 9.3 26.2 56.9 11.9 34.1 45.2 12.6 54.8 32.6 11.3 38.3 44.9
ucb 9.9 25.4 56.7 13.2 32.7 46.8 9.3 58.0 29.8 10.8 38.7 44.4

linucb 7.5 28.0 52.6 9.7 36.5 42.2 5.3 61.7 25.7 7.5 42.1 40.2

Table 2: Results on the in-domain test sets. Evaluation is measured in terms of average regret
(R), BLEU (B), and TER (T). Lower scores are better for regret and TER; higher scores are
better for BLEU.

4.3 Bandit Methods
We compare the three bandit methods:

• Epsilon-Greedy The agent either exploits the arm with highest average reward with prob-
ability 1 − ε, or chooses randomly (uniformly) with probability ε (Sutton and Barto,
1998). Intuitively, the agent maintains a running average of each arm’s rewards; it greedily
chooses the one with the highest reward, but occasionally tries a random arm in order to
improve its estimate of the running average.

• Upper Confidence Bound (UCB) An ε-greedy strategy is prone to obvious pitfalls. For
instance, if the optimal action performs poorly early on, it may take many iterations to
correct the agent’s behavior. Alternatively, the agent can avoid becoming over-confident
in its action reward estimates by establishing an upper confidence bound on each. This en-
courages the model to explore actions which may have low empirical estimates of reward,
if they have been tried infrequently. The particular UCB algorithm we use in this work is
UCB1 (Auer et al., 2002).

• Lin-UCB Recall that in contextual bandits, the learner is presented with a feature vector,
here derived from the source sentence. The agent may use these feature vectors, along
with the rewards of arms played in the past, to make a more informed choice of which
arm to play at the current time step. Over time, the aim of the learner is to collect enough
information about how the context vectors and rewards relate to each other, so that it can
predict the next best arm to play by looking at the feature vectors.

LINUCB extends the principles of UCB to the contextual bandit scenario, using a linear
model to predict the action (Li et al., 2010). We explore various features for this system
(results in Sec. 5.4)

We also introduce three baseline systems: RANDOM, ORACLE, which always chooses the
optimal translation system, and BEST-ARM-ORACLE, which chooses single best system (the
one which has the highest BLEU across the entire test set).

5 Results

5.1 Overview: Comparison of Bandit Algorithms
We begin by assessing the relative strengths of bandit algorithms on the translation system
selection task, and examine how closely performance on the regret-based objective function
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Figure 2: Comparison of cumulative regret in bandit algorithms across domains. The relative
ordering of the algorithms is consistent across all three domains, with epsilon-greedy adapting
early, before eventually being surpassed by linucb, which converges closer to the best-arm ora-
cle. Note that cumulative regret lags behind changes in policy. Systems begin to find reasonable
policies around epoch 50, marked by the sharp negative trajectory in cumulative regret.

corresponds to changes in translation evaluation measures like BLEU and TER. In these exper-
iments we run each algorithm on the full test data for each of the three domains. As shown
in Table 1, the highest-performing system for each domain is always an in-domain variant of
neural translation. In this setting a good algorithm should quickly learn which arms are trained
on in-domain data, and to exploit these as much as possible.

Fig. 2 illustrates the overall performance of EPSILON-GREEDY, UCB, and LINUCB,
with respect to two oracles and a random baseline. We find that EPSILON-GREEDY is the
fastest to converge. As the ε parameter balances exploration and exploitation, this behavior is
somewhat within our control. Our results are obtained with ε = 0.3. Empirically we observe
that performance is quite robust to changes in ε, and values in the range 0.2 to 0.4 result in
negligible performance differences (comparable to changing the random seed). In comparison,
UCB performance follows a promising trajectory, but takes many more rounds to converge. For
the goal of tailoring translations based on user feedback, executing thousands of interactions is
likely an exorbitant requirement.

Turning to LINUCB, the contextual bandit algorithm, note the large gap between ORA-
CLE and BEST-ARM-ORACLE performance. This is representative of the potential for addi-
tional performance gains when using a contextual method, even the data comes from a sin-
gle domain. Perhaps unsurprisingly then, we find that LINUCB typically outperforms other
bandit algorithms in later epochs, often closely approximating the performance of the BEST-
ARM-ORACLE. However, LINUCB also performs well in early epochs, and is often the best
performing system after 100 epochs. Strong early performance means there may be little com-
promise to using a contextual approach like LINUCB, even in single domain translation tasks.

It is also worth pointing out the small discrepancy between the cumulative regret and
BLEU. For instance, this is evident in the general domain results, where LINUCB has lower
cumulative regret, but a lower BLEU score. While these two metrics are highly correlated in
our experiments, there is a margin of disagreement and the ranking of systems can sometimes
flip when comparing across these metrics.

5.2 Adapting to new Domains

A more realistic scenario may be a mixed-domain task, in which the user’s translation needs
are not fixed, but change over time. We simulate this scenario by mixing data from each of the
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R↓ B↑ T↓
random 24.6 31.4 46

best-arm-oracle 17.9 34.2 42
oracle 0.0 57.9 32

epsilon-greedy 20.5 34.4 43
ucb 22.8 33.8 44

linucb 17.4 46.9 41

Table 3: Performance on randomly shuffled data. All bandit systems are able to adapt to new
domains quickly enough to achieve performance comparable to choosing the single best system,
but the contextual bandit significantly outperforms it.

three domains in different ratios. The main question we want to ask is: can the bandit algorithms
outperform the BEST-ARM-ORACLE system? Doing so would be represent a clear advantage
over deploying any single system.

We present the performance of these systems in Table 3. The results show that as the data
is increasingly mixed, the contextual bandit, LINUCB, significantly outperforms any single
system. When data is completely shuffled, this amounts to a gain of more than 12 BLEU over
the single best system, a relative improvement of over 37%. This is also true of simpler bandits,
and EPSILON-GREEDY also outperforms the single-best system, but by a narrower margin.

Heatmaps of the algorithm decisions (Figure 3) provide some insight into the behavior
of these systems. In fully randomized sequences, we observe that after 100-200 iterations of
learning, LINUCB is able to closely mimic the behavior of the ORACLE system, ultimately
converging to a similar distribution over decisions.2 EPSILON-GREEDY converges to predom-
inantly choosing the second-best arm as a safe bet, while UCB, which adjusts its policy more
slowly, never exhibits clear decision trends.

Even in less mixed scenarios (3), top), results show that LINUCB is an effective system.
As the domain changes between TED and WIPO, LINUCB closely tracks the ORACLE deci-
sions, even within the first 50 iterations, making the system a promising option for real-world
deployment.

5.3 Simulated Bandit Feedback
In order to ascertain how sensitive bandit translation system selection is to the nature of simu-
lated feedback, we explore different types of of constructing feedback. Recall the ways in which
human feedback may differ from continuous metrics as identified in Nguyen et al. (2017) are
granularity, variance, and skew.

To simulate granular feedback, we bin SentenceBLEU scores into one of 5 equally-sized
bins. For variance in the feedback score, we sample the score from a Gaussian (with a variance
shrinking parameter of 1.0) that is updated after each evaluation. For skew, we simulate a
harsher critic which biases the output towards scores in a lower range (a skew of 0.25).3 For
the sake of comparison we also include a scaling function, which simply scales the BLEU score
into a suitable [0,1] loss range. This serves as an “oracle” of what performance we might expect
if we were somehow able to ask users to provide a fine-grained score like BLEU.

Table 4 shows the effect of the four simulated feedback styles (GRANULAR, VARIANCE,

2From the ORACLE heat map, we see that all 8 arms/systems are chosen at some point; this shows that even though
we may have prior knowledge that one system is generally better than another, it is still useful to include all systems if
selection is performed at the sentence level.

3Experiments in the previous section used granular feedback method.
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Figure 3: Decision heatmaps for shuffled data depicting the behavior of bandit algorithms across
time. Each column of the heatmap represents the distribution over the choices made by the agent
during that interval of training (red squares correspond to actions taken more frequently). In the
top four plots we cycle the data domain every 100 examples. In the bottom four plots, the data
is drawn randomly from each of the three domains. For clarity, we omit presenting heatmaps of
the best-arm-oracle system, which is nmt-cont-ted in both scenarios.

SCALE, and SKEW) in a mixed data setting. We find that the nature of feedback has little overall
effect on system performance. Altering the BLEU score to simulate SKEW was notably the
most detrimental, but the remaining methods all performed similarly. Surprisingly we observe
no significant difference between SCALE, which is essentially the full continuous BLEU metric,
and other distortions to the feedback score.

5.4 Features for Contextual Bandits
Contextual bandit methods make use of feature vectors when choosing an action. In the context
of translation, we can construct this vector from useful information in the source sentence. We
experiment with three types of features:

• OOV, whether the source sentence contains a high proportion of out-of-vocabulary words.

• LEN, the length of the source sentence binned into five ranges of five (1-5, 6-10, ...,>25).4

4We use only the length feature for LINUCB in earlier in-domain experiments (Table 2).
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SCALE VARIANCE GRANULAR SKEW

R↓ B↑ T↓ R↓ B↑ T↓ R↓ B↑ T↓ R↓ B↑ T↓
epsilon-greedy 19.3 35.0 42 21.6 37.5 44 19.0 37.3 42 19.7 33.1 43

ucb 13.3 50.1 38 13.3 50.7 38 13.1 50.2 38 12.3 51.0 38
linucb 14.1 48.9 39 13.5 48.9 39 13.6 48.5 39 15.6 45.2 40

Table 4: Effects of simulated feedback method on performance.

• BERT, features taken from a pre-trained language model (Devlin et al., 2019). Specifically,
we ran the multilingual BERT base-size model out-of-the-box5 in inference mode and
extract the final layer of the transformer encoder. These embeddings are averaged across
all tokens in the sentence. Since the evaluation datasets used in this study are small, on the
order of thousands of examples, LINUCB has difficulty learning quickly when using large
feature vectors. Therefore we take only the first 50 embedding dimensions as features.

A constant bias feature is used to establish a baseline. Table 5 shows the results. As evident
by comparing against the BIAS feature results, all feature types provide useful information to
the system selection task, though length and BERT features prove to be much more effective
than vocabulary-based features.

R↓ B↑ T↓
All 13.6 47.7 40

OOV 19.2 33.0 42
LEN 16.8 45.9 41
BERT 13.3 48.1 40
BIAS 19.0 31.8 42

Table 5: Ablation of contextual bandit features, on the randomly mixed-domain data.

6 Related Work

Multi-domain machine translation Our problem setting is closely related to multi-domain
machine translation, where the data comes as a stream of sentences from a mixture of domains
unknown to the model (Farajian et al., 2017; Huck et al., 2015). Typically using a single model,
various extensions allow the system to cater more specifically to different types of source sen-
tences. Such extensions may include data concatenation, model stacking, data selection and
multi-model ensemble (Sajjad et al., 2017). One way is to pre-compute a domain label for each
sentence using a dedicated classifier or model (Kobus et al., 2017; Tars and Fishel, 2018).

In neural models such adaptations can also be done in the learned representations. Britz
et al. (2017) use a discriminator network on top of the encoder to distinguish between do-
mains and pretend a domain token to the target sequence. Gu et al. (2019) employ a shared
encoder-decoder and also private models to capture both domain-invariant and domain-specific
knowledge, which are then combined to generate the target sequence. Such approaches can
also be more nuanced, such as focusing on domain-specific words, and adjusting the training
objective to emphasize their importance (Zeng et al., 2018).

5https://github.com/google-research/bert
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A natural question is what advantage bandit system selection has over the alternative strat-
egy of using of a domain classifier to determine which system to use. One advantage of bandit
selection is that it provides a unifying framework for online learning all aspects of problem. If a
domain classifier is useful, the classifier’s predictions can be used as a feature in the bandit algo-
rithm, and the extent to which that feature is useful (or useful together with other information)
will also be learned. Otherwise, the domain classifier features themselves can be incorporated
into a contextual bandit policy where they can be access directly.

A second consideration is that the domains encountered in deployment may not be so well-
defined and aligned to the translation systems as they are in our experimental setup. Imagine
a specialized domain that is not similar to the training domain of any system. In these cases,
other attributes of the model, such as its architecture or optimization strategy, may become more
important. This is a situation the bandit approach is well-suited for.

Bandits in NLP Due to the high cost of sourcing human annotations for NLP tasks, devel-
oping tractable training methods for learning from simple feedback has long been a desirable
goal. Learning NLP tasks (machine translation, sequence labeling, text classification) from ban-
dit feedback has been studied previously (Lawrence et al., 2017; Sokolov et al., 2016), and has
been extended to train typical NLP architectures, such as neural sequence-to-sequence mod-
els (Kreutzer et al., 2017).

Bandits have also been applied previously in MT, even as the topic of a dedicated shared
task (Sokolov et al., 2017). Within the context of bandit-driven MT, the focus has been on
adapting an existing system, limited to simulated bandit feedback. Sokolov et al. (2016) used
actual losses (BLEU) and pairwise ranking. Nguyen et al. (2017), also used bandit learning but
to adapt a single neural MT system. Our approach is significantly different, in that it focuses on
the use of a bandit-trained policy for selection, rather than adaptation or in-domain training.

7 Conclusion and Future Work

As MT systems become widely deployed, catering translation output to user needs, whether
through adaptation or system selection, will become an increasingly important problem. In this
work we showed that existing bandit algorithms are surprisingly effective at quickly adapting
output to user needs, when the problem is phrased as one of selection. Contextual bandit system
selection methods frequently outperform the use of a single translation system, establishing this
technique as promising solution for dynamically adapting to user translation needs.

While we did not explore more recent bandit methods, including Bayesian bandits, or
hierarchical bandits, intuitively such methods would be a good fit for a large scale version of
this study. We assume arms are independent from one another, but they have dependencies
both in terms of their architectures and in terms of their training data. One may also have
prior knowledge of likely domains/arms, which can be incorporated in more advanced bandit
methods.

We note that there are many kinds of deployment scenarios, depending on factors such as
(a) the number of domains, (b) how much each domain drifts, and (c) whether feedback comes
from a single user or multiple users. We have presented a proof-of-concept to show the potential
effectiveness of bandits, but the exact scenarios where these methods are most appropriate still
require more exploration. For example, the non-contextual bandit setup described here is appro-
priate for a computer-assisted translation application where one professional human translator
post-edits sentences from long document translations. Here the number of post-edits can serves
as implicit feedback, and bandit methods like EPSILON-GREEDY are likely to converge in time
(before the end of document) for the translator to start seeing benefits.6 On the other hand,

6An interesting extension is to collect the resulting post-edited translations in order to adapt a personalized MT
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the contextual bandit setup might be beneficial for an online MT service provider, where inde-
pendent and unrelated translation requests may be interleaved. This can be viewed as another
way to implement fast adaptation, but then one also needs to compare with the aforementioned
multi-domain methods to decide the most suitable solution.
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Université Paris-Saclay, CNRS, LIMSI
Bât. 508, rue John von Neumann, Campus Universitaire, F-91405 Orsay

Abstract
Word alignments identify translational correspondences between words in a parallel sentence
pair and are used, for instance, to learn bilingual dictionaries, to train statistical machine trans-
lation systems or to perform quality estimation. Variational autoencoders have been recently
used in various of natural language processing to learn in an unsupervised way latent represen-
tations that are useful for language generation tasks. In this paper, we study these models for
the task of word alignment and propose and assess several evolutions of a vanilla variational
autoencoders. We demonstrate that these techniques can yield competitive results as compared
to Giza++ and to a strong neural network alignment system for two language pairs.

1 Introduction

Word alignment is one of the basic tasks in multilingual Natural Language Processing (NLP)
and is used to learn bilingual dictionaries, to train statistical machine translation (SMT) sys-
tems (Koehn, 2010), to filter out noise from translation memories (Pham et al., 2018) or in
quality estimation applications (Specia et al., 2017). Word alignments can also be viewed as
a form of possible explanation of the often opaque behavior of a Neural Machine Translation
(Stahlberg et al., 2018). Word alignment aims to identify translational equivalences at the level
of individual lexical units (Och and Ney, 2003; Tiedemann, 2011) in parallel sentences.

Successful alignment models either rely on bilingual association measures parameterizing
a combinatorial problem (eg. an optimal matching in a bipartite graph); or on probabilistic
models, as represented by the IBM Models of Brown et al. (1993) and the HMM model of
Vogel et al. (1996). All these models use unsupervised learning to estimate the likelihood of
alignment links at the word level from large collections of parallel sentences.

Such approaches are typically challenged by low-frequency words, whose co-occurrences
are poorly estimated; they also fail to take into account context information in alignment; finally,
they make assumptions that are overly simplistic (eg. that all alignments are one-to-many or
many-to-one), especially when the languages under focus belong to different linguistic families.
Even though their overall performance seem fair for related languages (eg. French-English),
there is still much room for improving. Indeed, the error rate of automatic alignments tools such
as Giza++ (Och and Ney, 2003) or Fastalign (Dyer et al., 2013), even for high resource
languages, is still well above 15-20%; and the situation is much worse in low-resource settings
(Martin et al., 2005; Xiang et al., 2010; McCoy and Frank, 2018).

As for most NLP applications (Collobert et al., 2011), and notably for machine translation
(Cho et al., 2014; Bahdanau et al., 2015), neural-based approaches offer new opportunities to
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reconsider some of these issues. Following up on the work of eg. (Yang et al., 2013; Alkhouli
et al., 2016; Wang et al., 2018), we study ways to take advantage of the flexibility of neural
networks to design effective variants of generative word alignment models.

Our main source of inspiration is the model of Rios et al. (2018), who consider variational
autoencoders (Kingma and Welling, 2014; Rezende et al., 2014) to approach the unsupervised
estimation of neural alignment models. We revisit here this model, trying to analyze the reasons
for its unsatisfactory performance and we extend it in several ways, taking advantage of its fully
generative nature. We first generalize the approach, initially devised for IBM model 1, to the
HMM model; we then explore ways to effectively enforce symmetry constraints (Liang et al.,
2006); we finally study how these models could benefit from monolingual data. Our experi-
ments with the English-Romanian and English-French language pairs show that our best model
with symmetry constraints is on par with a conventional neural HMM model; they also highlight
the remaining deficiencies of these approaches and suggest directions for further developments.

2 Neural word alignment variational models

The standard approach to probabilistic alignment (Och and Ney, 2003) is to consider asymmet-
ric models associating each word in a source sentence fJ1 = f1 . . . fJ of J words with exactly
one word from the target sentence eI0 = e0 . . . eI of I + 1 words.1 This association is governed
by unobserved alignment variables aJ1 = a1...aJ , yielding the following model:

p(fJ1 , a
J
1 |eI0) =

J∏
j

p(aj |aj−1
1 , f j−1

1 , eI0)p(fj |a
j
1, f

j−1
1 , eI0) (1)

Two versions of this model are considered here: in the IBM model 1 (Brown et al., 1993), the
alignment model p(aj |aj−1

1 , f j−1
1 , eI0) is uniform; in the HMM model of Vogel et al. (1996),

Markovian dependencies between alignment variables are assumed and aj is independant from
all the preceding alignment variables given aj−1. In both models, fj is conditionally indepen-
dent to any other variable given aj and eI1. Under these assumptions, both parameter estimation
and optimal alignment can be performed efficiently with dynamic programming algorithms. In
this approach, eI1 is not modeled.

2.1 A fully generative model

We now present the fully generative approach introduced by Rios et al. (2018). In this model,
the association between a source word fj and a target word ei is mediated by a shared latent
variable yi, assumed to represent the joint underlying semantics of mutual translations. In this
model, the target sequence eI1 is also modeled, yielding the following generative story:2

1. Generate a sequence yI0 of d-dimensional random embeddings by sampling independently
from some prior distribution e.g. Gaussian

2. Generate eI1 conditioned on the latent variable sequence yI1

3. Generate aJ1 = a1...aJ denoting the alignment from fJ1 to yI0

4. Generate fJ1 conditioned on yI0 and aJ1

1As is custom, target sentences are completed with a ”null” symbol, conventionally at index 0.
2We omit the initial step, consisting in sampling the lengths I and J and the dependencies wrt. these variables.
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This yields the following decomposition of the joint distribution of fJ1 and eI1, where we
marginalize over latent variables yI0 and aJ1 :

p(fJ1 , e
I
1) =

∫
yI0

p(yI0)pθ(e
I
1|yI1)

(∑
aJ1

pθ(a
J
1 )pθ(f

J
1 |yI0 , aJ1 )

)
dyI0 (2)

Directly maximizing the log-likelihood to estimate the parameters is in general intractable,
especially when neural networks are used to model the generation of fJ1 and eI1. The stan-
dard approach in neural generative models (Kingma and Welling, 2014) is to introduce a varia-
tional distribution qφ for the latent variables and to optimize the so-called evidence lower-bound
(ELBO). Following (Rios et al., 2018) we consider tractable alignment models and use the vari-
ational distribution only for modeling yI0 conditioned on eI1. This yields the following objective:

J(θ, φ) =− Eqφ(yI1)(log pθ(e
I
1|yI1))− Eqφ(yI0)([log

∑
aJ1

pθ(a
J
1 )pθ(f

J
1 |yI0 , aJ1 ))

+ KL[qφ(y
I
0 |eI1)||p(yI0)] (3)

where Ep(f) denotes the expectation of f with respect to p, and KL is the Kullback-Leibler
divergence. Objective (3) is a sum of three terms that are referred respectively as the recon-
struction cost, the alignment cost and KL divergence cost. The last term can be computed
analytically when the prior and the variational distributions are Gaussian and we thus assume
the following parameterization qφ(yI1 |eI1) =

∏
iN(yi|ui, si), where the mean ui and the diago-

nal covariance matrix diag(si) are deterministic functions of eI1. As is custom, the expectations
in equation (3) are approximated by sampling values of yi as yi = ui+si · εi, where εi is drawn
from a white Gaussian noise. The reparameterization trick removes the sampling step from the
generation path, and makes the whole objective differentiable (Kingma and Welling, 2014).

2.2 Introducing Markovian dependencies
The experiments in (Rios et al., 2018) only consider basic assumptions regarding the alignment
model pθ(aJ1 ), corresponding to IBM model 1. Our first variation of this model considers a
richer transition model assuming Markovian dependencies, for which the exact marginalization
of alignment variables implied by equation (3) remains tractable with the forward algorithm.
The alignment cost is the expectation of the source given the latent variables:

Eqφ(yJ0 )([log
∑
aJ1

J∏
j=1

pθ(fj |yaj )pθ(aj |aj−1)]) (4)

As is usual with HMM variants of alignment models, we parameterize the transition distribution
pθ(aj |aj−1) on the distance (jump) between the values of aj and aj−1 (Och and Ney, 2003).
This model is referred to below as HMM+VAE.

2.3 Towards symmetric models: a parameter sharing approach
A first benefit of having a fully generative model (in both alignment directions), which jointly
models fJ1 and eI1, is that it becomes easy to encourage these models to share information
and to improve their joint performance. Our alignment models involves two decoders, one for
the source and one for the target (in each direction). These components are used to compute a
distribution over vocabulary words given a d-dimensional variable, and are conceptually similar.

Our first step is thus to simultaneously train the alignment models in both directions, mak-
ing sure that they use the same decoder respectively for fJ1 and eI1. This means that the same
network computes pθ(eI1|yI1) (when eI1 is in the target) and pθ(eI1|yJ0 , aJ1 ) when eI1 is the source.
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There is only one encoder computing the variational parameters in each direction, and these re-
main distinct in this approach. Our joint objective function now comprises six terms including
two reconstruction costs, two alignment costs and two KL divergence costs. From this, we see
that a first benefit of this method is computational as it greatly reduces the number of parame-
ters to train. We also expect that it will yield two additional benefits: (a) to help improve the
alignment model, which is more difficult to train for lack of observing the “right” alignment
variables; in comparison the reconstruction of the target sentence is almost obvious, as each ei
is generated from the right yi; (b) to make the alignments more symmetrical, thereby facilitating
their interpretation and their recombination. This model is denoted +VAE+SP below.

2.4 Enforcing agreement in alignment
The idea of training two asymmetrical models opens new ways to control the level of agreement
between alignments, an idea already considered eg. in (Liang et al., 2006; Graça et al., 2010).
Following the former approach, we implement this idea by adding an extra cost that rewards
agreement between asymmetric alignments. For non null alignment links, this cost is based on
the alignment posterior distributions and is defined as:∑

i>0,j>0

|p(aj = i|fJ1 , eI1)− p(bi = j|fJ1 , eI1)|, (5)

where bJ1 is the alignment variables introduced when eI1 is the source of the alignment, and fJ1
is the target. Both for the IBM-1 and for the HMM variants, these posterior distributions can be
computed effectively, in the latter case using the forward-backward algorithm.

In the case of the null links, the agreement term should reward configurations where one
source word is aligned with the null symbol in one direction, and is not aligned to any target
word in the other direction. This yields the following additional term (for the canonical source
to target direction, the reverse term is analogous):

J∑
j=1

|1− p(aj = 0|fJ1 , eI1)−
I∑
i=1

p(bi = j|fJ1 , eI1)| (6)

For this model (+VAE+SP+AC), the objective function comprises nine terms, each with its own
dynamics, which makes optimization more difficult due to the heterogeneity between costs.

2.5 Training with monolingual data
Leaving the alignment module aside, the model can be used as a simple autoencoder which

can be (pre)trained monolingually. We use supplementary monolingual sentences ėM1 that just
go through the encoding-decoding process, and add an extra monolingual reconstruction term
Jmono in the objective (3):

Jmono(θ, φ) = −Eqφ(ẏM1 )(log pθ(ė
M
1 |ẏM1 )) + KL[qφ(ẏ

M
1 |ėM1 )||p(ẏM1 )] (7)

where ẏM1 is the latent variable associated to ėM1 . Alternatively, we consider training the align-
ment model monolingually. We implement this idea by adding a random noise to the target
sentence, to make it more similar to a source sentence and amenable to alignment. In this case,
the extra reconstruction term is:

Jmono(θ, φ) = −Eqφ(ÿN0 )([log
∑
äM1

pθ(ä
M
1 )pθ(ė

M
1 |ÿN0 , äM1 )) + KL[qφ(ÿ

N
0 |ëN1 )||p(ÿN0 )] (8)

where ëN1 is a noisy version of ėM1 , ÿN1 is the latent variable for ëN1 , and äM1 denotes the
alignment variables betwen ėM1 and ÿN0 . In our experiments, we only use IBM Model 1 as our
alignment model.
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3 Experiments

3.1 Datasets
Our experiments use two standard benchmarks from the 2003 word alignment challenge (Mi-
halcea and Pedersen, 2003), respectively for aligning English with French and Romanian. We
consider two different settings: for French, we use a large training corpus of parallel sentences
from the Europarl corpus Koehn (2005). In the case of Romanian, we use the SETIMES corpus
used in WMT’16 evaluation,3 which correspond to a more challenging scenario where the train-
ing data is limited in size. Additional experiments with monolingual data use the Romanian
data from News Crawl 2019 (∼ 6M sentences)4. Basic statistics for these corpora are in Table 1.

Corpus # sent. in train # sent. in test # tokens in test # non-null links
Eng. For.

En-Fr ∼1.9M 447 7 020 7 761 17 438
En-Ro ∼260K 246 5 455 5 315 5 988

Table 1: Basic statistics for the data

These corpora are preprocessed, lowercased and tokenized with standard tools from the
Moses toolkit.5 Following notably (Garg et al., 2019), we perform the alignment between
subword units generated by Byte-Pair-Encoding (Sennrich et al., 2015), implemented with the
SentencePiece model (Kudo and Richardson, 2018) and computed independently6 in each lan-
guage with 32K merge operations. This makes the training less computationally demanding and
greatly mitigates the rare-word problem, which is a major weakness of historical count-based
model. Our results and analyses are however based on word-level alignments. Subword-level
alignments are converted into word-level alignments as follows: a link between a source and a
target word exists if there is at least one link alignment between their subwords.

3.2 Implementation
Our models are close in structure to the model proposed by Rios et al. (2018), and are made
of three main components: an encoder to generate the latent variables yI0 from eI1, and two
decoders to respectively reconstruct eI1 and fJ1 , with the help of the alignment model.

The encoder is composed of a token embedding layer (128 units), two LSTM layers (each
comprising 64 units), and dense output layers to independently generate the mean vectors
(u1 . . . uI ) vectors and the diagonal of the covariance matrices (s1 . . . sI ). The latent variable
yI1 has 64 units.7 Our encoder is formally defined as:

−→
hi = RNN(

−−→
hi−1, E(ei))

hi =Wh concat(
−→
hi ,
←−
hi)

si = softplus(Wshi + bs)

ui =Wuhi + bu

yi = ui + si · εi

where E(ei) ∈ R128 is the embedding of word ei, ε is a noise variable ε ∼ N(0, 1) and
softplus = log(1 + exp(x)) is an activation function returning a value positive. The vector y0

is independently generated from a pseudo-sentence made of one dummy token; it is identical
3http://statmt.org/wmt16
4See http://statmt.org/wmt19
5https://github.com/moses-smt/mosesdecoder
6We differ there from Garg et al. (2019) who use a joint BPE vocabulary.
7In our BPE baseline experiments with En:Ro, we found that 64 hidden units were sufficient to obtain the best AER

score after 10 iterations. As for the other meta-parameters, we decided to stick with these baseline values.
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for all target sentences. Note that the decoder model does not try to reconstruct this token. The
reconstruction decoder is given by:

pθ(ei|yi) = [softmax(Wvyi + bv)]ei ,

and the alignment model with emission and transition components is:

pθ(fj |eaj ) = [softmax(Wvyaj )]fj
pθ(aj − aj−1) = [softmax(W∆yaj−1

)]aj−aj−1

where Wv ∈ R64×V , bv ∈ RV , with V the target vocabulary size. W∆ ∈ R64×301 with jump
values in the interval [−150,+150].

For experiments with monolingual data, our noise model follows the technique in (Lample
et al., 2017). We randomly delete input words with probability pwd = 0.1. We then slightly
shuffle the sentence, where the difference between the position before and after shuffling each
word is smaller than 4.

In all cases, our optimizer is Adam (Kingma and Ba, 2014) with an initial learning rate of
0.001; the batch size is set to 100 sentences. We use all training sentences of length lower than
50. All parameters of the Giza++ and Fastalign baselines are set to their default values.
IBM-1+NN and HMM+NN correspond to basic neuralizations of the IBM models as in (Rios
et al., 2018; Ngo-Ho and Yvon, 2019) for both word-level and BPE-level. These models are
trained by maximizing the likelihood with the expectation-maximization algorithm. We train
all models for 10 iterations. Results with symmetric alignments use the grow-diag-final (GDF)
heuristic proposed in (Koehn et al., 2005).

3.3 Evaluation protocol
We use the alignment error rate (AER) (Och, 2003), accuracy, F-score, precision and recall as
measures of performance. AER is based on a comparison of predicted alignment links (A) with
a human reference including sure (S) and possible (P) links, and is defined as an average of the
recall and precision taking into account the sets P and S. AER is defined as:

AER = 1− |A ∩ S|+ |A ∩ P |
|A|+ |S|

whereA is the set of predicted alignments. Note that the Romanian-English reference data only
contains sure links; in this case AER and F-measure are deterministically related.

3.4 Results
The top part of Table 2 reports the AER score of the IBM-1 baselines: the count-based
model (IBM-1 Giza++) and the two neural variants, operating at the word (IBM1+NN)
and subword (IBM-1+BPE) levels. We also report the performance of three VAE variants
(IBM1+VAE+BPE, IBM1+VAE+BPE+SP, IBM-1+VAE+BPE+SP+AC). A first observation is
neural baselines are better than Giza++, and that using BPE units brings an additional gain.

The basic model (IBM-1+VAE) falls short to match these results and proves way worse
than the two neural version of the IBM-1 model. These results are in line with the findings
of Rios et al. (2018), who report similar difference in performance. Sharing the parameters
between directions greatly improves this baseline with a reduction in AER of about 8 points
(En-Fr) and 6 points (En-Ro) for both directions, as well as for symmetrization. The recon-
struction model, which is well trained in one direction, helps to improve the emission model in
the reverse direction. We observe that the gain is more significant when the morphologically
rich language is on the target side: this is were the emission model is the weakest and benefits
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most from parameter sharing. Adding an extra agreement cost fails to produce markedly better
alignments for Fr-En; we however observe a gain of about 2 AER points for the symmetricized
alignments in En-Ro. Overall, our best VAE model outperform the neural baseline in the large
training condition (English-French); we do not see this for the other language pair, where the
performance remains much below the neural baseline.

Model English-French English-Romanian
IBM-1 En-Fr Fr-En GDF En-Ro Ro-En GDF
Giza++ 40.0 33.9 25.1 56.0 53.5 51.1
IBM1+NN 27.9 27.2 17.8 46.3 44.9 38.3
IBM1+NN+BPE 25.7 24.0 14.6 43.4 40.4 34.4
IBM1+VAE+BPE 33.4 34.3 24.9 56.3 55.6 51.3
+SP 22.1 23.8 16.8 49.3 51.4 45.2
+AC 22.8 23.6 17.8 49.1 49.2 43.3

Table 2: AER scores for IBM-1 models. The best result in each column is in boldface.

The effect of adding a transition component in these models is less clear, as shown in Ta-
ble 3, where we report the performance of HMM-based variants. Both symmetrization strategies
prove again very effective to improve the basic VAE model, and our best system (+AC) achieves
AER scores that are close, yet slightly inferior, to the HMM+NN+BPE baseline. One possible is-
sue that we do not fully solve via symmetrization is related to the null word, which, as explained
above, is not part of the reconstruction model, and which does not improve with joint learning.

Model English-French English-Romanian
HMM En-Fr Fr-En GDF En-Ro Ro-En GDF
Fastalign 15.1 16.2 14.2 33.3 32.9 30.4
HMM Giza++ 11.9 11.9 8.5 33.3 36.3 32.4
HMM+NN 11.8 11.1 9.7 30.6 40.1 34.3
HMM+NN+BPE 9.8 10.4 9.1 34.4 29.3 29.4
HMM+VAE+BPE 18.9 12.9 13.9 50.2 38.6 42.7
+SP 12.9 12.2 11.7 37.5 38.0 37.0
+AC 11.4 10.8 9.6 35.5 38.8 35.1

Table 3: AER scores for variants of the HMM model and for Fastalign.

4 Error Analysis

4.1 Balancing the terms in the VAE objective
One well-known issue of VAEs for text applications is posterior collapse (Bowman et al., 2016;
Higgins et al., 2017), where the variational distribution collapses towards the prior distribution.

This is because the KL term can get arbitrarily small, with a moderate effect on the recon-
struction cost, assuming a strong reconstruction model (a recurrent network in typical applica-
tions). We also encountered this problem in our setting, but the interpretation is a bit different:
when the KL term goes to zero, all words in the dictionary become indistinguishable and the
reconstruction costs reaches its maximum, corresponding to the entropy of the uniform distri-
bution of the target vocabulary. The difference in dynamics between these scores is observed in
Figure 1 (left), where we apply weights equal to α, β and γ respectively to the reconstruction
cost, the alignment cost and the KL divergence term. This effect is mitigated if we proportion-
ally decrease the weight of the KL term (middle). This second graph reveals the need to also
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better balance the importance of the other two terms. Using larger weights for the reconstruc-
tion term (α = 10) and even more for the alignment term (β = 50), we keep the KL divergence
high and make sure that the optimization focuses on decreasing the two other terms 8.
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Figure 1: Visualizing the three terms of the ELBO for Romanian-English. The weights of the
reconstruction cost, alignment cost and KL divergence are set to α, β, γ respectively.

4.2 Unaligned words
In asymmetrical models, the number of links that are generated is constant and equal to the
total number of “source” words. A source word is deemed unaligned when it is linked to the
special NULL token on the target side; a target word is unaligned when it emits no source word.
We perform an in-depth analysis of these special links. Results for the alignment from French
into English are in Table 4; we observe similar trends for the other direction and for the other
language pair. We compute the alignment accuracy as the proportion of words (on both sides)
for which the binary decision (aligned or non-aligned) is correct; we also report the precision
and recall for unaligned words. Results in Table 4 show that the number of unaligned words
varies in great proportion, with a minimum of about 3000 words (HMM+NN) and a maximum
of nearly 6600 (IBM1+VAE+BPE and HMM+VAE+BPE). For this language pair, the reference
contains 821 unaligned words. They also demonstrate the inability of all models to correctly
predict null links, the best model achieving a precision of only 13.1%.

Model # Unaligned Accuracy Precision Recall
IBM1+NN 3836 74.0 8.7 49.7
IBM1+NN+BPE 3633 75.8 10.1 54.4
IBM1+VAE+BPE 6596 57.4 7.5 73.2
+SP 5621 64.2 9.0 75.1
+AC 5622 64.3 9.1 76.0
HMM+NN 2994 80.4 13.1 58.1
HMM+NN+BPE 4835 70.7 12.2 87.5
HMM+NN+BPE+Joint 4843 70.3 11.6 83.5
HMM+VAE+BPE 6591 58.6 8.7 84.9
+SP 6581 59.0 9.1 89.3
+AC 5579 65.5 10.4 86.0

Table 4: Evaluation of null-alignment links when aligning French with English.

Predicting so many unaligned words is extremely detrimental to the performance of the two
basic VAE models for which we observe a very poor recall for non-null links, which is hardly
compensated by the good precision scores. We see here clearly the effect of the symmetriza-
tion constraints (especially for the HMM model) where the reward associated with symmetric

8In our baseline experiment with English-Romanian (From http://www.statmt.org/wpt05/), using these weights re-
sulted in an acceptable AER scores and seemed appropriate for our further experiment; a small exploration of the
hyper-parameter space showed that these results were stable.
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predictions reduces the tendency to align French words with the NULL English, and to leave
too many English words unaligned. Even there (HMM+VAE+BPE+SP+AC), the number of pre-
dicted non-null links is about half as what we see for HMM+NN: as it predicts much more links
than the others, this model also as an clear edge when it comes to post-hoc symmetrization,
since the “grow-diag-final” heuristics heavily depends on the size of the intersection. Note that
this problem has a much stronger overall effect in English-Romanian than in English-French.
This is because the English-Romanian test set only contains sure links, which means that a low
recall for aligned words directly impacts the AER. We do not see this for the French-English
data, which contain many possible links that have no impact on recall (Fraser and Marcu, 2007).

Incidentally, we also observe a null-word problem for HMM+NN+BPE; presumably splitting
words in small units that are unrelated across languages can also make the model prefer the null
alignment over links between actual words. These results clearly point out one deficiency of the
current approach: for lack of having a proper model for the latent representation of the NULL
token, the VAE-based approach tends to leave too many words unaligned.

4.3 Symmetrization and agreement
We now study the effects of sharing parameters across alignment directions. We consider the
English-Romanian test, for which the relationship between precision, recall and AER is straight-
forward. Detailed scores for all IBM-1 models are in Table 5. We see the clear benefits of shar-
ing parameters, which contributes a jump of both precision, recall and F-measure compared
with the baseline VAE. Models SP and SP+AC generate more alignment links (about +500
links) than the baseline model. This enhancement helps to outperform Giza++ but is insuffi-
cient to surpass the conventional neural network models, especially when using BPE. Numbers
in Table 5 show that the gain in recall is largest in the direction En-Ro: this is because the better
reconstruction of English words boosts the translation model.

Model Precision Recall F-measure
IBM-1 En-Ro Ro-En GDF En-Ro Ro-En GDF En-Ro Ro-En GDF
Giza++ 58.8 49.9 73.8 35.1 43.5 36.5 43.9 46.4 48.8
+NN 57.7 60.0 75.7 50.0 50.9 51.9 53.6 55.1 61.6
+NN+BPE 63.9 64.1 80.4 50.6 55.6 55.3 56.5 59.5 65.5
+VAE+BPE 56.6 53.9 79.5 35.4 37.6 35.0 43.6 44.3 48.6
+SP 60.6 57.8 76.2 43.5 41.8 42.7 50.7 48.5 54.8
+AC 61.3 58.9 76.9 43.5 44.6 44.8 50.8 50.8 56.6

Table 5: Precision, recall and F-measure of IBM-1 models for English-Romanian

We now measure more directly the level of agreement between the two alignment di-
rections for English-French (Table 6). We note that the model integrating agreement costs
(+SP+AC) leads to a higher number of agreements in comparison to the other VAE-based mod-
els, and also yields the best scores in terms of intersection AER.

4.4 Training with monolingual data
A last extension concerns the use of monolingual data in the low-resource condition. To com-
pute the performance of the reconstruction model (R-ACC), we compute the proportion of
words for which the model’s prediction actually corresponds to the correct word. Experiments
are performed with English-Romanian.9 Results in Table 7 show that +Mono helps improve the
reconstruction model, which attains almost perfect reconstruction accuracy in both directions,

9The Romanian corpus is from News Crawl 2019, the English corpus is from Europarl, and corresponds to the
English side of the English-French data.
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Model HMM # Agree Ratio En-Fr Ratio Fr-En AER (inter)
Giza++ 4683 72.6 75.5 7.5
+NN 4771 73.2 76.7 7.4
+NN+BPE 4040 75.0 80.2 10.4
+VAE+BPE 3160 69.1 76.0 18.7
+SP 3586 86.2 86.5 13.0
+AC 3989 83.6 84.8 10.1

Table 6: Agreement between alignments in two directions for English-French, in terms of the
number of alignment links, its ratio to the total number of alignment links predicted by the
model and the AER of the “intersection” heuristic.

suggesting that the autoencoder is overfitting. The gain brought by monolingual data is found
only for IBM-1, for the direction Ro-En (-3.6 AER). The extra-task of denoising the input
(+Mono+Noise) further improves the AER compared to the parameter sharing approach.

Model English-Romanian Romanian-English
+VAE+BPE+SP R-ACC AER R-ACC AER
IBM-1 84.6 49.3 93.0 51.4
+Mono 98.1 49.1 98.1 47.8
+Noise 98.4 48.8 97.9 47.6
HMM 95.5 37.5 97.5 38.0
+Mono 98.5 37.9 98.1 38.0
+Noise 98.8 36.3 97.5 36.5

Table 7: Training with a monolingual corpus (+Mono) and the noise model (+Noise) on
English-Romanian data. R-Acc is the accuracy of the reconstruction model.

5 Related work

The majority of recent approaches to neural word alignment fall into two categories: heuristic
and probabilistic. A representative heuristic approach is (Legrand et al., 2016), which learns
association scores between source and target word embeddings without any underlying proba-
bilistic model. This simple approach is used to clean up translation memories in (Pham et al.,
2018). More recently (Sabet et al., 2020) directly takes pre-trained non-contextual and con-
textual multilingual representations (Devlin et al., 2019) as their association scores, deriving
individual word alignments by solving an optimal matching problem.

Early work on probabilistic neural alignment is (Yang et al., 2013), where a feed-forward
neural network is used to replace the count-based translation model of a HMM-based aligner.
This approach is further developed in (Tamura et al., 2014) where a recurrent network helps
to capture contextual dependencies between alignment links. This early work aims to improve
the alignment quality for phrase-based MT. As discussed above, the work of (Rios et al., 2018)
also considers neural versions of IBM models, with the goal to improve word representations
through cross-lingual transfer in low-resource contexts. Alignment is also the main focus of
(Ngo-Ho and Yvon, 2019) which reviews a whole set of alternative parameterizations for neu-
ral IBM-1 and HMM models, varying the word embeddings (word and character based), the
context-size in the translation model and the parameterization of the distortion model.

A much more active line of research tries to improve neural MT by exploiting the con-
ceptual similarity between alignments and attention (Koehn and Knowles, 2017). Cohn et al.
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(2016) modify the attention component to integrate some biases that are useful in alignements:
a preference for monotonic alignements, for reduced fertility values, etc. They also propose,
following (Liang et al., 2006), to enforce symmetrization constraints, an idea also explored in
(Cheng et al., 2016); The same methodology is studied in (Luong et al., 2015; Yang et al., 2017),
with the objective to introduce dependencies between successive attention vectors. The work
of Peters et al. (2019) also aims to enhance the attention component of a sequence-to-sequence,
by enforcing sparsity via the sparse-max operator.

The work reported in (Alkhouli et al., 2016; Wang et al., 2017) explores ways to explicitely
introduce alignments in NMT. They study various neuralizations of the standard generative
alignment models, and also consider ways to exploit weak supervision from count-based mod-
els. This line of research is pursued by (Kim et al., 2017; Deng et al., 2018), where attention
vectors are handled as structured latent variables in NMT; in this study, variational autoencoders
are used represent the alignment structure. Finally, Garg et al. (2019) propose to jointly learn
alignment and translation in a multi-task setting, thereby improving a Transformer-based model.

When compared to heuristic approaches, an obvious defect of IBM models is their di-
rectionality, which means that they deliver asymmetric alignments. Attempts to remedy this
problem, while preserving the sound probabilistic underlying models have been many. Liang
et al. (2006) propose to jointly train EM in both directions, enforcing directional link posteriors
to agree as much as possible through an additional agreement term; this work is generalized
in (Liu et al., 2015). Graça et al. (2010) use a different technique and enforce symmetry via
additional constraints on the posterior link distribution.

Since their introduction in (Bowman et al., 2016), VAE models of text generation have
been developed in multiple ways, and applied to many NLP tasks, in particular to Machine
Translation (Zhang et al., 2016). This approach generalizes the basic VAE approach by making
the latent variable and the target sentence conditionally dependent from the observed source.
One major difference with our work in that the model includes one latent variable per sentence,
where we consider one for each target word.

6 Conclusion and outlook

In this paper, we have revisited the proposal of Rios et al. (2018) and explored variants of the
variational autoencoder models for the unsupervised estimation of neural word alignment mod-
els. Our study has confirmed the previous findings and highlighted two promising aspects of
this model. First, it is a full model of the joint distribution, which makes it easy and natural
to introduce symmetrization constraints, as we have shown by proposing two such extensions.
With these constraints, we were experimentally able to close the gap with strong baselines im-
plementing neural variants of the conditional HMM models in the large data condition. Second,
it opens new alleys to also incorporate monolingual data during training, which might especially
prove useful in low-resource scenarios.

One remaining problem in this approach is the prediction of the null links, which is quite
problematic in an encoder-decoder approach. We have shown in particular that the VAE model
is strongly inclined to under-generate alignment links, which is detrimental to the overall AER
performance. Symmetrization is a first answer to this problem, which however only partly fixes
the issue. Another difficult problem with this model is controlling the optimization problem,
a difficult task when the objective functions combines multiple terms with varying dynamics.
More work is needed there to design better optimization strategies, with a better balance be-
tween the various sub-objectives.
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Abstract
Sentiment classification has been crucial for many natural language processing (NLP) applica-
tions, such as the analysis of movie reviews, tweets, or customer feedback. A sufficiently large
amount of data is required to build a robust sentiment classification system. However, such
resources are not always available for all domains or for all languages.

In this work, we propose employing a machine translation (MT) system to translate customer
feedback into another language to investigate in which cases translated sentences can have a
positive or negative impact on an automatic sentiment classifier. Furthermore, as performing
a direct translation is not always possible, we explore the performance of automatic classifiers
on sentences that have been translated using a pivot MT system.

We conduct several experiments using the above approaches to analyse the performance of
our proposed sentiment classification system and discuss the advantages and drawbacks of
classifying translated sentences.

1 Introduction

The key factor for building a sentiment classifier is training the model using a dataset of at least
two different sentiment classes. This process requires a huge amount of data to build a workable
sentiment classification system. However, sometimes it is difficult to find the required resources
for the pertinent domain in large enough quantities and in all relevant languages. A typical and
efficient approach to solve this problem consists in building the sentiment classification system
with a high-resource language such as English and translating the sentences to be classified into
this high-resource language.

An example of this is customer feedback classification. Many companies face difficul-
ties analyzing what their clients say about their products and/or services because of the vast
amount of feedback. This problem is aggravated for those businesses that have clients from
several countries and therefore receive feedback in multiple languages. Although the feed-
back in multiple languages can be translated into English, the translated sentences may contain
errors. Moreover, as the feedback consists of user-generated texts, it tends to be less grammati-
cally strict than texts from literature, which implies that finding an accurate translation becomes
more difficult (Lohar et al., 2019).
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MT models are built to generate translations that carry the same meaning as the original
sentence and are also fluent in the target language. However, in some scenarios, metrics for
measuring fluency are less relevant. This is the case in the sentiment analysis of translated
sentences, where maintaining the sentiment is the priority, even if the translation is not accurate
in terms of adequacy and fluency (Tebbifakhr et al., 2019). Despite the MT system generating
understandable translations, it may not manifest the same sentiment as the original sentence.
On top of that, in some cases, it is not possible to perform a direct translation, and so translation
is required to be done via a pivot language. This may influence the classifier even more, as the
errors produced by MT are propagated.

In this work, we analyze the difference in the performance of a sentiment classifier when
using sentences in the original language, and sentences that have been translated (directly and
indirectly) using an MT system. We discuss the benefits and disadvantages of using machine-
translated sentences for automatic classification.

The remainder of this paper is organised in the following manner. We discuss the related
work done in this field in Section 2. In Section 3, we formulate some research questions to be
addressed in this area. The experiments are detailed in Section 4. We highlight our results in
Section 5. Finally, we conclude our present work in Section 6, followed by some possible future
directions in Section 7.

2 Related Work

Several studies have addressed the issue of sentiment classification. The work in Pang et al.
(2002) examines the effectiveness of applying machine learning techniques to the sentiment
classification of movie reviews. In Li et al. (2010) polarity shifting information is incorporated
into a document-level sentiment classification system. First, polarity shifting is detected and
then classifier combination methods are applied to perform polarity classification. However, in
recent studies, deep learning-based approaches are gaining popularity for sentiment classifica-
tion (Zhang et al., 2019a,b).

MT plays a significant role in crosslingual sentiment analysis. An approach that is similar
to ours is the work of Araujo et al. (2016). Their experiments show that the performance of
the English sentiment analysis tools on texts translated into English can be as good as using
language-specific tools. Therefore, it may be worth deploying a system following the first ap-
proach, assuming some cost on the prediction performance. The work of Barhoumi et al. (2018)
shows that the sentiment analysis of Arabic texts translated into English reaches a competitive
performance with respect to standard sentiment analysis of Arabic texts. Using a high-quality
MT system to translate a text from a specific language into English can eliminate the necessity
of developing specific sentiment analysis resources for that language (Shalunts et al., 2016).
One of the most recent approaches using MT for sentiment classification is described in Tebb-
ifakhr et al. (2019). Their proposed approach for the sentiment classification of Twitter data in
German and Italian shows that feeding an English classifier with machine-oriented translations
improves its performance. For low-resource languages, MT-based approaches are considered
efficient for analysing the sentiment of texts (Kanayama et al., 2004; Balahur and Turchi, 2012).

Additionally, several approaches aim to influence the MT to favour a sentiment when gen-
erating a translation. Lohar et al. (2017) propose training different SMT systems on sentences
that have been tagged with a particular sentiment. Similarly, Si et al. (2019) propose methods
for generating translations of both positive and negative sentiments from the same sentence in
the source language.

In our work, we not only investigate the sentiment classification on direct translation but
also on indirect translation. Despite several existing studies on MT translation using a pivot
language, both in SMT (Utiyama and Isahara, 2007; Wu and Wang, 2007) and NMT (Cheng
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et al., 2017; Liu et al., 2018), to the best of our knowledge, this is the first study where indirect
translation is explored for automatic sentiment classification.

3 Research Questions

In our experiments, we aim to explore the change in performance of a sentiment classifier when
executed on MT-translated sentences. Furthermore, we want to compare the performance when
using direct and indirect translation. The research questions (RQs) that we explore in this paper
are the following:

RQ1: To what extent do machine-translated sentences impact the performance of a
sentiment classifier?

Typically, MT models generate errors when producing translations. In addition, translating
user-generated content (UGC) tends to be more difficult as it may contain spelling mistakes,
wrong use of uppercase and lowercase letters, etc. Because of this, when customer feedback is
translated the MT system may fail to produce a sentence with the same meaning or sentiment
as the original sentence. We want to investigate how much MT errors affect the classification
and whether they are proportional to the expected translation quality.

RQ2: How much does the indirectly translated sentence impact a sentiment classi-
fier?

In some situations, performing a direct translation into the language of the classifier is not
possible. This is the case when language resources are available (e.g. either parallel data, train-
ing set for building a classification, etc.). Therefore the translation can be obtained indirectly
using a pivot language. We can find many examples of languages that are generally translated
via a pivot language. For instance, Irish is often translated via English, Basque and Catalan via
Spanish, and Breton via French. The translation quality of a document that is indirectly trans-
lated is expected to be lower than a direct translation because the final translation accumulates
the errors produced by two MT models.

This may also have a negative impact on the classifier. We want to analyze the performance
of the classifier when classifying indirectly-translated sentences.

4 Experiments

4.1 MT settings
We build an NMT system following the transformer approach (Vaswani et al., 2017) using
OpenNMT (Klein et al., 2017). The model is trained for a maximum of 400K steps using
the recommended parameters,1 selecting the model that obtains the lowest perplexity on the
development set.

A total of six translation models are built for translating French, Spanish and Japanese
from/into English (two models for each pair).We use Paracrawl2 for English-French (51M
parallel sentences) and English-Spanish (39M parallel sentences) language pairs, and
JParaCrawl (Morishita et al., 2019) dataset (8.7M parallel sentences) for English-Japanese.

All the datsets are tokenized, truecased and then Byte Pair Encoding (BPE) (Sennrich
et al., 2016c) is applied with 89, 500 merge operations.

In order to estimate the performance of the MT models, in Table 1 we present the trans-
lation quality when translating a sample of 500 lines from the news-commentary dataset. The
translations are evaluated using the BLEU (Papineni et al., 2002) metric. For English-French
and English-Spanish language pairs the models achieve decent translation quality, but for the
English-Japanese pair, BLEU scores are much lower. The reasons for this is that French and

1https://opennmt.net/OpenNMT-py/FAQ.html
2https://www.paracrawl.eu
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Language BLEU
En→ Fr 31.77
En→ Es 40.13
En→ Ja 9.21
Fr→ En 32.09
Es→ En 40.48
Ja→ En 12.85

Table 1: MT performance

Spanish are grammatically and lexically closer to English than Japanese, and in addition, the
number of training sentences used to build the MT system is four times smaller.

4.2 Sentiment classifier
In order to build the sentiment analyser, we use the data from the IJCNLP-2017 Customer Feed-
back Analysis Task (Liu et al., 2017b). This dataset consists of a collection of English, French,
Spanish and Japanese feedback containing short sentences extracted from reviews of products
or services (in the hotel, restaurant or software domain). Each sentence is tagged with one
or more categories based on the five-class system proposed by Liu et al. (2017a): comment,
complaint, request, bug and meaningless. This is a fine-grained classification where only posi-
tive feedback is classified as comments whereas the other classes can be assumed to be different
variants of negative feedback: “complaint” is defined as a negative comment and request or bug,
which can also be considered negative as the client, or the user, is manifesting something that
does not meet the standards of the product or service. In this dataset, the feedback can belong
to multiple classes (e.g. a sentence such as my purchase won’t show up. would be classified as
“complaint” and “bug”).

Lang Train Dev Test
Size ratio Size ratio Size ratio

En 3066 53% 500 54% 500 54%
Fr 1961 59% 400 60% 400 60%
Es 1632 61% 300 81% 300 76%
Ja 1527 52% 250 55% 300 56%

Table 2: Statistics of Feedback dataset. Size indicates the number of lines, and ratio the per-
centage of positive feedback.

In order to simplify the analysis, we assume that feedback is positive if is classified as a
“comment” only, and negative in all other cases. Table 2 describes the dataset. We see that
the size of the training data ranges from 1.5K to 3K lines, depending on the language. In the
ratio column we indicate the percentage of feedback that is positive (and so 100− ratio would
indicate the percentage of negative feedback). We can see that in all datasets positive feedback
is predominant, but not enough to consider the dataset unbalanced.

We build the classifier using a bidirectional Gated Recurrent Unit (GRU) (Cho et al.,
2014), sigmoid activation function and a batch size of 16. The classification is performed on
data with BPE applied.

In Table 3 we present the performance of the classifiers on the original sentences. We
present three different metrics: accuracy, precision and recall. As we can see the three metrics
have similar values. Therefore in the rest of this paper we will indicate only the accuracy (the
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Language Accuracy Precision Recall
En 0.728 0.727 0.729
Fr 0.788 0.779 0.783
Es 0.856 0.798 0.852
Ja 0.816 0.816 0.820

Table 3: Accuracy of the classifier on original sentences.

number of correctly classified feedback over the total amount in the test set).

5 Experiment Results

In our experiments we translate the test set into different languages and compare the perfor-
mance of the classifier with the sentences classified in the original language (Table 3).

5.1 Direct Translation Results
We classify machine-translated feedback in the first set of experiments. These experiments can
be divided into two parts: (i) Feedback translated into English; and (ii) Feedback translated
from English.

Language Accuracy Accuracy
(original
language)

En→ Fr 0.683 0.728
En→ Es 0.673 0.728
En→ Ja 0.573 0.728
Fr→ En 0.754 0.788
Es→ En 0.805 0.856
Ja→ En 0.659 0.816

Table 4: Accuracy of the classifier on MT-generated sentences

In Table 4 we present the accuracy of the classifier when used on the translated data. The
first column indicates in which direction the test set has been translated. The second column
indicates the accuracy of the classifier when translated feedback is used. Therefore, we use the
classifier built in the target language. Note that whereas in the first subtable the test set is the
same (same English feedback translated into the other languages), in the second subtable each
test set is different.

The accuracy of the classifier is lower for machine-translated data when compared to the
sentences in the original sentences. In the first subtable the accuracies are lower than the original
English classifier (En row in Table 3). Similarly, in the second subtable, the accuracies are lower
than those of Fr, Es and Ja rows in Table 3.

We observe a relative decrease of between 4% and 6% of performance when using trans-
lations from/into French or Spanish. For example, 72.8% of the English feedback is correctly
classified by using the English classifier, but when these sentences are translated into French or
Spanish and classified with the French and Spanish system, only 68.3% and 67.3% are correct.
Similarly, in French and Spanish, 78.8% and 85.6% of the sentences are properly classified, but
when translated into English this descend to 75.4% and 80.5%. The worst performance is seen
in feedback translated from and into Japanese (around a 20% of decrease). This is probably be
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related to the estimated translation quality shown in Table 1 where we see that MT models that
use Japanese as source or target languages tend to perform worse. Nevertheless, the accuracy
of the classifier and translation quality are not completely correlated. For example, when the
English feedback is translated into French, classification accuracy decreases to 0.683 (decrease
of 6.2%) and when translated into Spanish accuracy decreases more (reaching an accuracy of
0.673 which is a decrease of 7.6%) even though the translation quality should be better (accord-
ing to Table 1).

In general, we observe that it is preferable to classify the sentences in the original language.
Even when translating into a language with higher resources in which a classifier can be trained
with more data (as is the case of translating Japanese feedback into English), the accuracy is
lower. This may be related to translation quality. However we see that once a threshold of
translation quality is achieved, it does not have a big impact on the classifier.

5.2 Indirect Translation Results
In the second set of experiments we analyze the classification of indirectly-translated sentences,
using English as a pivot language. We present in Table 5 the accuracy of the system with
sentences translated indirectly. The rows indicate the source language and the columns the
target language (after being translated from English).

Lang. Fr Es Ja
Fr 0.779 0.725 0.635
Es 0.813 0.852 0.672
Ja 0.667 0.697 0.726

Table 5: Accuracy of classifier when using indirectly-translated sentences. The source language
is that indicated in the row and the target language that indicated in the column. In all cases the
pivot language is English.

We observe that the highest score in each row is the feedback that was translated back into
the original language. In fact, the resulting indirect translation is similar to the original: 53.36
BLEU points for French feedback; 56.63 for Spanish; and 28.17 for Japanese. 3 Although
Japanese has a lower BLEU score, we observed that often the differences come from using a
different writing system, e.g. both おもう (omou) and 思う (omou) are the same word (to
think), but they are written in two different Japanese writing systems.

When comparing the results in Table 5 with those for direct translation (subtable at the
bottom of Table 4) we discover that the accuracy is similar. Furthermore, in some cases,
indirectly-translated feedback becomes better classified. For example, when the Spanish feed-
back is translated into English, the accuracy of the classifier is 0.805 whereas translating it
further into French results in higher accuracy (0.813). Similarly, when the Japanese feedback
is translated into English the accuracy is 0.659 but when translated into French or Spanish the
accuracy becomes 0.667 and 0.697, respectively.

As feedback consists of user-generated sentences they are expected to be informal, non-
standard and noisy. Therefore, some of the terms may not be recognized by the classifier (which
is trained using a small amount of data). However, in our experiments, the MT models are
trained with larger amounts of data than the classifier and so they may recognize these terms
and produce a less noisy translation.

In addition, we observe that many sentences in French, Spanish and Japanese use terms

3As BLEU evaluation metric is based on n-gram overlaps and Japanese sentences do not have whitespace separations
between words, Japanese sentences were evaluated in BPE-split sentences
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in English. For example, in Spanish feedback we find calles de shopping (meaning shopping
streets) instead of calles comerciales, or in Japanese we find staffの接客 (meaning staff recep-
tion). The classifier in the original language may be unable to identify the words shopping or
staff and this may affect the classification process. When performing translation, even if these
OOV terms are copied directly into the target sentence, they will form a well-written sentence.
When the feedback is further translated from the English pivot-sentences, the MT model is
capable of translating the word.

5.3 Translation Analysis

In Table 6 we present some translation examples that help us illustrate the problems and benefits
of using MT-generated sentences in the classification.

Language Sentence Sentence (human-translated into
English)

Ja ロケーション location
Ja → En location Location Location Loca-

tion
location location location ...

Ja → En → Ja 場所 場所 場所 場所 場所 場所
場所

location location location ...

Es seguro volveré I will come back for sure
Es → En I will return insurance I will return insurance
Es → En → Es voy a devolver el seguro I will return insurance
Fr et le quartier pas très sympa. and the neighborhood is not very

nice.
Fr → En and the neighborhood is not very

nice.
and the neighborhood is not very
nice.

Fr → En → Fr et le quartier n’est pas très agréable. and the neighborhood is not very
nice.

Table 6: Translation examples

In the first subtable, we show how the MT engine produces a word-repetition (i.e. lo-
cation) when generating a translation. As the sentence is nonsense, it can be misinterpreted
by the classifier. On top of that, the word-repetition problem is further replicated on indirect
translation.

One of the problems is that indirect translation may produce errors that are propagated to
the following MT system. In Table 6 the Spanish sentence seguro volveré is wrongly translated
as I will return insurance (the word seguro can mean either for sure or insurance). This causes
a positive sentence to become negative because of this error, and it is spread to the following
translations.

In the second subtable, we show why in some cases using a translation could be beneficial.
The original sentence in French et le quartier pas très sympa. is not a grammatically-correct
sentence as the word ne (the negation of a verb in French follows the structure “ne”+VB+“pas”)
and the verb est (to be) are omitted which is common in spoken French. The translation into
English is accurate in meaning and when the sentence has been translated back to French,
the structure of the sentence is correct. Another advantage is that MT-generated texts tend
to have a lower lexical diversity (Toral, 2019; Vanmassenhove et al., 2019) which makes the
classification easier. This can be seen with the French word sympa which is not as frequent as
agréable. For example, there are 6, 065 occurrences of the word sympa in the Paracrawl dataset
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whereas agréable occurs 78, 689 times.

6 Conclusions

In this work we investigated the impact of both direct and indirect translation when evaluated
in terms of sentiment preservation (rather than other common criteria such as adequacy and
fluency). We performed translation of customer feedback and categorized it as positive or neg-
ative using an automatic classifier. There are several conclusions that we can draw from the
experiments carried out.

Sentiment classifiers do not classify translated data as well as original sentences. As ex-
pected, the outcome of our experiments shows that it is preferable to use the original feedback
rather than a translation for classification. The MT-generated feedback introduces errors (Lohar
et al., 2019; Nunez et al., 2019) that causes the classifier to show worse performance.

Translation quality is not completely correlated to the performance of the classifier. Al-
though the automatic sentiment classifier does not perform well on sentences with low-quality
translation, after a certain translation-quality threshold the performance of the classifier is not
correlated with the translation quality.

There are potential benefits to using MT-translated sentences Although MT models pro-
duce errors, they also tend to generate sentences with a lower amount of lexical translation,
which facilitates the classification. Moreover, if the feedback, which is UGC, contains terms in
the target language it may be easier for the classifier to classify the translated version.

The performance of the classifier on indirectly-translated sentences is similar to that when
classifying directly-translated sentences. Despite the decrease in performance when classi-
fying directly-translated feedback, we observe that it is similar to indirectly-translated feedback
if the performance of the MT models is good enough. The sentences generated by the first MT
system are expected to be of lower lexical diversity as compared to the user-generated sentences.
This causes the second MT system in the pipeline to only have to translate simpler sentences.

7 Future Work

One of the limitations of our experiments is that we used an MT model to translate only the test
set. An alternative experiment would involve translating the training data instead. The use of
synthetic data for building models has been extensively explored in MT-field. Techniques such
as back-translation (Sennrich et al., 2016b; Poncelas et al., 2018b), in which synthetic data is
created by translating sentences from another language, has proven to be useful for improving
MT models. We want to explore whether using machine-generated sentences as training data
for the classifier also has an impact on the performance.

In the future, we want to explore other experimental configurations. For example, in this
paper we explored a classifier trained with a single language. We want to investigate whether
the performance would be similar when using multilingual classifiers (Plank, 2017).

Moreover, in these experiments the MT models were trained on large amounts of data (9M
to 51M sentences). Although smaller models are expected to produce lower quality translations,
these may be enough for the sentiment classifier to achieve acceptable results. A future exten-
sion to this work would involve investigating what is the minimum amount of data necessary for
building the MT system to create translations that are good enough for the classifier to perform
well. Alternatively, small MT models can be built by selecting a subset of the available data
(Silva et al., 2018) that is closer to the user-generated content.

Another configuration would involve adapting the MT models to different categories. Fol-
lowing the approach of (Lohar et al., 2017) we could build different MT models for differ-
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ent classes. Alternatively, models could be adapted to translate feedback of a particular senti-
ment in a similar way to domain-adaptation. This can be done by fine-tuning with in-domain
sets (van der Wees et al., 2017; Poncelas et al., 2018a) or appending a tag with the domain
(Sennrich et al., 2016a; Poncelas et al., 2019).
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Abstract
Bilingual word embeddings (BWEs) facilitate the translation of single source language words
to single target language words. However, often a single source word must be translated using
two target words. Previous approaches depend on observing the two target language words as
a (frequent) bigram in a corpus. But for many languages only a small amount of written text is
available, so that such “atomic” embeddings can only be built for a small number of frequent
bigrams. In this paper, we extend atomic embedding based approaches to improve the 1-to-2
word translation of rare words by decomposing the representation of a source word to represen-
tations of two target words, allowing to model translations for which the required bigram was
not observed in our monolingual corpora. We create a gold standard lexicon for 1-to-2 transla-
tion containing source German compounds along with their translations to two English words,
and show that our approach improves performance. We also show the importance of bigrams
for the downstream task of unsupervised machine translation and show small but significant
BLEU score improvements with our approach. Our approach is an important first step in the
direction of handling composition in BWEs, beyond simple memorization of seen bigrams.

1 Introduction

Bilingual word embeddings (BWEs) are key components in cross-lingual NLP tasks alleviating
data scarcity for many languages. They can be built using source and target language mono-
lingual corpora with either a cheap bilingual signal (Mikolov et al., 2013b; Xing et al., 2015)
or no bilingual signal at all (Conneau et al., 2018; Artetxe et al., 2018a). They are applied to
many downstream tasks, such as bilingual lexicon induction (BLI) (Vulić and Korhonen, 2016)
and cross-lingual transfer learning (Schuster et al., 2019). Unsupervised machine translation
(UMT) strongly depends on BWEs. Meaningful translations can be generated without any
bilingual signal by using BWEs to translate words 1-to-1.

However, many words in a given language are the composition of multiple smaller lexi-
cal units which are expressed individually in other languages, such as the German compound
Waschmaschine → washing machine. Using the idea of atomic embeddings for frequent bi-
grams (Mikolov et al., 2013c) previous work proposed 1-to-2 word translations achieving sig-
nificant improvements in UMT (Lample et al., 2018b; Artetxe et al., 2018b). These approaches
start by learning individual vector representations for frequent bigrams using their monolingual
contexts, effectively treating them as if they were single words. After the projection of the
learned monolingual spaces to BWEs, these special bigrams can also be translated or serve as
translation candidates in exactly the same way as unigrams. On the other hand, these approaches
need to learn these special atomic embeddings in advance, requiring them to be frequently ob-
served to be learned well. This assumes the availability of large monolingual corpora which are
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not available for low-resource languages. Relying only on atomic embeddings fails if the target
bigrams are out-of-vocabulary or infrequent. For example, if the English bigram in Cocabauern
→ coca farmers was not seen in the target corpus, then its embedding will be unknown. Thus it
cannot serve as a translation candidate. Furthermore, if it was seen but it is infrequent, its repre-
sentation will be poor. We therefore have a high chance of translating Cocabauern to a similar
but more frequent English bigram (e.g. corn farmers). This problem was partially addressed in
(Del et al., 2018) by generating bigram representations using a linear composition based on the
embeddings of the two words in a bigram. This way they are able to generate better embeddings
for infrequent bigrams by relying on their frequent unigram components. On the other hand,
their approach still suffers from the OOV issue because they are only able to compute a limited
number of compositions, which they restrict to observed bigrams.

To overcome these problems we extend atomic embeddings in order to improve translation
of rare words by decomposing source language unigrams to two target words. Given the em-
bedding of a unigram (Cocabauern) we infer two word vectors which we decode to a bigram
(coca farmers) by looking for the nearest neighbors of the generated vectors. This way we omit
the need for atomic bigram representations on the target side learned in advance and allow the
generation of previously unseen bigrams. We employ a multi-layer neural network relying only
on unsupervised BWEs and generate cross-lingual training examples using atomic embeddings
and back-translation (Sennrich et al., 2016). In addition, we create monolingual examples hav-
ing a target language bigram as the input and its unigram components as the output, i.e., these
examples teach the system to map the atomic embedding of a bigram like “corn farmers” to
the two representations of “corn” and “farmers”, which monolingually mimics the cross-lingual
translation task. Similarly to auto-encoding based approach, we can generate these monolingual
examples easily which are useful for the bilingual task as well since the BWEs on which our
system relies represent source and target language words with similar vectors.

We test our system on the new task of bilingual phrase lexicon induction (BPLI), i.e.,
translating single words to phrases, which we propose here. We use German compound words
and their English translations as the test lexicon, since they behave well in 1-to-2 translation,
serving as a good starting point for our experiments. We focus on 1-to-2 translation only since
they have the highest impact on UMT quality (Lample et al., 2018b). We simulate De-En as
low-resource by using a large amount of monolingual data only on the source side (De) while
testing various data sizes for the target (En). We show that by combining our proposed approach
with atomic embeddings the performance on the BPLI task can be improved. Our analysis
shows that mapping a source word to atomically embedded bigrams has high performance when
translating frequent source words, while the decomposition of a source word to two target word
representations works well when translating infrequent source words. In addition, we show
the importance of the system for UMT by including our approach in the pipeline of the UMT
system of Artetxe et al. (2018b) and show its positive effects on translation quality.

2 Related Work

Bilingual word embeddings became popular resources for many cross-lingual NLP tasks since
they allow the transfer of knowledge from a source language to a target language. Various
approaches were proposed. Gouws et al. (2015) rely on parallel corpora, while others create
artificial cross-lingual corpora using seed lexicons or document alignments (Vulić and Moens,
2015; Duong et al., 2016). Following Mikolov et al. (2013b), many authors map monolingual
word embeddings (MWEs) into shared bilingual spaces (Faruqui and Dyer, 2014; Xing et al.,
2015) because only a weak bilingual signal in the form of a seed lexicon is needed. Bilingual
Lexicon Induction (BLI) is often used as the intrinsic evaluation of BWE spaces (Mikolov et al.,
2013b; Vulić and Korhonen, 2016), where the task is to translate individual source language
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words to a single target word (1-to-1). Most approaches rely on cosine similarity of word
embeddings by predicting the top-1 or top-5 most similar words as translations. In order to
evaluate our approach intrinsically, we created a test lexicon as is usually done in BLI, but our
test lexicon has single words and their bigram translations.

Recent work showed that building BWEs is possible without any bilingual signal. Adver-
sarial training was used to rotate the source space to match the target in order to extract an initial
seed lexicon which is used to fine-tune the projection (Conneau et al., 2018). Others used word
neighborhood information to create the initial mapping (Artetxe et al., 2018a; Alvarez-Melis
and Jaakkola, 2018). All these works led to the possibility of building MT systems without
parallel data which are based on the word translation capabilities of unsupervised BWEs and
back-translation of large monolingual data (Sennrich et al., 2016). Systems based on both neu-
ral network approaches (Lample et al., 2018a; Artetxe et al., 2018c; Yang et al., 2018) and
phrase-based SMT (Lample et al., 2018b; Artetxe et al., 2018b) were proposed. We evaluate
our approach on the downstream task of UMT as well by extending the approach of (Artetxe
et al., 2018b), showing translation quality improvements.

An important step of statistical UMT systems which gives significant performance im-
provement is learning atomic representations for bigrams. Statistical UMT allows 1-to-2, 2-to-1
and even 2-to-2 translations. Mikolov et al. (2013c) showed that good quality embeddings can
be learned by mining frequent n-grams in monolingual corpora using co-occurrence statistics
and learning their representation in the same way as other vocabulary entries. The approach
was improved in (Artetxe et al., 2018b) by keeping unigram invariance while learning n-gram
embeddings. We give more details about this approach in the following section since we rely
on this system in our experiments. On the other hand, the problem of these approaches is
that a large amount of monolingual data is required in order to mine frequent bigrams and to
learn good quality embeddings for them. Del et al. (2018) alleviated the problem by inferring
bigram embeddings by composing the representations of their unigram components. Various
composition functions were tested, such as simple addition of vectors or learning a linear pro-
jection. Following the work of Yazdani et al. (2015), they use atomic bigram embeddings and
the representations of their unigram components as training samples to learn the composition
function. However it is not feasible to compose each pair of unigrams in the vocabulary due
to their large number, thus the approach considers only those bigram candidates which occur
in the input monolingual corpora, typically leading to OOV target bigrams in the case of rare
source words. Our approach alleviates these problems by extending previous systems with a de-
composition based module for better rare word translation which is able to generate previously
unseen bigrams as well.

3 Approach

As mentioned above in the approach of Del et al. (2018) the embeddings of target language
bigrams are generated using a composition mechanism which are used as target candidate trans-
lations for source words. Since they show that the composition of target language unigrams can
be used for 1-to-2 translation, we can assume that source word embeddings encode the meaning
of its components. Based on this intuition, we follow a reverse approach where we decompose
source word representations into two vectors which we decode into bigrams using the target
language vocabulary. The advantage of this approach is that it does not require a predefined list
of bigrams. Kumar and Tsvetkov (2019) proposed a supervised MT system which generates
word embeddings, instead of word indices, on the output which are then decoded into sentences
using beam-search and a word embedding model. Similarly, we generate vectors as an interme-
diate step instead of word indices directly since our training lexicon covers only a subset of the
target language vocabulary (a logit layer would be able to predict only the words in this subset).
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We use a two layer feed-forward neural network1 as the decoder which takes the embed-
ding of the source word as input:

[yt1 , yt2 ] =W2 ∗ReLU(W1 ∗ drop(xs)) (1)

where xs is the input while [yt1 , yt2 ] is the concatenated output word vectors, Wi are network
parameters and ReLU, drop are the non-linearity and dropout functions respectively. As train-
ing objective we minimize the mean cosine distance between predicted and gold translations in
the training lexicon:

argmin
W1,W2

1

N

N∑
i=1

d([yit1 , y
i
t2 ], [ŷ

i
t1 , ŷ

i
t2 ]) (2)

where ŷiti is the embedding of gold translations and d(·, ·) is the cosine distance of the vectors.
The probability of a bigram [wt1 , wt2 ] is given by:

P ([wt1 , wt2 ] | [yt1 , yt2 ]) =
s(yt1 , xwt1

) ∗ s(yt2 , xwt2
)∑

w1,w2∈Vt
s(yt1 , xw1

) ∗ s(yt2 , xw2
)

(3)

where xwi is the embedding of wordwi, Vt is the target language unigram vocabulary and s(·, ·)
is the cosine similarity of vectors. Since wti can be any unigram in the target vocabulary we
only consider the 100 most similar words compared to yt1 and yt2 as possible values for wt1

and wt2 respectively, based on their cosine similarity. By assuming that the rest of the words are
irrelevant for the decoding of the output we significantly reduce the search space. In addition,
we omit the normalization term during decoding for efficiency.

Atomic Embeddings As the basis of our system we use atomic embeddings of bigrams. We
learn BWEs containing such embeddings using the method of (Artetxe et al., 2018b). In the first
step the system learns source and target language MWEs containing frequent n-grams based
on co-occurrence statistics (Mikolov et al., 2013c). Opposed to previous approaches, which
treated n-grams the same way as unigrams, Artetxe et al. (2018b) modified word2vec skip-gram
(Mikolov et al., 2013a) in a way that it learns n-gram embeddings keeping unigram invariance,
i.e., resulting unigram embeddings are the same as when there are no longer phrases in the
vocabulary. This is achieved by only updating n-gram embeddings but not context embeddings
when a training example has an n-gram as the center word. The projection of MWEs to a BWE
space is done using the unsupervised VecMap system (Artetxe et al., 2018a). The method builds
an initial mapping relying on intra-lingual similarity distribution of embeddings and iteratively
improves the projection through self-learning without any bilingual signal.

Training lexicons Since our aim is to apply our system to setups where no bilingual signal
is available, we generate training lexicons automatically, containing source→target translation
pairs, relying only on unsupervised BWEs. We build multiple lexicon variations containing
either cross-lingual or monolingual training examples. As the quality of atomic embeddings are
good in case of frequent bigrams, we use them to learn basic decomposition and to generalize
decomposition to rare and OOV bigrams as well. When training our system the source side of
each example is represented by a single, while the target by two individual vectors.

1Simple linear projection resulted in lower performance.
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s2t We build a cross-lingual lexicon containing source language unigrams having target lan-
guage bigram translations, e.g., Waschmaschine→ washing machine. For simplicity, we trans-
late target language bigrams back to the source language using BLI, i.e., by taking to most
similar unigram or bigram as the translation based on their vector similarity. We filter pairs
which have a bigram on the source side, since we are only interested in unigram→bigram pairs.
Finally, we retain only those pairs which have at least 0.2 similarity in order to have a good
quality lexicon.

t2t We create a monolingual lexicon as well, containing the same target language bigrams
on both source and target sides. We use the atomic bigram embeddings to decompose them to
the individual word vectors of their unigram components, e.g., washing machine → washing
machine, similarity to (Yazdani et al., 2015; Del et al., 2018). Since we rely on BWEs, i.e.,
words of the two languages are represented in a shared space, this lexicon can be used in the
same way as s2t by considering the target language bigram vectors on the source side as the
noisy representation of the source language bigrams. We take the list of target language bigrams
from the BWE vocabulary for this lexicon but clean it by filtering any bigram which has a
component that is a stopword, a punctuation mark, a digit, shorter that 4 characters or if its POS
sequence2 is not composed of two nouns, a noun and an adjective or does not start with a verb
(gerund, present or past participle) and ends with a noun. We note that the POS patterns reflect
German compound composition but they can easily be extended to generalize our approach in
future work. In addition, we keep only the most frequent 10K bigrams (or less if 10K is not
available). We apply the same filtering to the following two lexicons as well except that we vary
the number of the retained entries as described below.

s2t-avg We found that having too many bigrams in the BWE vocabulary when not enough
monolingual data is available on the target side leads to bad quality atomic embeddings. This
can be alleviated by learning embeddings for frequent bigrams only, but this leads to small
s2t and t2t lexicons. To overcome this problem, we mine additional less frequent bigrams
from the target language corpus without learning atomic embeddings for them due to their low
frequency. We create a lexicon using these bigrams and by back-translation (Sennrich et al.,
2016) applying BLI on their unigram components individually. We then take the average of the
two resulting source language unigrams’ representations as the source side bigram vector, since
atomic embeddings are not available.

t2t-avg We generate a monolingual lexicon in a similar way. We use the target language
bigrams from s2t-avg and take the average target language representations of the bigrams’
components as the source side vector instead of back-translating them. Since learning atomic
embeddings is better than averaging, we use only the most frequent 1K bigrams.

Because not all lexicons are equally useful for the training of our system due to their quality,
we use them sequentially by performing 10 epochs each on t2t-avg, s2t-avg, and t2t respectively
in this order, and then we run 70 epochs on s2t. We note that to improve the precision of these
lexicons we used CSLS (Conneau et al., 2018) instead of cosine similarity for BLI.

Ensembling In order to improve 1-to-2 translation of rare words we extend atomic embed-
dings with the decomposition approach by ensembling the outputs of the two modules. We
define TB

ws
a set of 100 target language bigrams that are most similar to the input word ws

based on CSLS similarity of embeddings in a given BWE space. Similarly, TD
ws

is a set of most
probable 100 translations predicted by our approach. We calculate the ensemble score for each
ws and tws

∈ TB
ws
∪ TD

ws
as:

2We use spaCy for POS tagging https://spacy.io
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SE(ws, tws) =
∑

m∈B,D

λm ∗ Sm(ws, tws), Sm =
sm(ws, tws

)∑
t∈TB

ws
∪TD

ws
sm(ws, t)

(4)

where sB(·, ·) is the CSLS similarity between its arguments’ representations, sD(·, ·) is the
prediction score of the decomposition module and λB , λD are the weights of the two methods
respectively. If a given (ws, t) is not in Tm

ws
we set sm(ws, t) to 10−6.

Parameters The parameters in our experiments are the following: we use 300 dimensional
word embeddings, hidden layer of 1000 and dropout probability 0.2 in our decoder, batch size
of 32 over 100 training epochs without early stopping. The learning rate of the Adam optimizer
is 0.001 initially which we multiply by 0.1 in every 10th epoch when using training examples
of s2t lexicon. We used the development set of the created BPLI lexicon (see below) for tuning
the network parameters and the ensemble weights. We implemented our system in PyTorch
(Paszke et al., 2019).

We note that previous work learned trigram embeddings as well for UMT systems (Lample
et al., 2018b; Artetxe et al., 2018b). We only focus on bigrams since they have the most impact,
while higher n-grams have only marginal improvements, as shown by Lample et al. (2018b).
However, based on the lexicon generation and equation 1, the extension of our system from
bigrams to longer n-grams, which we leave for future work, is technically straight-forward. One
needs to generate lexicons for longer n-grams as well, while extending the number of vectors
predicted by the decoder. To allow for variable n-gram length the introduction of a PAD token
is necessary.

4 Evaluation

4.1 Bilingual Phrase Lexicon Induction
We introduce a novel test lexicon containing German compounds and their English transla-
tions for the evaluation3. We focus on compounds in this work since they behave well in
1-to-2 translations. We will discuss future generalization possibilities of the approach, such
as non-compound inputs, at the end of the paper. We take the source compounds from the
work of Fritzinger and Fraser (2010) which was created to test German compound splitting
accuracy. Since the dataset does not contain English pairs of the words we automatically
translated them using Google Translate. Some of the compounds were translated 1-to-1, e.g.,
Ackerland → farmland, we filtered them out which resulted in 661 pairs. Besides bigrams
on the target side, the lexicon contains 3-grams and 4-grams as well, making up around 10% and
1% of the examples respectively. Since our current system only translates to bigrams, longer
phrases count as errors in our evaluation, but we kept these entries in the lexicon to allow future
comparison. We use half of the lexicon for parameter tuning and the other half for testing.

As the baseline we learn BWEs containing atomic bigram embeddings using the method of
(Artetxe et al., 2018b) described above and perform BLI. For both the baseline (atomic) and our
system (ensemble), we only allow bigram outputs. To build BWEs we use the same monolingual
data used in (Artetxe et al., 2018b) which contains German (89.6M ) and English (90.2M )
news crawl sentences between 2007 and 2013 released by WMT14. We simulate low-resource
settings by decreasing the amount of available sentences on the target side (all, 1M, 500K and
250K) but keeping the full dataset on the source. Our experiments showed that having too
many atomic n-gram embeddings when we have only a low number of sentences results in low
quality BWEs which can be improved by decreasing the number of n-gram embeddings. Based

3The dataset is available at: https://www.cis.lmu.de/~hangyav/data/BPLI.zip
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on this and the setup of (Artetxe et al., 2018b), we build BWEs containing 200K most frequent
embeddings for unigrams and 400K most frequent bigrams and trigrams on both source and
target side, except in the case of 250K sentences where we used 10K. We note that we also tried
to experiment with only 100K sentences in the monolingual data but even with only unigrams
in the vocabulary we couldn’t build functional BWEs.

4.2 Unsupervised Machine Translation
We evaluate our system extrinsically as well on the task of unsupervised MT on the WMT news
translation shared task test data from 2014 and 2016, similarly to previous work on unsupervised
MT (Lample et al., 2018b; Artetxe et al., 2018b). We additionally evaluate on WMT 2019
(Barrault et al., 2019).

To examine the effects of BWEs on MT, we extend the statistical UMT system of (Artetxe
et al., 2018b) which strongly relies on BWEs. By default it is comprised of 5 consecutive steps.
In step 1 it builds MWEs containing atomic representations for 1-, 2- and 3-grams and projects
them to shared BWE spaces in step 2 with the same method as the basis of our system for the
BPLI experiments described above. The Moses statistical MT system is used as the translation
system (Koehn et al., 2007) which requires two components in this case: a language model and
a phrase-table. The former is built with KenLM (Heafield, 2011) while the latter contains phrase
translation pairs and their scores for each source word and the 100 most similar target words
which are calculated using cosine similarity in step 3. The weights of the two components are
tuned in step 4 on a synthetic parallel corpus generated through back-translation and MERT
is applied as the tuning algorithm. Finally, in step 5 the system is iteratively refined (for 3
iterations) using back-translation of monolingual data. We use this off-the-shelf system as one
of our baselines which we call atomic since it uses atomic n-gram embeddings. In addition,
we run the same system but without atomic representations for 2- and 3-grams, i.e., with only
unigram word embeddings (unigram).

Extended UMT To plug our system into the pipeline we extend the generated phrase-table
in step 3 of the atomic baseline to show the additional effects of the bigrams generated by
our approach. We filter words from the source language vocabulary which are longer than the
average character length in our BPLI test lexicon (13) with the aim to gather compound words
automatically. We predict top-100 translations of these words and create a phrase-table using
the prediction score of the decomposition module as the translation probability. We then merge
it with the baseline phrase-table by taking their union. More precisely, each entry has 5 scores, 4
coming from the baseline and 1 from our extension. In addition, if a source-target pair is missing
in one of the tables we set the related values to 10−6. We only extend the De→En phrase-table
but as discussed below it also affects the En→De direction as well due to back-translation. We
create a secondary phrase-table with the decomposition module instead of generating just one
with the extended atomic embeddings because this way the tuning procedure in step 4 is able
to tune parameters for the two phrase-tables more precisely. Other steps in the original pipeline
are unchanged. We refer to this system as extended.

5 Results

5.1 Bilingual Phrase Lexicon Induction
To evaluate BPLI we report top-5 accuracy (acc5) on lowercased words, as is done in most
work on BLI (Mikolov et al., 2013b). Some of the source words in the test lexicon are OOVs,
i.e., their embeddings are unknown. We filtered them since no system is able to predict their
translations. We show results in Table 1 comparing the baseline atomic embeddings and its
extension with the decomposition module (ensemble). As mentioned earlier we use various
target corpora sizes.
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atomic ensemble λB

250K 12.12 15.06 0.50
500K 34.34 37.35 0.46

1M 43.98 46.99 0.58
all 65.06 65.06 0.70

Table 1: Acc5 results on the BPLI task in percentage points of the baseline (atomic) and our
proposed approach (ensemble). The weight of BWE based similarities are given by λB (λD =
1.0− λB).

atomic decomposition
all ≤ 100 ≤ 10 all ≤ 100 ≤ 10

250K 12.12 2.04 0.00 13.86 8.11 1.15
500K 34.34 27.54 1.52 19.88 15.22 4.55

1M 43.98 31.62 2.13 21.69 14.53 4.26
all 65.06 0.00 0.00 25.90 0.00 0.00

Table 2: Comparison of the two modules on various target language data sizes (1st column) and
limited test lexicons containing all source words or only those which have a gold translation
with frequencies ≤ 100 and ≤ 10 respectively (2nd row).

all ≤ 100 ≤ 10
250K 325 306 235
500K 325 295 200

1M 325 269 162
all 325 69 33

Table 3: Number of test lexicon entries along varying target language corpora sizes (1st column)
and bigram frequencies (1nd row).

When only a small amount of target language data is available the quality of atomic embed-
dings decreases due to a larger number of rare words. By combining the decomposition module
with the atomic embeddings the performance increased, especially in case of the low data size
setups. As the target language corpus grows there are less rare words that have to be translated
1-to-2, thus the difference between the two systems decreases but even at 1M sentences the
difference is significant. No improvements were achieved for all in terms of acc5 since the
data size is large (90.2M ). On the other hand, by looking at acc1 our system performed 0.6%
better. We found ensembling weights to be best when the two models contribute about equally
as shown in Table 1.

Atomic vs. Decomposition In Table 2 we compare the two modules of our approach to
depict their performance differences. Other than the limited target corpus sizes we create setups
where the test BPLI lexicon contains only those compounds which have a gold translation with
frequency at most 100 and 10 respectively. Note that the number of entries in these lexicons is
changing with the target corpus size which we show in table 3. This is because as the training
data size increases the identity of the limited frequency translations changes.

The results show that the decomposition module by itself performs better than atomic em-
beddings if there is not much data. It works even better in contrast with the atomic system when
looking at low frequency bigrams only which clearly shows the advantage of our approach in
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250K 500K 1M all
s2t 3.61 13.25 15.66 26.51

s2t+t2t 4.82 18.67 15.66 24.70
all 4 13.86 19.88 21.69 25.90

s2t-avg+t2t-avg 9.64 9.04 13.25 14.46

Table 4: Ablation study on the effect of the 4 generated training lexicons on the decomposition
module. The 1st column shows the used lexicons. Results are on the full test lexicon with
various target language corpora sizes.

250K 500K 1M all
s2t 237 949 2,210 14,656
t2t 267 10,000 10,000 10,000

s2t-avg 11,963 23,249 40,818 36,988
t2t-avg 1,000 1,000 1,000 1,000

Table 5: Generated training lexicon sizes in various target language corpora sizes.

low-resource cases. For both 500K and 1M atomic performs better on the full test lexicon
which shows the good quality of atomic embeddings when the data size is large. On the other
hand, on frequency ≤ 10 our approach performs better even for 1M showing that it can gener-
alize to low-frequency test cases better which explains the good performance of the joint model
in Table 1. Furthermore, both systems achieve 0% accuracy on the limited frequency test sets
taken from the all scenario because these test sets have only a few but very low frequency words
which have low quality embeddings, thus making their translation difficult.

Ablation study We performed an ablation study to analyze the contribution of the generated
training lexicons on the decomposition module. We show results using only atomic embeddings
on the source side (s2t and s2t+t2t) and no atomic embeddings (s2t-avg+t2t-avg) in Table 4. The
former aims at analyzing the effect of having a small number of good quality pairs (training
lexicon sizes are shown in Table 5) while the latter gives an intuition of achievable performance
when atomic embeddings are unavailable. Results show that the s2t set is the most important,
since as its size grows the additional improvements coming from the other sets are decreasing.
Note, that in case of using all target language data the best results were achieved when using
only s2t. On the other hand, in the lower resource setups the other sets are essential in achieving
good performance, especially in case of 250K when both s2t and t2t are small due to a small
number of frequent bigrams.

5.2 Unsupervised Machine Translation

We compare the performance of using standard BWEs (unigram), with the atomic approach and
our extension of the atomic approach (extended) in terms of BLEU in Table 6. We show results
of step 4 (parameter tuning) and step 5 (iterative refinement). Our results show that relying
on unigram BWEs (as was done for NMT in previous work) performs poorly. Comparing the
unigram with the atomic and extended variants it can be seen that using bigram embeddings
to perform initial word translation leads to significant improvements in both step 4 and step
5, which is caused by the translation possibility of source words to multiple target words. In
addition, we achieved further improvements with the extension of the atomic system with the
decomposition module by having better translation entries in the phrase table for rare words.
Just as in the BPLI experiments, the combination of atomic and decomposed bigrams has posi-
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wmt14 wmt16 wmt19
De-En En-De De-En En-De De-En En-De

250K
step4

unigram 3.50 3.30 5.00 4.70 3.50 3.60
atomic 5.50 4.80 6.70 6.60 4.80 5.80

extended 5.60 4.90 6.80 6.60 4.90 5.90

step5
unigram 8.70 7.00 11.60 9.70 10.00 9.20

atomic 9.90 8.20 13.00 10.90 10.60 10.70
extended 10.10 8.30 13.40 11.30 11.10 10.80

500K
step4

unigram 5.60 3.80 7.80 5.40 5.80 4.70
atomic 7.10 5.80 8.50 7.40 6.30 6.30

extended 7.40 5.90 9.00 7.60 6.80 6.40

step5
unigram 9.90 8.40 13.50 11.90 11.30 11.20

atomic 11.80 9.60 15.30 13.10 11.90 12.20
extended 12.00 9.50 15.40 13.10 12.60 11.70

1M
step4

unigram 7.90 5.30 10.20 7.30 7.60 6.60
atomic 10.20 7.80 12.70 10.00 9.80 8.60

extended 10.20 8.00 12.80 10.30 9.90 8.80

step5
unigram 11.00 9.20 14.40 12.60 11.90 12.00

atomic 12.70 10.70 16.50 14.10 12.90 12.80
extended 12.80 10.30 16.50 14.10 13.00 12.60

all
step4

unigram 9.20 5.50 11.70 7.40 8.40 6.40
atomic 14.93 10.71 18.34 13.46 13.01 11.90

extended 15.00 11.00 18.60 13.70 13.20 12.40

step5
unigram 12.70 10.60 17.40 14.40 12.20 13.50

atomic 17.04 13.39 22.28 17.43 15.70 14.80
extended 17.40 13.70 22.40 17.70 16.60 15.30

Table 6: BLEU scores comparing the two baseline (with and without n-gram embeddings) and
the extended UMT systems. The first column shows the number of sentences in the target
language monolingual data used to build BWEs. Step 4 and 5 are the parameter tuning and
iterative refinement steps in the UMT training pipeline.

tive effects not only in the low-resource but higher resource cases as well and also when using
the full target language dataset. This shows that our system generates useful bigrams, other than
those in the BWE vocabulary, which are getting picked by the language model. Improvements
can be seen in case of both steps 4 and 5 meaning that the parameter tuning can decide how
to trade off the weighting of the atomic embeddings based phrase-table and the decomposition
based phrase-tables and there are positive effects during the refinement steps as well. In ad-
dition, improvements can be seen in case of the En-De translation direction even though we
only extend the De-En phrase table. Since the initial De-En model in step 4 is improved by
the extension, it affects the opposite direction as well due to the use of the initial De-En model
during back-translation.

6 Conclusion

Unigram BWEs do not model important 1-to-2 word translations. We show the gain for using
atomic embeddings for bigrams in order to perform 1-to-2 word translation but this approach
can only be applied when there is a large amount of monolingual data available. Our new de-
composition based approach for modeling 1-to-2 translation of rare words directly translates
source unigram embeddings to target language bigrams allowing us to predict both rare and
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OOV bigrams. We proposed a system combining the advantages of atomic embeddings and
decomposition which we tested intrinsically on 1-to-2 BLI of German compounds for which
we created a new test set. We release our BPLI dataset for further development. We showed
improved performance compared to just using atomic embeddings even in less resource-poor
setups. Furthermore, our analysis showed that on rare words the decomposition based transla-
tion alone outperforms atomic embeddings, further motivating their joint use. We also showed
that bigrams are important for statistical UMT systems and that by plugging our system into
an UMT pipeline we achieved better performance compared to an off-the-shelf system on this
extrinsic task as well.

In this paper we presented first steps towards handling compositionality in BLI and UMT.
To be able to extend UMT systems by our approach in general, not only for compound trans-
lations as we have done in our preliminary UMT experiment here, the length of the output
translations has to be decided dynamically. The proposed architecture is compatible with such
a setup with the introduction of a padding token and training lexicon containing unigrams as
well but further experimentation is required. The translation of non-compound words, such as
when target language functional words are expressed with pre-, in- or suffixes in the source
(e.g. kedd+ en→ on Tuesday in Hungarian or ver+me+mek → not to give in Turkish),
should be investigated in future work as well.

Acknowledgments

We would like to thank Leonie Weißweiler for her contribution to the construction of the BPLI
lexicon and the anonymous reviewers for their valuable input. This project has received funding
from the European Research Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement№ 640550).

References

Alvarez-Melis, D. and Jaakkola, T. (2018). Gromov-Wasserstein Alignment of Word Embedding Spaces.
In Proc. EMNLP, pages 1881–1890.

Artetxe, M., Labaka, G., and Agirre, E. (2018a). A robust self-learning method for fully unsupervised
cross-lingual mappings of word embeddings. In Proc. ACL, pages 789–798.

Artetxe, M., Labaka, G., and Agirre, E. (2018b). Unsupervised Statistical Machine Translation. In Proc.
EMNLP, pages 3632–3642.

Artetxe, M., Labaka, G., Agirre, E., and Cho, K. (2018c). Unsupervised Neural Machine Translation. In
Proc. ICLR.
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Abstract
OpenNMT is a multi-year open-source ecosystem for neural machine translation (NMT) and
natural language generation (NLG). The toolkit consists of multiple projects to cover the com-
plete machine learning workflow: from data preparation to inference acceleration. The systems
prioritize efficiency, modularity, and extensibility with the goal of supporting research into
model architectures, feature representations, and source modalities, while maintaining API sta-
bility and competitive performance for production usages. OpenNMT has been used in several
production MT systems and cited in more than 700 research papers.

1 Introduction

Neural machine translation (NMT) is a recent approach for machine translation that has led
to remarkable improvements, particularly in terms of human evaluation, compared to rule-
based and statistical machine translation (SMT) systems (Wu et al., 2016). From the initial
work on recurrent sequence-to-sequence models (Sutskever et al., 2014) to recent advances on
self-attentional models (Vaswani et al., 2017), a significant amount of contributions explored
various model architectures, hyper-parameter settings, and data preparation techniques. This
exploration is often constrained by engineering issues related to computation efficiency, code
design, and model deployment.

In this context, we introduced OpenNMT 1 in late 2016, the first large audience open-
source toolkit to design, train, and deploy neural machine translation models. The OpenNMT
initiative consists of several projects to assist researchers and developers in their NMT journey,
from data preparation to inference acceleration. It supports a wide range of model architectures
and training procedures for neural machine translation as well as related tasks such as natural
language generation and language modeling.

The open source community around neural machine translation is very active and includes
several other projects that have similar goals and capabilities such as Fairseq (Ott et al., 2019),
Sockeye (Hieber et al., 2017), or Marian (Junczys-Dowmunt et al., 2018). In the ongoing de-
velopment of OpenNMT, we aim to build upon the strengths of those systems, while providing
unique features and technology support.

In this paper, we briefly give an overview of the OpenNMT project and its history. We then
present the key features that make OpenNMT particularly suited for research and production.
Finally, we share some benchmarks for comparison and current work directions.

1https://opennmt.net
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2 Project overview

OpenNMT is a collection of projects supporting easy adoption of neural machine translation
and related tasks. The project has two actively maintained implementations:

• OpenNMT-py: A user-friendly and multimodal implementation benefiting from PyTorch
ease of use and versatility.

• OpenNMT-tf: A modular and stable implementation powered by the TensorFlow 2
ecosystem.

These implementations provide command line utilities and a Python library to configure,
train, and run models. Each implementation has its own design and set of features, but both
share the goals that started the OpenNMT initiative: ease of use, efficiency, modularity, exten-
sibility, and production readiness. The supported features are compared in Table 1.

Training py tf
Automatic evaluation X X

Checkpoint averaging X X

Contrastive learning X

Early stopping X X

Gradient accumulation X X

Supervised alignment X X

Mixed precision X X

Moving average X X

Multi-GPU X X

Multi-node X X

Online tokenization X

Pretrained embeddings X X

Scheduled sampling X

Vocabulary update X

Weighted dataset X X

Tasks py tf
Image/Video to text X

Language modeling X

Sequence classification X

Sequence tagging X

Sequence to sequence X X

Speech to text X X

Summarization X

Models py tf
ConvS2S X

DeepSpeech2 X

GPT-2 X

Im2Text X

Listen, Attend and Spell X

RNMT+ X

RNN with attention X X

Transformer X X

Decoding py tf
Beam search X X

Coverage penalty X X

CTranslate2 compatibility X X

Ensemble X

Length penalty X X

N-best rescoring X X

N-gram blocking X

Phrase table X

Random noise X X

Random sampling X X

Replace unknown X X

Model configuration py tf
Copy attention X

Coverage attention X

Hybrid models X

Multi source X

Multiple input features X X

Relative position X X

Tied embeddings X X

Table 1: Features implemented by OpenNMT-py (column py) and OpenNMT-tf (column tf).

The ecosystem is completed by tools that are used in both OpenNMT-py and OpenNMT-tf:

• Tokenizer: A fast and customizable text tokenization library that includes Unicode-based
segmentation, subword training and encoding (BPE and SentencePiece), protected se-
quences, and case annotation.

• CTranslate2: An optimized inference engine for Transformer models which comes with
a custom C++ implementation supporting fast CPU and GPU execution, quantization, par-
allel translations, and interactive decoding.

Finally, these different projects are integrated in nmt-wizard-docker which proposes a
way to containerize NMT frameworks and provide a unique command line interface for training,
translating, and serving models.

All projects are released on GitHub2 under the MIT license.

2https://github.com/OpenNMT
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2.1 History

OpenNMT was first released in late 2016 as a Torch7 implementation. This version was the
result of a collaboration between Harvard NLP and SYSTRAN and was based on seq2seq-attn,
an open-source project developed by Harvard student Yoon Kim. The original demonstration
paper (Klein et al., 2017) was awarded “Best Demonstration Paper Runner-Up” at ACL 2017.

After the release of PyTorch (Paszke et al., 2019), the Facebook A.I. Research team shared
a complete rewrite of the project that later became OpenNMT-py and initiated the sunsetting of
the Torch7 version of OpenNMT. The ecosystem was then extended with OpenNMT-tf which
prioritized production, while OpenNMT-py had a focus on research at this time.

After more than 3 years of active development, OpenNMT projects have been starred by
over 7,400 users. A community forum3 is also home of 970 users and more than 9,800 posts
about NMT research and how to use OpenNMT effectively.

2.2 Adoption

Cited in over 700 scientific publications as of May 2020, OpenNMT has also been directly
used in numerous research papers. The system is employed both to conduct new experiments
and as a baseline for sequence-to-sequence approaches. OpenNMT was used for other tasks
related to neural machine translation such as summarization (Gehrmann et al., 2018), data-to-
text (Wiseman et al., 2017), image-to-text (Deng et al., 2017), automatic speech recognition
(Ericson, 2019) and semantic parsing (van Noord and Bos, 2017).

OpenNMT also proved to be widespread in industry. Companies such as SYSTRAN
(Crego et al., 2016), Booking.com (Levin et al., 2017), or Ubiqus4 are known to deploy Open-
NMT models in production. We note that a number of industrial entities published scientific pa-
pers showing their internal experiments using the framework such as SwissPost (Girletti et al.,
2019) and BNP Paribas (Mghabbar and Ratnamogan, 2020), while NVIDIA used OpenNMT as
a benchmark for the release of TensorRT 65.

3 Key features

3.1 Model architectures catalog

While OpenNMT initially focused on sequence-to-sequence models applied to translation, it
has been extended to support additional architectures and model components (see Table 1).

Multiple architectures. The toolkits implement the most used architectures for neural ma-
chine translation: recurrent with attention (Bahdanau et al., 2015; Luong et al., 2015), self-
attentional (Vaswani et al., 2017), and convolutional (Gehring et al., 2017). The project also
includes components for other tasks such as encoders for non-text inputs, decoders for genera-
tive languages models, and copy attention mechanisms (See et al., 2017) for summarization.

Modular design. We focus on modularity to allow ideas from one paper to be reused in
another context. OpenNMT-tf pushes this mindset to the extreme by requiring users to configure
their model via Python code. This enables a high level of modelling freedom to support custom
architectures such as hybrid sequence-to-sequence models (Chen et al., 2018), multi-source
Transformer models (Libovický et al., 2018), and nested input features.

3https://forum.opennmt.net/
4https://slator.com/features/how-ubiqus-deploys-neural-machine-translation-

in-language-operations/
5https://news.developer.nvidia.com/tensorrt6-breaks-bert-record

Proceedings of the 14th Conference of the Association for Machine Translation in the Americas 
October 6 - 9, 2020, Volume 1: MT Research Track

Page  104



Model size CPU GTX1080 GTX1080Ti RTX2080Ti BLEU
OpenNMT-tf 367MB 217.6 1659.2 1762.8 1628.3 26.9
OpenNMT-py 542MB 179.1 1510.0 1709.3 1406.2 26.7
CTranslate2 374MB 389.4 3081.3 3388.0 4196.2 26.7
+ int16 197MB 413.6 3055.7 3380.4 4202.9 26.7
+ int8 110MB 508.3 2654.8 2734.6 3143.4 26.8
+ vmap 121MB 646.2 2921.5 2992.1 3312.9 26.6

Table 2: This table compares model size and translation speed (target tokens per second) for a base
English-German Transformer. The BLEU scores are computed on an undisclosed test set and are reported
to show that quality is comparable. All runs use a batch size of 32 and a beam size of 4. The CTranslate2
models are generated from the OpenNMT-py model weights. There is a noticeable drop in performance
on RTX for both -tf and -py for an unknown reason at the time of this publication.

3.2 Scalable training
As GPU performance has been drastically improving in the last few years, it has been important
for software to take it into account not to introduce unnecessary bottlenecks. Both OpenNMT-
py and OpenNMT-tf have been constantly optimized to keep up with the available computing
power and its intricacies, as well as most mainstream training methods.

Optimized and parallel training. Training efficiency was an early focus of OpenNMT. It
can run the training on multiple GPUs and machines using data parallelism. OpenNMT imple-
mentations are also compatible with mixed precision training to make use of NVIDIA’s Tensor
Cores, and when possible, they employ graph execution.

Optimizations for low-resource hardware. We also strive to make NMT training possible
on low memory systems. OpenNMT supports gradient accumulation which is a way to simulate
larger batch sizes that do not fit on the available GPU memory. OpenNMT-py is also able to
shard the loss computation to reduce memory usage.

Efficient data pipeline. Both OpenNMT implementations make use of a producer-consumer
design to feed examples to the training. This effectively reduces the data pipeline latency as
well as the overall memory usage.

3.3 Optimized and interactive inference engine
CTranslate2 is a unique project that accelerates the execution of Transformer variants trained
with OpenNMT-py and OpenNMT-tf. It is a custom C++ implementation with no runtime
dependency on PyTorch or TensorFlow. The engine can run on CPU and GPU and is up to 4
times faster than a baseline PyTorch execution as shown in Table 2.

Specialized engine. As the engine focuses on executing specific model architectures, it im-
plements graph-level optimizations such as layer fusion, memory reusing, and caching.

Fast backend. On CPU, most of the heavy lifting is done by Intel MKL which is a reference
library when it comes to high performance matrix operations. On GPU, the implementation
uses several libraries provided by NVIDIA: Thrust, cuBLAS, and TensorRT.

Model quantization. Quantization support in deep learning frameworks is often incomplete,
especially for sequence models. However, CTranslate2 fully supports 16-bit and 8-bit GEneral
Matrix Multiplication (GEMM) to reduce the memory and computation requirements.

Multi-level parallelism. The parallelism can be configured at the batch and file levels. The
first level refers to the number of OpenMP threads used to execute a batch while the second
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corresponds to the number of batches that are executed in parallel. This multi-level approach
allows to trade-off latency and throughput.

Decoding optimizations. Multiple decoding tricks can be combined to accelerate speed, for
instance restricting target vocabulary using a pretrained mapping, removing finished translations
from the batch, sorting sentences by length, or skipping last Softmax in greedy decoding.

Interactive decoding. CTranslate2 also supports interactive decoding features such as auto-
completing partial translations and returning alternatives at a specific position in the translation.

3.4 Efficient and customizable tokenization
Tokenizer is a standalone project that provides practical C++ and Python APIs for text tokeniza-
tion. It focuses on efficiency and includes features that we found useful for training high-quality
translation models.

Configurable reversibility. The tokenization can be made reversible by marking either joints
or spaces. These markers can be attached to the input tokens or injected as separate tokens.

Advanced text segmentation. Several flags can finely control where to segment: on digits,
on alphabet change, on case change, etc. Additionally, we introduced special control characters
to prevent segmentation in delimited sequences.

Subword training and encoding. The project can train and apply SentencePiece (Kudo and
Richardson, 2018) and BPE (Sennrich et al., 2016) models, while making them compatible with
all features listed above.

3.5 Model serving
OpenNMT also provides components to serve translation models. OpenNMT-py includes a
REST server that can manage multiple models and unload those that are not used. The server
integrates CTranslate2 for efficient execution and Tokenizer for on-the-fly tokenization.

OpenNMT-tf models are compatible with TensorFlow Serving which is a scalable solu-
tion to serve machine learning models. OpenNMT-tf models are also compatible with the
OpenNMT-py REST server via the CTranslate2 integration.

4 Benchmarks

OpenNMT, as a comprehensive project geared towards Neural Machine Translation, can be
used in a fairly straightforward way to build SOTA systems and experiment on various tasks.
Anyone can throw together a competitive system using the right data, processing and training
procedures. For instance, the results for English to German translation in Table 3 are obtained
with the following configuration:

• Data: English to German WMT19 task, with the addition of ParaCrawl v5 instead of v3.
• Tokenization: 40,000 BPE merge operations, learned and applied with Tokenizer.
• Model: Transformer Medium (12 heads, 768 dmodel size, 3072 dff size).
• Training: Trained with OpenNMT-py on 6 RTX 2080 Ti, using mixed precision. Initial

batch size is around 50,000 tokens, final batch size around 200,000 tokens.
• Inference: Shown scores are obtained with beam search of size 5 and average length

penalty.

This vanilla system is constrained to the WMT rules to facilitate reproducibility. The
commercial systems it is compared to are not constrained and we don’t know the extent of the
additional data that may be used. It is also very likely they use some bigger models, when we
restrained this experiment to a Transformer Medium to keep the computation budget reasonable.
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System nt14 nt15 nt16 nt17 nt18 nt19 Wall time GPU time
@30k steps 30.9 33.1 38.1 31.3 47.2 40.6 8h 48h
@100k steps 32.9 34.5 39.3 32.8 47.7 41.1 54h 324h
Online G 30.9 33.9 38.6 31.6 48.0 43.9 -
Online M 32.3 34.3 40.5 33.1 48.8 43.8 -

Table 3: OpenNMT system vs. some commercial systems. (BLEU scores obtained with Sacre-
BLEU v1.3.7, online translations performed in April 2020.)

During the WMT19 campaign (Barrault et al., 2019), the best BLEU score for English
to German was 44.9 but the best human evaluated system scored only 42.7 with an ensemble
of Big Tranformers. It is also important to stress that we found many WMT19 references in
the test sets (whether for English to German or some other pairs) were obviously being post
edits of commercial systems. A very simple way to outline this phenomenon was to score each
document with these commercial systems and show the huge difference in BLEU points for
some of them. On the other hand, these systems were not over-performing in the same way for
previous years test sets. This has been reported by several papers in the WMT19 campaign.

Extending this to a more complete setup, with internal datasets as well as a bigger archi-
tecture, OpenNMT tools allow to reach a superior performance. Some results for an internal
English to French setup are presented in Table 4.

System nt14 finance legal general life sciences
OpenNMT 43.2 46.6 37.2 39.6 55.9
Online G 43.3 43.6 33.9 37.9 50.8
Online M 37.6 36.2 28.2 36.7 46.4

Table 4: OpenNMT English to French model performance on test sets of various domains.
(BLEU scores obtained with SacreBLEU v1.3.7, online translations performed in April 2020.)

5 Current work

As OpenNMT aims to provide a state-of-the-art ecosystem for neural machine translation, we
are continuously reproducing published papers with the goal of cherry-picking features with
significant impact and implementing technologies that are part of the complete translation work-
flow. For example, we are currently working on combining translation memories with NMT.

We are also interested in further accelerating model inference via the CTranslate2 project.
Future works include a better support of reduced precision on GPU and integration of optimized
backends for non-Intel CPUs.

Finally, we are planning on massively releasing ready-to-use state-of-the-art models for a
collection of language pairs to simplify the adoption of NMT.

6 Summary

We presented OpenNMT, an open-source ecosystem for neural machine translation and natural
language generation. The toolkit contains multiple projects and features to cover the complete
model production workflow. The main implementations, OpenNMT-py and OpenNMT-tf, sup-
port many configurable models and efficient training procedures to produce high-quality mod-
els. We also published CTranslate2, an optimized inference engine which to our knowledge
is one of the fastest decoder of Transformer models. All projects are available on GitHub at
https://github.com/OpenNMT.
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Abstract
We present Sockeye 2, a modernized and streamlined version of the Sockeye neural machine
translation (NMT) toolkit. New features include a simplified code base through the use of
MXNet’s Gluon API, a focus on state of the art model architectures, distributed mixed precision
training, and efficient CPU decoding with 8-bit quantization. These improvements result in
faster training and inference, higher automatic metric scores, and a shorter path from research
to production.

1 Introduction

Sockeye (Hieber et al., 2017) is a versatile toolkit for research in the fast-moving field of NMT.
Since the initial release, it has been used in at least 25 scientific publications, including winning
submissions to WMT evaluations (Schamper et al., 2018). Sockeye also powers Amazon Trans-
late, showing industrial-strength performance in addition to the flexibility needed in academic
environments. Moreover, we are excited to see that hardware manufacturers are contributing
to optimizing MXNet (Chen et al., 2015) and Sockeye for speed. Intel has demonstrated large
performance gains for Sockeye inference on Intel Skylake processors.1 NVIDIA is working
on significant performance improvements for Sockeye’s Transformer (Vaswani et al., 2017)
implementation through fused operators and an optimized beam search. This paper discusses
Sockeye 2’s streamlined Gluon implementation (§2), support for state of the art architectures
and efficient decoding (§3), and improved model training (§4).

2 Gluon Implementation

Sockeye 2 is implemented using Gluon,2 MXNet’s latest and preferred API that combines the
strengths of imperative and graph-based programming. Gluon provides a simple Python inter-
face and uses eager execution by default, allowing developers to quickly prototype deep learning
models and debug issues step by step. At runtime, Gluon can automatically “hybridize” models

∗Work was done in an external advisory capacity.
1https://www.intel.ai/amazing-inference-performance-with-intel-xeon-

scalable-processors/#gs.wrgsji
2https://mxnet.apache.org/versions/1.6/api/python/docs/api/gluon/index.html
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DE–EN EN–DE FI–EN EN–FI
Layers BLEU Latency BLEU Latency BLEU Latency BLEU Latency
6:6 35.5 602 37.9 791 22.2 575 20.5 808
10:10 35.4 970 37.8 1238 22.3 863 20.8 1258
20:2 34.8 293 37.6 357 23.2 257 20.9 368

Table 1: SacreBLEU scores (Post, 2018) and single-sentence latency in milliseconds on new-
stest2019 for models trained on WMT19 constrained data with varying numbers of encoder and
decoder layers. Latency values are the 90th percentile of translation time when translating each
sentence individually (no batching). We measure single sentence decoding latency on an EC2
c5.2xlarge instance with 4 CPU cores. We report the average over three independent training
runs.

by converting them into computation graphs for maximum performance. Adopting this pro-
gramming model significantly simplifies Sockeye 2’s training and inference code, reducing the
overall Python line count by 25%. Sockeye 2’s hybridized transformer also improves training
speed by 14% compared to Sockeye.

3 Focus on State of the Art Models

Due to the success of self-attentional models, we concentrate development of Sockeye 2 on the
Transformer architecture (Vaswani et al., 2017). Our starting point is the “base” transformer
with 6 encoder and decoder layers, model dimensionality of 512, and feed-forward layer size
of 2048. An exploration of different encoder and decoder depths shows that deep encoders
with shallow decoders are competitive in BLEU and significantly faster for decoding. Table 1
shows results with different numbers of encoder and decoder layers, denoted by x:y where x
is the number of encoder layers and y the number of decoder layers. For WMT19 FI-EN and
EN-FI benchmarks (Barrault et al., 2019), the 20:2 model outperforms both the 6:6 model and
the 10:10 model in terms of BLEU. The 20:2 model also has roughly half the decoding latency
of the 6:6 model and roughly one third the latency of the 10:10 model. The relative efficiency
of encoder versus decoder layers can be attributed to (1) the ability to parallelize across input
tokens, (2) attention to only input tokens, and (3) not needing to run beam search on the source
side.

3.1 Source Factors

Sockeye supports source factors in the spirit of Sennrich and Haddow (2016), additional rep-
resentations that are combined with word embeddings prior to the first encoder layer. In Sock-
eye 2, we improve source factor support by allowing different types of embedding combinations
(concatenation, summation, or average), as well as weight sharing between source factor and
word embeddings.

As an example application, we use source factors to represent input case. Variations in
case pose a challenge for machine translation systems as different orthographic variations are
considered to be independent by the translation model (e.g., “case” is different from “Case”
and both are different from “CASE”). We address these variations by lowercasing the input
and encoding the original case information as a source factor (“lowercase”, “capitalized”, “all
uppercase” or “mixed”). We refer to this method as “SF-case”. An alternative is to lowercase
and include the original cased word itself as a source factor, which we refer to as “SF-word”.
As the original and lowercased versions of many words will be the same, it is useful to share
the embeddings, a variant we refer to as “SF-word-share”.
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DE – EN EN – FI
Ori lower Cap UPP Ori lower Cap UPP

Baseline (cased) 36.7 33.0 22.9 9.1 20.7 16.4 3.4 1.1
SF-case (concat) 36.8 34.7 24.2 26.6 20.7 18.2 9.3 7.0
SF-case (sum) 36.8 34.8 23.0 28.4 21.4 18.3 7.7 7.2
SF-word 36.5 33.6 23.1 9.2 20.9 17.0 4.4 1.4
SF-word-share 36.8 33.8 21.9 9.3 21.4 17.2 4.0 1.3

Table 2: Robustness results for several variants of representing case with source factors.
Models are evaluated on transformed versions of newstest2019: Original case, lowercased,
Capitalization of the first character of each word, and UPPERCASED. Scores are case-
insensitive SacreBLEU (Post, 2018).

To evaluate the robustness of these strategies, we modify test sets by either entirely low-
ercasing, entirely uppercasing, or capitalizing the first character of each word. We compare a
baseline model that was trained on cased input (no source factors) against all “SF-*” methods.
The factored models also use BPE type factors as introduced by Sennrich and Haddow (2016).
Models use the 20:2 transformer architecture and training settings described in §3. Shown in
Table 2, encoding case information with source factors is an effective way to improve robustness
against case variation with the two versions of “SF-case” performing best.

3.2 Quantization for Inference
Sockeye 2 now supports 8-bit quantized matrix multiplication (Quinn and Ballesteros, 2018)
on CPUs based on the intgemm library.3 By scaling values such that 127 corresponds to
the maximum absolute value found in a tensor, matrix multiplication can be conducted with
8-bit integer representations in place of the default 32-bit floating-point representations without
significant degradation of overall model accuracy. Parameters can either be quantized offline
and stored in a smaller model file or quantized on the fly at loading time. Activations are
quantized on the fly while other operators that consume far less runtime remain as 32-bit floats.

Latency-sensitive applications typically run with batch size 1 and small beam sizes, leaving
little opportunity for batch parallelism. Instead, matrix multiplication parallelizes over outputs
of a layer. To reduce latency, matrix multiplication and quantization are both parallelized with
OpenMP.4 Layer outputs can be computed independently and the layer size is typically much
larger than the batch size. Parallelizing over layer inputs would require summing across threads.

Shown in Table 3, quantization significantly reduces non-batched decoding times with
minimal effect on BLEU scores. Improvement is most pronounced when running on a single
CPU core while models using up to 4 cores still see a significant benefit.5

4 Training Improvements

Sockeye 2 significantly accelerates training with Horovod6 integration (Sergeev and Balso,
2018) and MXNet’s automatic mixed precision (AMP). Horovod extends synchronous train-
ing to any number of GPUs (including across nodes) while AMP automatically detects and
converts parts of the model that can run in FP16 mode without loss of quality. These methods

3https://github.com/kpu/intgemm
4https://www.openmprtl.org
5For 1 and 2 cores, we set the number of OpenMP threads to 1 and 2 respectively. For 4 cores, we set the number

of OpenMP threads to 3 for best interaction with MXNet’s own parallelization over operators.
6https://github.com/horovod/horovod
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6:6 Layers 20:2 Layers
CPUs Time (s) Tok/Sec BLEU Time (s) Tok/Sec BLEU

Baseline (fp32) 1 1260.8 33.3 22.1 585.0 71.8 23.0
2 841.6 49.9 22.1 404.7 103.8 23.0
4 575.8 73.0 22.1 283.2 148.3 23.0

Quantized (int8) 1 511.6 82.1 22.0 285.7 147.0 22.8
2 435.9 96.4 22.0 242.3 173.4 22.8
4 334.3 125.7 22.0 173.0 242.9 22.8

Table 3: CPU decoding times and SacreBLEU (Post, 2018) scores for FI-EN newstest2019
with and without 8-bit quantization for both standard (6:6 layer) and deep encoder (20:2 layer)
transformer models as described in §3. Models use a vocabulary selection shortlist of 200 items
(Devlin, 2017) and translate one sentence at a time (batch size of 1). Benchmarks are run on an
EC2 c5.12xlarge instance (Cascade Lake processor) and limited to using 1, 2, or 4 CPU cores.

DE–EN EN–FI
BLEU Time BLEU Time

Ott et al. (2018) 34.7 30h 20.1 14h
Plateau-Reduce 34.9 28h 20.7 12h

Table 4: SacreBLEU (Post, 2018) scores (newstest2019) and training times (8 NVIDIA V100
GPUs) for a 20 encoder 2 decoder layer transformer using the training setup described by Ott
et al. (2018) and plateau-reduce, both implemented in Sockeye 2.

also require additional computation per update (synchronizing data across distributed GPUs
and checking reduced precision operations for overflow). This overhead can be amortized by
significantly increasing the effective batch size; gradients are aggregated per-GPU for several
batches, then combined and checked for overflow for a single parameter update. In practice,
scaling the effective batch size by N , the learning rate by

√
N (Krizhevsky, 2014), and leaving

other hyper parameters unchanged works well for batches of up to 260K tokens.
Sockeye also provides a data-driven alternative to the popular “inverse square root” learn-

ing schedule used by Vaswani et al. (2017) and Ott et al. (2018). Termed “plateau-reduce”, this
scheduler keeps the same learning rate until validation perplexity does not increase for several
checkpoints, at which time it reduces the learning rate and rewinds all model and optimizer
parameters to the best previous point. Training concludes when validation perplexity reaches
an extended plateau. In a WMT19 benchmark (Barrault et al., 2019), plateau-reduce training
produces stronger models in slightly less time than the setup described by Ott et al. (2018). The
results are presented in Table 4 where all values are averages over 3 independent training runs
with different random initializations and all models train until validation perplexity reaches a
plateau.

The relevant hyper parameters for Sockeye 2’s large batch training are an effective batch
size of 262,144 tokens, a learning rate of 0.00113 with 2000 warmup steps and a reduce rate of
0.9, a checkpoint interval of 125 steps, and learning rate reduction after 8 checkpoints without
improvement. After an extended plateau of 60 checkpoints, the 8 checkpoints with the lowest
validation perplexity are averaged to produce the final model parameters. While Horovod en-
ables scaling to any number of GPUs, we find that training on 8 GPUs on a single node still
delivers the best value when considering both speed and cost.
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5 Licensing and availability

Sockeye 2 is available7 under the Apache 2.0 license. It includes Docker builds to easily run
training or inference with all of the latest features on any supported platform.

6 Conclusion

Sockeye 2 provides out-of-the-box support for quickly training strong Transformer models for
research or production. Extensive configuration options and the simplified Gluon code base
enable rapid development and experimentation. As an open source project, we invite the com-
munity to contribute their ideas to Sockeye 2 and hope that the new programming model and
various performance improvements enable others to conduct effective and successful research.
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Abstract
THUMT is an open-source toolkit for neural machine translation (NMT) developed by the
Natural Language Processing Group at Tsinghua University. The toolkit is easy to use, mod-
ify and extend while provides the latest advances in NMT research and production. THUMT
implements several standard NMT models and supports distributed training across multiple ma-
chines, fast inference, and model visualization. Experiments on English-German and Chinese-
English datasets show that THUMT can obtain results that are comparable to state-of-the-art
NMT systems.

1 Introduction

Machine translation (MT), which investigates the use of computers to translate human lan-
guages automatically, is an important task in natural language processing and artificial intel-
ligence communities. With the availability of bilingual machine-readable texts, data-driven
approaches to machine translation have gained wide popularity since the 1990s (Hutchins and
Lovtskii, 2000). Recent several years have witnessed the rapid development of end-to-end neu-
ral machine translation (NMT) (Sutskever et al., 2014; Bahdanau et al., 2014; Vaswani et al.,
2017). Capable of learning representations from data, NMT has quickly replaced conventional
statistical machine translation (SMT) (Brown et al., 1993; Koehn et al., 2003; Chiang, 2005) to
become the new de facto method in practical MT systems (Wu et al., 2016).

This paper introduces THUMT, an open-source NMT toolkit targeting both academia and
industry. THUMT originally developed with Theano (Theano Development Team, 2016) and
begins its launch in June 2017. With the emerging of new deep learning frameworks, THUMT
added TensorFlow (Abadi et al., 2016) implementation in October 2017 and PyTorch (Paszke
et al., 2019) implementation in August 2019. The current status of the three implementations
are as follows:

• THUMT-Theano (Zhang et al., 2017): the original project developed with Theano, which
is no longer updated because MLA put an end to Theano. It implemented the stan-
dard attention-based model (RNNsearch) (Bahdanau et al., 2014), minimum risk train-
ing (MRT) (Shen et al., 2015) for optimizing model parameters with respect to evaluation
metrics, semi-supervised training (SST) (Cheng et al., 2016) for exploiting monolingual

∗Corresponding author.
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Features Theano TensorFlow PyTorch
Models RNNsearch Seq2Seq, RNNsearch, Transformer Transformer
Criterions MLE, MRT, SST MLE MLE
Optimizers SGD, Adadelta, Adam Adam SGD, Adadelta, Adam
LRP Yes Yes No
Gradient Aggregation No Yes Yes
Distributed Training No Yes Yes
Mixed-Precision No Yes Yes
TensorBoard No Yes Yes

Table 1: Available features in different implementations.

corpora to learn bi-directional translation models, and layer-wise relevance propagation
(LRP) (Ding et al., 2017) for visualizing and analyzing RNNsearch.

• THUMT-TensorFlow: an implementation focuses on performance. It implemented the
sequence-to-sequence model (Seq2Seq) (Sutskever et al., 2014), the standard attention-
based model (RNNsearch) (Bahdanau et al., 2014), the Transformer model (Trans-
former) (Vaswani et al., 2017), and LRP visualization for RNNsearch and Transformer.
It also added new features such as multi-GPU training, distributed training, ensemble in-
ference, and TensorBoard visualization.

• THUMT-PyTorch: a new implementation developed with PyTorch, which is more flexible
and easier to use by the virtue of dynamic eager execution. It implemented the Transformer
model and also supports multi-GPU training, distributed training, ensemble inference, and
TensorBoard visualization.

THUMT is developed by the Tsinghua Natural Language Processing Group. The latest
source code is available at GitHub 1 and is dual licensed. Open-source licensing is under the
BSD-3-Clause, which allows free use for research purposes. THUMT has been used in many
researches as well as several production MT systems.

2 Features

The primary goal of THUMT is to provide a toolkit that is easy to run and modify while fea-
turing the latest deep learning techniques. The design of THUMT is highly modular. It is easy
to add new models, optimizers, and learning rate schedules to THUMT. The toolkit provides
command-line interface to train and infer from an NMT model, and also supports multi-GPU
training, distributed training as well as mixed-precision training to make full use of the modern
hardware features. Table 1 lists available features in different implementations. We will give a
brief introduction to the components and features provided by the toolkit.

2.1 Models
THUMT implemented three mainstream NMT models: Seq2Seq (Sutskever et al., 2014),
RNNsearch (Bahdanau et al., 2014), and Transformer (Vaswani et al., 2017). Seq2Seq uses
a recurrent neural network (RNN) to encode the input sentence into a fixed-size hidden rep-
resentation and uses another RNN to generate translation conditioned on the representation.
RNNsearch exploits variable representation with attention mechanism and achieves significant
improvements over Seq2Seq model. Transformer uses deep self-attention layers instead of RNN
layers in both encoder and decoder. It achieves the best performance among the three models.

1https://github.com/THUNLP-MT/THUMT
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THUMT also implemented relative position embedding (Shaw et al., 2018) in its Trans-
former implementation. Instead of adding absolute positions to its input, this approach consid-
ers relative positions in the self-attention mechanism. We offer two options in our Tensorflow
implementation, one can turn on or off the relative position embedding and set the desired
maximum relative distance. Note that we only implement relative position embedding in self-
attention but not in encoder-decoder attention.

2.2 Training

THUMT supports both single machine multi-GPU training and multi-machine distributed train-
ing. THUMT-TensorFlow uses the Horovod (Sergeev and Del Balso, 2018) toolkit for dis-
tributed training while THUMT-PyTorch adopts torch.distributed module to achieve
the same functionality.

Modern NMT models (e.g. Transformer) usually require using large batch sizes during
training. However, it is normally impractical to fit a large batch into a single GPU device. To
alleviate this problem, we allow THUMT to split the batch into several smaller batches and
collect the gradient on each batch independently. Then we aggregate the gradients and perform
optimization. Gradient aggregation simulates large batch size training with multiple small batch
training, which significantly reduce the memory requirement for training NMT models.

The latest GPU (e.g. Nvidia V100) supports half-precision computation which signifi-
cantly improve the training speed and reduce the memory requirement. However, training with
half-precision is less stable than single-precision because of the reduced precision. To address
this problem, THUMT implemented mixed-precision training which uses half-precision in the
forward pass while switches to single-precision in the backward pass to maintain numerical
stability. Furthermore, THUMT also apply dynamic loss scaling during the forward pass to
increase the numerical precision.

THUMT provides different optimizers, learning rate schedules, and validation functional-
ity for users to control the training process. These options can be easily changed through the
command-line interface. New optimizers and learning rate schedules can be easily integrated
into THUMT with minor modifications.

2.3 Inference

THUMT supports beam-search and random sampling during inference. The user can specify
the batch size, beam size, and length penalty before decoding. Apart from beam-search, the
user can also choose to employ random sampling, which samples a word from multinomial
distribution at each step. THUMT also supports decoding with half-precision to speed up the
inference stage.

Model averaging is beneficial to the performance of neural machine translation models.
THUMT provides an additional script to carry out model averaging. The users can either av-
erage the lastest n checkpoints or the top-n best checkpoints sorted by validation scores into a
single checkpoint.

Model ensemble is another way to improve the performance of neural machine transla-
tion. THUMT can ensemble multiple NMT models regardless of their architecture, provided all
models share the same vocabulary. When performing inference, if the number of checkpoints
assigned by the users is more than one, THUMT will perform model ensemble automatically by
calculating an arithmetic mean of the log-probabilities provided by all checkpoints. Normally,
model ensemble can achieve significant improvements. However, it requires more memory and
computations.
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Figure 1: Visualization with LRP for the Transformer Model.

2.4 Visualization
Although NMT achieves state-of-the-art translation performance, it is hard to understand how
it works because all internal information is represented as real-valued vectors or matrices. To
address this problem, THUMT features a visualization tool to use layer-wise relevance propaga-
tion (LRP) (Bach et al., 2015) to visualize and interpret neural machine translation models (Ding
et al., 2017).

Figure 1 shows an example of visualizing the Transformer model. Although the trans-
former model uses attention mechanisms extensively, it is hard to determine the most repre-
sentative head. For LRP, it is possible to calculate the global relevance between source words
and target words, which helps analyze the internal workings of NMT. Please refer to Ding et al.
(2017) for more details.

3 Experiments

3.1 Setup
We evaluate THUMT on English-German and Chinese-English translation tasks. The evalua-
tion metric is case-sensitive BLEU (Papineni et al., 2002). Following Vaswani et al. (2017),
translations are generated via beam-search with a beam size of 4 and a length penalty of 0.6.

For English-German, we use the WMT14 training corpus which contains 4.5M sentence
pairs with 103M English words and 96M German words. We also use a shared source-
target vocabulary of about 37000 tokens encoded by BPE (Sennrich et al., 2016). We use
newstest2014 as the test set.

For Chinese-English translation, we use the training corpus provided by WMT18 2. The
corpus consists of 24M sentence pairs with 509M Chinese words and 576M English words. We
use 32K BPE operations to build vocabularies. The test set is newstest2017.

We train the Transformer model on the two datasets. Unless otherwise noted, the setting
is the same as Vaswani et al. (2017). All models are trained on 4 machines interconnected with
InfiniBand, and each machine has 8 GTX 2080Ti GPUs.

2http://data.statmt.org/wmt18/translation-task/preprocessed/zh-en
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Model Size Speed (tokens/sec)
Training Inference

Transformer Base 60K 620
Transformer Big 35K 550

Table 2: Speed of THUMT, evaluated on WMT14 English-German (En-De). Speed of training
is reported with a 8-GPU setting and speed of inference is reported with a single GPU setting.

Direction Model Size Steps GPUs BS/GPU Precision BLEU

En→ De Transformer (Vaswani et al., 2017) Base 100K 8 - FP32 27.30
Big 300K 8 - FP32 28.40

Zh→ En Transformer (Hassan et al., 2018) Big - - - FP32 24.20

En→ De Transformer

Base 100K 4 2×4096 FP16 26.85
Base 100K 8 4096 FP16 26.76
Base 100K 4 2×4096 FP32 26.91
Base 100K 8 4096 FP32 26.95
Base 85K 8 2×4096 FP16 27.40
Big 300K 8 4096 FP16 28.71
Big 20K 16 8×4096 FP16 28.68
Big 25K 32 8×2048 FP16 28.51

Zh→ En Transformer Big 300K 8 2×4096 FP16 24.07

Table 3: Benchmarks on WMT14 English-German (En-De) and WMT18 Chinese-English (Zh-
En) datasets. We use “2×4096” to denote aggregating gradients for 2 steps with 4096 batch
size per step. “FP32” and “FP16” denote training with single-precision and mixed-precision,
respectively. We use distributed settings enable training with more than 8 GPUs.

3.2 Results
Table 2 shows the speed of THUMT. The speed of training is reported with a 8-GPU setting and
the speed of inference is reported with a single GPU setting. The training speed of Transformer
model is around 35K to 60K tokens per second, depending on the model size. It takes about 1
day to train a Transformer big model with 32 GPUs. The inference speed is about 620 tokens per
second for the base Transformer model and 550 tokens per second for the big model. Currently,
THUMT does not support inference with CPUs, and we plan to add this functionality in the
future.

Table 3 shows the results on English-German and Chinese-English translation. For
English-German, we trained Transformer base/big models with several different settings by
varying model sizes, training steps, and number of GPUs. All Transformer big models per-
formed better than Transformer base models. When we trained the Transformer base model
using mixed-precision (FP16) instead of single-precision (FP32), the performance only drops
slightly. As the number of tokens in each mini-batch increases from 32,768 to 65,536, the per-
formance improves from 26.95 to 27.40 even though the training steps reduce from 100K to
85K. For Chinese-English, we trained a Transformer big model using mixed-precision in 300K
steps, and the number of tokens in mini-batch is 65,536. The BLEU score on the test dataset is
24.07. The models trained using THUMT are comparable to those reported by Vaswani et al.
(2017) and Hassan et al. (2018) in terms of BLEU score.

4 Conclusion and Future works

We have introduced a new open-source toolkit for NMT that supports mainstream models, dis-
tributed training, and fast inference. The toolkit also features a visualization tool for analyz-
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ing the translation process of THUMT. The toolkit is freely available at http://thumt.
thunlp.org.

Currently, the users still rely on external tools to prepare the training corpus. We plan to
add preprocessing functionality to make THUMT self-contained. We will continually add new
features to THUMT to make it a better toolkit for both research and production.
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Abstract
For spoken language translation (SLT) in live scenarios such as conferences, lectures and meet-
ings, it is desirable to show the translation to the user as quickly as possible, avoiding an an-
noying lag between speaker and translated captions. In other words, we would like low-latency,
online SLT. If we assume a pipeline of automatic speech recognition (ASR) and machine trans-
lation (MT) then a simple but effective approach to online SLT is to pair an online ASR system,
with a retranslation strategy, where the MT system retranslates every update received from
ASR. However this can result in annoying “flicker” as the MT system updates its translation.
A possible solution is to add a fixed delay, or “mask” to the the output of the MT system, but
a fixed global mask re-introduces undesirable latency to the output. We introduce a method
for dynamically determining the mask length, which provides a better latency–flicker trade-off
curve than a fixed mask, without affecting translation quality.

1 Introduction

A common approach to Spoken Language Translation (SLT) is to use a cascade (or pipeline)
consisting of automatic speech recognition (ASR) and machine translation (MT). In a live trans-
lation setting, such as a lecture or conference, we would like the transcriptions or translations to
appear as quickly as possible, so that they do not “lag” noticeably behind the speaker. In other
words, we wish to minimise the latency of the system. Many popular ASR toolkits can operate
in an online mode, where the transcription is produced incrementally, instead of waiting for the
speaker to finish their utterance. However online MT is less well supported, and is complicated
by the reordering which is often necessary in translation, and by the use of encoder-decoder
models which assume sight of the whole source sentence.

Some systems for online SLT rely on the streaming approach to translation, perhaps in-
spired by human interpreters. In this approach, the MT system is modified to translate incre-
mentally, and on each update from ASR it will decide whether to update its translation, or
wait for further ASR output (Cho and Esipova, 2016; Ma et al., 2019; Zheng et al., 2019a,b;
Arivazhagan et al., 2019).

The difficulty with the streaming approach is that the system has to choose between com-
mitting to a particular choice of translation output, or waiting for further updates from ASR,
and does not have the option to revise an incorrect choice. Furthermore, all the streaming
approaches referenced above require specialised training of the MT system, and modified infer-
ence algorithms.

To address the issues above, we construct our online SLT system using the retransla-
tion approach (Niehues et al., 2018; Arivazhagan et al., 2020a), which is less studied but
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more straightforward. It can be implemented using any standard MT toolkit (such as Marian
(Junczys-Dowmunt et al., 2018) which is highly optimised for speed) and using the latest ad-
vances in text-to-text translation. The idea of retranslation is that we produce a new translation
of the current sentence every time a partial sentence is received from the ASR system. Thus,
the translation of each sentence prefix is independent and can be directly handled by a stan-
dard MT system. Arivazhagan et al. (2020b) directly compared the retranslation and streaming
approaches and found the former to have a better latency–quality trade-off curve.

When using a completely unadapted MT system with the retranslation approach, however,
there are at least two problems we need to consider:

1. MT training data generally consists of full sentences, and systems may perform poorly on
partial sentences

2. When MT systems are asked to translate progressively longer segments of the conversa-
tion, they may introduce radical changes in the translation as the prefixes are extended. If
these updates are displayed to the user, they will introduce an annoying “flicker” in the
output, making it hard to read.

We illustrate these points using the small example in Figure 1. When the MT system
receives the first prefix (“Several”) it attempts to make a longer translation, due to its bias
towards producing sentences. When the prefix is extended (to “Several years ago”), the MT
system completely revises its original translation hypothesis. This is caused by the differing
word order between German and English.

Several −→ Mehrere Male
Several times

Several years ago −→ Vor einigen Jahre
Several years ago

Figure 1: Sample translation with standard en→de MT system. We show the translation output,
and its back-translation into English.

The first problem above could be addressed by simply adding sentence prefixes to the
training data of the MT system. In our experiments we found that using prefixes in training
could improve translation of partial sentences, but required careful mixing of data, and even
then performance of the model trained on truncated sentences was often worse on full sentences.

A way to address both problems above is with an appropriate retranslation strategy. In
other words, when the MT system receives a new prefix, it should decide whether to transmit
its translation in full, partially, or wait for further input, and the system can take into account
translations it previously produced. A good retranslation strategy will address the second prob-
lem above (too much flickering as translations are revised) and in so doing so address the first
(over-eagerness to produce full sentences).

In this paper, we focus on the retranslation methods introduced by Arivazhagan et al.
(2020a) – mask-k and biased beam search. The former is a delayed output strategy which
does not affect overall quality, reduces flicker, but can significantly increase the latency of the
translation system. The latter alters the beam search to take into account the translation of the
previous prefix, and is used to reduce flicker without influencing latency much, but can also
damage translation quality.

Our contribution in this paper is to show that by using a straightforward method to predict
how much to mask (i.e. the value of k in the mask-k strategy) we obtain a more optimal trade-
off of flicker and latency than is possible with a fixed mask. We show that for many prefixes
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the mask can be safely reduced. We achieve this by having the system make probes of possible
extensions to the source prefix, and observing how stable the translation of these probes is –
instability in the translation requires a larger mask. Our method requires no modifications to
the underlying MT system, and has no effect on translation quality.

2 Related Work

Early work on incremental MT used prosody (Bangalore et al., 2012) or lexical cues (Rangara-
jan Sridhar et al., 2013) to make the translate-or-wait decision. The first work on incremental
neural MT used confidence to decide whether to wait or translate (Cho and Esipova, 2016),
whilst in (Gu et al., 2017) they learn the translation schedule with reinforcement learning. In
Ma et al. (2019), they address simultaneous translation using a transformer (Vaswani et al.,
2017) model with a modified attention mechanism, which is trained on prefixes. They intro-
duce the idea of wait-k, where the translation does not consider the final k words of the input.
This work was extended by Zheng et al. (2019b,a), where a “delay” token is added to the target
vocabulary so the model can learn when to wait, through being trained by imitation learning.
The MILk attention (Arivazhagan et al., 2019) also provides a way of learning the translation
schedule along with the MT model, and is able to directly optimise the latency metric.

In contrast with these recent approaches, retranslation strategies (Niehues et al., 2018) al-
low the use of a standard MT toolkit, with little modification, and so are able to leverage all
the performance and quality optimisations in that toolkit. Arivazhagan et al. (2020a) pioneered
the retranslation system by combining a strong MT system with two simple yet effective strate-
gies: biased beam search and mask-k. Their experiments show that the system can achieve
low flicker and latency without losing much performance. In an even more recent paper, Ari-
vazhagan et al. (2020b) further combine their retranslation system with prefix training and make
comparison with current best streaming models (e.g. MILk and wait-k models), showing that
such a retranslation system is a strong option for online SLT.

3 Retranslation Strategies

Before introducing our approach, we describe the two retranslation strategies introduced in
Arivazhagan et al. (2020a): mask-k and biased beam search.

The idea of mask-k is simply that the MT system does not transmit the last k tokens of its
output – in other words it masks them. Once the system receives a full sentence, it transmits the
translation in full, without masking. The value of k is set globally and can be tuned to reduce
the amount of flicker, at the cost of increasing latency. Arivazhagan et al. (2020a) showed good
results for a mask of 10, but of course for short sentences a system with such a large mask would
not produce any output until the end of the sentence.

In biased beam search, a small modification is made to the translation algorithm, changing
the search objective. The technique aims to reduce flicker by ensuring that the translation pro-
duced by the MT system stays closer to the translation of the previous (shorter) prefix. Suppose
that S is a source prefix, S′ is the extension of that source prefix provided by the ASR, and T
is the translation of S produced by the system (after masking). Then to create the translation
T ′ of S′, biased beam search substitutes the model probability p(t′i|t′<i, S′) with the following
expression:

pB(t′i|t′<i, S′) = (1− β) · p(t′i|t′<i, S′) + β · δ(t′i, ti)

where t′i is the ith token of the translation hypothesis T ′, and β is a weighting which we set to
0 when t<i 6= t′<i. In other words, we interpolate the translation model with a function that
keeps it close to the previous translation, but stop applying the biasing once the new translation
diverges from the previous one.
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As we noted earlier, biased beam search can degrade the quality of the translation, and we
show experiments to illustrate this in Section 6.1. We also note that biased beam search assumes
that the ASR simply extends its output each time it updates, when in fact ASR systems may
rewrite their output. Furthermore, biased beam search requires modification of the underlying
inference algorithm (which in the case of Marian is written in highly optimised, hand-crafted
GPU code), removing one of the advantages of the retranslation approach (that it can be easily
applied to standard MT systems).

4 Dynamic Masking

In this section we introduce our improvement to the mask-k approach, which uses a variable
mask, that is set at runtime. The problem with using a fixed mask, is that there are many
time-steps where the system is unlikely to introduce radical changes to the translation as more
source is revealed, and on these occasions we would like to use a small mask to reduce latency.
However the one-size-fits-all mask-k strategy does not allow this variability.

The main idea of dynamic masking is to predict what the next source word will be, and
check what effect this would have on the translation. If this changes the translation, then we
mask, if not we output the full translation.

S = a bASR

S′ = a b c

T = p q r

T ′ = p q s t

T ∗ = p qextend

translate

translate

LCP

Figure 2: The source prediction process. The string a b is provided by the ASR system. The MT
system then produces translations of the string and its extension, compares them, and outputs
the longest common prefix (LCP)

More formally, we suppose that we have a source prefix S = s1 . . . sp, a source-to-target
translation system, and a function predk, which can predict the next k tokens following S. We
translate S using the translation system to give a translation hypothesis T = t1 . . . tq . We then
use predk to predict the tokens following sp in the source sentence to give an extended source
prefix S′ = s1 . . . spsp+1 . . . sp+k, and translate this to give another translation hypothesis T ′.
Comparing T and T ′, we select the longest common prefix T ∗, and output this as the translation,
thus masking the final |T | − |T ∗| tokens of the translation. If S is a complete sentence, then we
do not mask any of the output, as in the mask-k strategy. The overall procedure is illustrated in
Figure 2.

In fact, after initial experiments, we found it was more effective to refine our strategy,
and not mask at all if the translation after dynamic mask is a prefix of the previous transla-
tion. In this case we directly output the last translation. In other words, we do not mask if
is prefix(T ∗i , T

∗
i−1) but instead output T ∗i−1 again, where T ∗i denotes the masked translation

for the ith ASR input. We also notice that this refinement does not give any benefit to the mask-
k strategy in our experiments. The reason that this refinement is effective is that the translation
of the extended prefix can sometimes exhibit instabilities early in the sentence (which then dis-
appear in a subsequent prefix). Applying a large mask in response to such instabilities increases
latency, so we effectively “freeze” the output of the translation system until the instability is
resolved. An example to illustrate this refinement can be found in Figure 10.
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To predict the source extensions (i.e. to define the predk function above), we first tried
using a language model trained on the source text. This worked well, but we decided to add two
simple strategies in order to see how important it was to have good prediction. The extension
strategies we include are:

lm-sample We sample the next token from a language model (LSTM) trained on the source-
side of the parallel training data. We can choose n possible extensions by choosing n
distinct samples.

lm-greedy This also uses an LM, but chooses the most probable token at each step.

unknown We extend the source sentence using the UNK token from the vocabulary.

random We extend by sampling randomly from the vocabulary, under a uniform distribution.
As with lm-sample, we can generalise this strategy by choosing n different samples.

5 Evaluation of Retranslation Strategies

Different approaches have been proposed to evaluate online SLT, so we explain and justify our
approach here. We follow previous work on retranslation (Niehues et al., 2018; Arivazhagan
et al., 2020a,b) and consider that the performance of online SLT should be assessed according to
three different aspects – quality, latency and flicker. All of these aspects are important to users
of online SLT, but improving on one can have an adverse effect on other aspects. For example
outputting translations as early as possible will reduce latency, but if these early outputs are
incorrect then either they can be corrected (increasing flicker) or retained as part of the later
translation (reducing quality). In this section we will define precisely how we measure these
system aspects. We assume that selecting the optimal trade-off between quality, latency and
flicker is a question for the system deployer, that can only be settled by user testing.

Latency The latency of the MT system should provide a measure of the time between the MT
system receiving input from the ASR, and it producing output that can be potentially be sent
to the user. A standard (text-to-text) MT system would have to wait until it has received a full
sentence before it produces any output, which exhibits high latency.

We follow Ma et al. (2019) by using a latency metric called average lag (AL), which
measures the degree to which the output lags behind the input. This is done by averaging
the difference between the number of words the system has output, and the number of words
expected, given the length of the source prefix received, and the ratio between source and target
length. Formally, AL for source and target sentences S and T is defined as:

AL(S, T ) =
1

τ

τ∑
t=1

g(t)− (t− 1)|S|
|T |

where τ is the number of target words generated by the time the whole source sentence is
received, g(t) is the number of source words processed when the target hypothesis first reaches
a length of t tokens. In our implementation, we calculate the AL at token (not subword) level
with the standard tokenizer in sacreBLEU (Post, 2018), meaning that for Chinese output we
calculate AL on characters.

This metric differs from the one used in Arivazhagan et al. (2020a)1, where latency is
defined as the mean time between a source word being received and the translation of that
source word being finalised. We argue against this definition, because it conflates latency and

1In the presentation of this paper at ICASSP, the authors used a latency metric similar to the one used here, and
different to the one they used in the paper
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flicker, since outputting a translation and then updating is penalised for both aspects. The update
is penalised for flicker since the translation is updated (see below) and it is penalised for latency,
since the timestamp of the initial output is ignored in the latency calculation.

Flicker The idea of flicker is to obtain a measure of the potentially distracting changes that
are made to the MT output, as its ASR-supplied source sentence is extended. We assume that
straightforward extensions of the MT output are fine, but changes which require re-writing of
part of the MT output should result in a higher (i.e. worse) flicker score. Following Arivazha-
gan et al. (2020a), we measure flicker using the normalised erasure (NE), which is defined as
the minimum number of tokens that must be erased from each translation hypothesis when
outputting the subsequent hypothesis, normalised across the sentence. As with AL, we also
calculate the NE at token level for German, and at character level for Chinese.

Quality As in previous work Arivazhagan et al. (2020a), quality is assessed by comparing the
full sentence output of the system against a reference, using a sentence similarity measure such
as BLEU. We do not evaluate quality on prefixes, mainly because of the need for a heuristic to
determine partial references. Further, quality evaluation on prefixes will conflate with evaluation
of latency and flicker and thus we simply assume that if the partial sentences are of poor quality,
that this will be reflected in the other two metrics (flicker and latency). Note that our proposed
dynamic mask strategy is only concerned with improving the flicker–latency trade-off curve and
has no effect on full-sentence quality, so MT quality measurement is not the focus of this paper.
Where we do require a measure of quality (in the assessment of biased beam search, which does
change the full-sentence translation) we use BLEU as implemented by sacreBLEU (Post, 2018).

6 Experiments

6.1 Biased Beam Search and Mask-k
We first assess the effectiveness of biased beam search and mask-k (with a fixed k), providing a
more complete experimental picture than in Arivazhagan et al. (2020a), and demonstrating the
adverse effect of biased beam search on quality. For these experiments we use data released for
the IWSLT MT task (Cettolo et al., 2017), in both English→German and English→Chinese.
We consider a simulated ASR system, which supplies the gold transcripts to the MT system one
token at a time2.

For training we use the TED talk data, with dev2010 as heldout and tst2010 as test set. The
raw data set sizes are 206112 sentences (en-de) and 231266 sentences (en-zh). We preprocess
using the Moses (Koehn et al., 2007) tokenizer and truecaser (for English and German) and
jieba3 for Chinese. We apply BPE (Sennrich et al., 2016) jointly with 90k merge operations. For
our MT system, we use the transformer-base architecture (Vaswani et al., 2017) as implemented
by Nematus (Sennrich et al., 2017). We use 256 sentence mini-batches, and a 4000 iteration
warm-up in training.

As we mentioned in the introduction, we did experiment with prefix training (using both
alignment-based and length-based truncation) and found that this improved the translation of
prefixes, but generally degraded translation for full sentences. Since prefix translation can also
be improved using the masking and biasing techniques, and the former does not degrade full
sentence translation, we only include experimental results when training on full sentences.

2A real online ASR system typically increments its hypothesis by adding a variable number of tokens in each
increment, and may revise its hypothesis. Also, ASR does not normally supply sentence boundaries, or punctuation,
and these must be added by an intermediate component. Sentence boundaries may change as the ASR hypothesis
changes. In this work we make simplifying assumptions about the nature of the ASR, in order to focus on retranslation
strategies, leaving the question of dealing with real online ASR to future work.

3https://github.com/fxsjy/jieba

Proceedings of the 14th Conference of the Association for Machine Translation in the Americas 
October 6 - 9, 2020, Volume 1: MT Research Track

Page  128



In Figure 3 we show the effect of varying β and k on our three evaluation measures, for
English→German.

(a) Masking versus flicker (measued by erasure) (b) Masking versus quality (measured by BLEU).

(c) Masking versus latency (measured by average lagging).

Figure 3: Effect of varying mask-k, at different values of the biased beam search interpolation
parameter, on the three measures proposed in Section 5.

Looking at Figure 3(a) we notice that biased beam search has a strong impact in reducing
flicker (erasure) at all values of β. However the problem with this approach is clear in Figure
3(b), where we can see the reduction in BLEU caused by this biasing. This can be offset by
increasing masking, also noted by Arivazhagan et al. (2020a), but as we show in Figure 3(c)
this comes at the cost of an increase in latency.

Our experiments with en→zh show a roughly similar pattern, as shown in Figure 4. We
find that lower levels of masking are required to reduce the detrimental effect on BLEU of the
biasing, but latency increases more rapidly with masking.

6.2 Dynamic Masking
We now turn our attention to the dynamic masking technique introduced in Section 4. We use
the same data sets and MT systems as in the previous section. To train the LM, we use the
source side of the parallel training data, and train an LSTM-based LM.

To assess the performance of dynamic masking, we measure latency and flicker as we vary
the length of the source extension (k) and the number of source extensions (n). We consider the
4 different extension strategies described at the end of Section 4. We do not show translation
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(a) Masking versus flicker (measured by erasure) (b) Masking versus quality (measured by BLEU).

(c) Masking versus latency (measured by average lagging).

Figure 4: Effect of varying mask-k, at different values of the biased beam search interpolation
parameter, on English-to-Chinese corpus

quality since the translation of the complete sentence is unaffected by the dynamic masking
strategy. The results for both en→de and en→zh are shown in Figure 5, where we compare to
the strategy of using a fixed mask-k. The oracle data point is where we use the full-sentence
translations to set the mask so as to completely avoid flicker.

We observe from Figure 5 that our dynamic mask mechanism improves over the fixed mask
in all cases, Pareto-dominating it on latency and flicker. Varying the source prediction strategy
and parameters appears to preserve the same inverse relation between latency and flicker, al-
though offering a different trade-off. Using several random source predictions (the green curve
in both plots) offers the lowest flicker, at the expense of high latency, whilst the shorter LM-
based predictions show the lowest latency, but higher flicker. We hypothesise that this happens
because extending the source randomly along several directions, then comparing the translations
is most likely to expose any instabilities in the translation and so lead to a more conservative
masking strategy (i.e. longer masks). In contrast, using a single LM-based predictions gives
more plausible extensions to the source, making the MT system more likely to agree on its
translations of the prefix and its extension, and so less likely to mask. Using several LM-based
samples (the black curve) adds diversity and gives similar results to random (except that random
is quicker to execute). The pattern across the two language pairs is similar, although we observe
a more dispersed picture for the en→zh results.
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(a) Dynamic Masking for en→de MT system trained
on full sentences (measured by AL and NE)

(b) Dynamic Masking for en→zh MT system trained
on full sentences (measured by AL and NE)

Figure 5: Effect of dynamic mask with different source prediction strategies. The strategies are
explained in Section 3, and the oracle means that we use the full-sentence translation to set the
mask.

We note that, whilst Figure 5 shows that our dynamic mask approach Pareto-dominates the
mask-k, it does not tell the full story since it averages both the AL and NE across the whole
corpus. To give more detail on the distribution of predicted masks, we show histograms of all
masks on all prefixes for two of the source prediction strategies in Figure 6. We select the source
extension strategies at opposite ends of the curve, i.e. the highest AL / lowest NE strategy and
the lowest AL / highest NE strategy, and show results from en→de. We can see from the graphs
in Figure 6 that the distribution across masks is highly skewed, with majority of prefixes having
low masks, below the mean. This is in contrast with the mask-k strategy where the mask has
a fixed value, except at the end of a sentence where there is no mask. Our strategy is able to
predict, with a reasonable degree of success, when it is safe to reduce the mask.

In order to provide further experimental verification of our retranslation model, we apply
the strategy to a larger-scale English→Chinese system. Specifically, we use a model that was
trained on the entire parallel training data for the WMT20 en-zh task4, in addition to the TED
corpus used above. For the larger model we prepared as before, except with 30k BPE merges
separately on each language, and then we train a transformer-regular using Marian. By using
this, we show that our strategy is able to be easily slotted in a different model from a differ-
ent translation toolkit. The results are shown in Figure 7. We can verify that the pattern is
unchanged in this setting.

We illustrate the improved stability preovided by our masking strategy, by drawing three
examples from the English→German system’s translation of our test set, in Figures 8–10. In
each example we show the source prefix (as provided by the ASR), its translation, its extension
(in these examples, provided by the lm-greedy strategy with n = 1, k = 1), the translation of
its extension, and the output after applying the dynamic mask.

In the first example (Figure 8) the MT system produces quite unstable translations of short
prefixes, but the dynamic masking algorithm detects this instability and applies short masks to
cover it up. Since the translation of the prefix and the translation of its extension differ, a short
mask is applied and the resulting translation avoids erasure.

In the second example in Figure 9, there is genuine uncertainty in the translation because

4www.statmt.org/wmt20/translation-task.html
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(a) Masks for lm-greedy strategy, n = 1, k = 1.
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(b) Masks for random strategy, n = 3, k = 5.

Figure 6: Histograms of mask lengths over all prefixes for en− de test set. The strategy on the
left has low latency but higher erasure (AL=1.54, NE=3.83) whereas the one on the right has
low erasure but higher latency (AL=11.2, NE=0.22). In both cases we see that the vast majority
of prefixes have low masks; in other words the skewed distribution means most are below the
mean.

Figure 7: Effect of dynamic mask with different strategies, applied to a larger-scale en→zh
system.
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Source Translation Output
prefix Here Hier sehen sie es

extension Here’s Hier ist es Hier
prefix Here are Hier sind sie

extension Here are some Hier sind einige davon Hier sind
prefix Here are two Hier sind zwei davon

extension Here are two things Hier sind zwei Dinge Hier sind zwei
prefix Here are two patients Hier sind zwei Patienten

extension Here are two patients. Hier sind zwei Patienten. Hier sind zwei Patienten

Figure 8: In this example, the dynamic mask covers up the fact that the MT system is unstable
on short prefixes. Using the translation of the LM’s predicted extension of the source, the system
can see that the translation is uncertain, and so applies a mask.

Source Translation Output
prefix But you know Aber Sie wissen es

extension But you know, Aber wissen Sie, sie wissen schon Aber
prefix But you know what? Aber wissen Sie was? Aber wissen Sie was?

Figure 9: Here the dynamic masking is able to address the initial uncertainty between a question
and statement, which can have different word orders in German. The translation of the initial
prefix and its extension produce different word orders, so the system conservatively outputs
“Aber”, until it receivers further input.

Source Translation Output
prefix to paraphrase : it’s not the

strongest of
Um zu Paraphrasen: Es ist
nicht die Stärke der Dinge

extension to paraphrase : it’s not the
strongest of the

Um zu paraphrasen: Es ist
nicht die Stärke der Dinge

Um zu paraphrasen: Es ist
nicht die Stärke der Dinge

prefix to paraphrase : it’s not the
strongest of the

Um zu Paraphrasen: Es ist
nicht die Stärke der Dinge

extension to paraphrase : it’s not the
strongest of the world

Zum paraphrasen: Es ist nicht
die stärksten der Welt

Um zu paraphrasen: Es ist
nicht die Stärke der Dinge

Figure 10: In this example we illustrate the refinement to the dynamic masking method, that is
used typically when there are small uncertainties early in the sentence. For the second prefix,
its translation and the translation of its extension differ at the beginning (“um zu” vs “zum”).
Applying the LCP rule would result in a large mask, but instead we output the translation of the
previous prefix

the fragment “But you know” can be translated both as subject-verb and verb-subject in German,
depending on whether its continuation is a statement or a question. The extension predicted by
the LM is just a comma, but it is enough to reveal the uncertainty in the translation and mean
that the algorithm applies a mask.

The last example (Figure 10) shows the effect of our refinement to the dynamic masking
method, in reducing spurious masking. For the second prefix, the translations of the prefix and
its extension differ at the start, between “Um zu” and “Zum”. Instead of masking to the LCP
(which would mask the whole sentence in this case) the dynamic mask algorithm just sticks
with the output from the previous prefix.
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7 Conclusion

We propose a dynamic mask strategy to improve the stability for the retranslation method in
online SLT. We have shown that combining biased beam search with mask-k works well in
retranslation systems, but biased beam search requires a modified inference algorithm and hurts
the quality and additional mask-k used to reduce this effect gives a high latency. Instead, the
dynamic mask strategy maintains the translation quality but gives a much better latency–flicker
trade-off curve than mask-k. Our experiments also show that the effect of this strategy depends
on both the length and number of predicted extensions, but the quality of predicted extensions
is less important.

For future research, we would like to combine biased beam search with dynamic mask to
see if it can give a better trade-off between quality and latency than (Arivazhagan et al., 2020a)
when the flicker is small enough. We would also like to experiment our dynamic masking
strategy on prefixes provided by a real ASR system.
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Abstract
Recent studies on direct speech translation show continuous improvements by means of data
augmentation techniques and bigger deep learning models. While these methods are helping to
close the gap between this new approach and the more traditional cascaded one, there are many
incongruities among different studies that make it difficult to assess the state of the art. Surpris-
ingly, one point of discussion is the segmentation of the target text. Character-level segmenta-
tion has been initially proposed to obtain an open vocabulary, but it results on long sequences
and long training time. Then, subword-level segmentation became the state of the art in neural
machine translation as it produces shorter sequences that reduce the training time, while be-
ing superior to word-level models. As such, recent works on speech translation started using
target subwords despite the initial use of characters and some recent claims of better results
at the character level. In this work, we perform an extensive comparison of the two methods
on three benchmarks covering 8 language directions and multilingual training. Subword-level
segmentation compares favorably in all settings, outperforming its character-level counterpart
in a range of 1 to 3 BLEU points.

1 Introduction

The recent surge in direct (or end-to-end) speech translation (ST) research (Bérard et al., 2016;
Weiss et al., 2017) has favored a blooming of models and data augmentation techniques that
contributed to increase the translation quality scores. However, despite the evidence of a general
improving field, the state of the art is still not clearly defined and some contrasting claims are
present in literature. One aspect that still needs clarification is the segmentation of the words in
the target sentences. Some studies followed the setting of Listen, Attend and Spell (Chan et al.,
2016) for automatic speech recognition (ASR) and segmented the target text at character level
(Weiss et al., 2017; Bérard et al., 2018; Di Gangi et al., 2019b). Other studies followed Jia et al.
(2019) in using subword-level segmentation (Pino et al., 2019; Bahar et al., 2019a; Liu et al.,
2019), motivated by the impractical training time when using a character-level segmentation on
large datasets due to the increased sequence length.

A research strand in neural machine translation (NMT) (Cherry et al., 2018; Kreutzer and
Sokolov, 2018; Ataman et al., 2019), based on recurrent models, showed that character-level

∗The first author performed this work while he was a Ph.D. student at FBK.
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models can outperform subword-level models, but need architectural changes to make the com-
putation more efficient and increase the capacity of the models. Indeed, while the subword-level
models can store, to some extent, syntactic and semantic information of words in their embed-
ding layers, character embeddings cannot do the same as the function of a word is not obtained
by character composition.

The idea of the superiority of the subword level is suggested for speech translation by
Bahar et al. (2019b), who claim that their baseline is stronger than the ones used in previous
studies because of their use of BPE-segmented words (Sennrich et al., 2016) on the target side
instead of characters. In contrast, two recent works in multilingual speech translation claim
better results when using characters, and consequently do not show the weaker results when
using BPE (Di Gangi et al., 2019c; Inaguma et al., 2019). To the best of our knowledge, the only
previous study that uses both segmentation strategies was proposed by Indurthi et al. (2019).
However, the systems built for the two settings are not directly comparable with each other
as they use different data and training scheme. In particular, they use data augmentation for
subword-level models but not for character-level models. By itself, data augmentation can be
sufficient to explain the higher scores in the former case, hiding the contribution of the different
segmentation method. In this paper, we aim to assess the effect of target-side segmentation
by directly comparing character- and subword-level models on some of the most popular ST
benchmarks. In particular we use: Augmented Librispeech (Kocabiyikoglu et al., 2018), the
most used benchmark so far; MuST-C (Di Gangi et al., 2019a), which represents the largest
training set for 8 language directions; How2 (Sanabria et al., 2018), which is a quite large
dataset and has been used in a recent IWSLT shared task (Niehues et al., 2019). In order to
shed light over this contrasting claims we perform our experiments both in a classical one-
to-one translation and in a one-to-many multilingual translation settings. Our results show
that the subword-level segmentation, in our setting, is always preferable and it outperforms
the character-level segmentation by up to 3 BLEU points (Papineni et al., 2002). The gap
is confirmed in the multilingual setup. A final analysis shows that subword-level models are
superior independently from the sequence length, and their increased capacity allows them to
choose among more options in the generation phase.

2 Direct Speech Translation

Spoken language translation (hereby speech translation) has been traditionally performed using
a cascade of statistical models involving at least ASR and MT (Casacuberta et al., 2008), which
benefits from the possibility of using state-of-the-art models for all the components, but the
translations may be negatively impacted by early wrong decisions (error propagation). Direct
speech translation aims to solve the error propagation problem by removing all the intermediate
steps. A single sequence-to-sequence model is trained to output the translation of the given
audio input and all its parameters are optimized jointly for the translation task by minimizing
the cross-entropy loss. Besides the goal of outperforming the cascaded approach, direct ST
can provide additional benefits such as lower latency and computational cost, and a reduced
memory footprint.

Model. We use the S-Transformer architecture (Di Gangi et al., 2019b), an adaptation of
Transformer (Vaswani et al., 2017) to the ST task. S-Transformer takes as input a spectrogram
to which it applies two successive strided 2D convolutional neural networks (CNNs, (LeCun
et al., 1998)), each followed by batch normalization (Ioffe and Szegedy, 2015) and ReLU non-
linearities. The output of the second CNN block, whose size is one fourth of the original size
in both dimensions, is then processed by two successive 2D self-attention layers (Dong et al.,
2018). The output is projected to the Transformer encoder layer size and summed with the po-
sitional encoding before being passed to the self-attention layers. The Transformer encoder and
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decoder are equal to the original Transformer, except for a logarithmic distance penalty used in
the encoder multi-head attention layers to focus the attention on a local context.

3 Target-side segmentation

Character and subword segmentation are two different approaches to achieve an open vocabu-
lary in NLP models. However, their differences directly impact the number of model parame-
ters, the sequence lengths and the re-use of a model.

Characters. Early work in direct ST splits target text into characters (Weiss et al., 2017;
Bérard et al., 2018), following Chan et al. (2016) that presents the first promising sequence-
to-sequence models for ASR. Character-level segmentation is appealing because it produces a
small dictionary that directly results in a small number of embedding parameters. Also, it re-
moves preprocessing steps and additional hyperparameters that contribute to the pipeline jungle
that accounts for technical debt in deployed systems (Sculley et al., 2015). On the other side,
character-level segmentation results in very long sequences that affect negatively the training
time, while the dependency range between words becomes longer, hence more difficult to learn.

Subwords. Subword-level segmentation uses algorithms that split all the words of a language
in subwords according to rules that are motivated linguistically or statistically. The most popular
segmentation algorithm in MT is the byte-pair encoding (BPE, (Sennrich et al., 2016)), which
learns N rules for creating tokens in an iterative fashion. The initial set of tokens is given by the
characters in the vocabulary. Then, for N iterations, the most frequent two-token sequence is
merged in a new token that is added to the current set, and a new rule is created to generate the
new token from the constituents. N is a hyperparameter of the model, and all the data processed
by the model have to be segmented using the same learnt rules. Subword-level segmentation
allows to find a trade-off between sequence length and dictionary size and reduce the token
sparseness. With small data, a linguistically-motivated segmentation provides a strong inductive
bias (Ataman et al., 2017) that prevents the emerging of implausible subwords.

Comparison. In MT, despite some early attempts to use character-level NMT (Lee et al.,
2017), it soon became clear that this type of models requires some additional precautions to be
competitive with BPE-based models (Cherry et al., 2018; Kreutzer and Sokolov, 2018; Ataman
et al., 2019). The internal sequence representation should be compressed horizontally in order
to reduce both the dependency range and the computational burden. However, this can be
done on the encoder side and not in the decoder side, where the compression cannot happen
until the new tokens have been generated. At the same time, Cherry et al. (2018) suggest
that the embedding layer for characters cannot store useful information, as characters do not
have a semantic or syntactical use, and thus more layers and more capacity is required for
the whole model. Indeed, the model should learn basic character sequences that form words
and how they interact. This process requires a large capacity to memorize sequences. In the
rest of this paper, we compare models trained using the two types of target segmentation in a
hyperparameter setting that we found good for the character-level models. Our experimental
results show a consistent higher quality for subword-level models, and a following analysis will
provide insights about the differences in the two systems.

4 Experimental setting

4.1 Model and training settings.
We use the S-Transformer BIG+LOG (Di Gangi et al., 2019b) setting, which uses convolutions
with stride (2, 2), 16 output channels in each convolution, Transformer layers of size 512 and
hidden feed forward layer size of 1, 024. All our models are trained with the adam optimizer
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(Kingma and Ba, 2015) using the policy proposed in (Vaswani et al., 2017) and dropout 0.1.
We always use 4,000 warm-up training steps, and final learning rate of 5e−3. The loss to
optimize is cross entropy with label smoothing (Szegedy et al., 2016) set to 0.1. The maximum
batch size, where not otherwise reported, is given by the minimum of 768,000 audio frames or
512 segment pairs, achieved using delayed updates (Saunders et al., 2018). Sequences longer
than 2, 000 audio frames (20 seconds) are discarded from the training set to prevent memory
errors. Decoding is performed with beam search of size 5. All trainings are performed on
two GPUs Nvidia K80 with 12G of RAM. The systems are implemented using the codebase
in urlhttps://github.com/mattiadg/FBK-Fairseq-ST, which is based on Fairseq (Gehring et al.,
2017) and hence PyTorch (Paszke et al., 2017).

For all settings, we first train an ASR model on the (audio, transcript) portion of the
dataset, and then use its encoder weights to initialize the encoder of our ST models.

4.2 Datasets

Dataset Hours # Pairs # Char # BPE
Librispeech 200 94.5K 132 8154
How2 300 185k 124 8196

MuST-C
En-De 408 234k 188 7436
En-Es 504 270k 348 7828
En-Fr 492 280k 212 7268
En-It 465 258k 180 7500
En-Nl 442 253k 180 7444
En-Pt 385 211k 180 7532
En-Ro 432 240k 204 7676
En-Ru 489 270k 244 7468

Table 1: Statistics of all the corpora. BPE vocabulary is computed with 8,000 merge rules.

We use three speech translation datasets: Augmented Librispeech (Kocabiyikoglu et al.,
2018), How2 (Sanabria et al., 2018) and MuST-C (Di Gangi et al., 2019a). They vary in terms
of size, language and domain, allowing us to experiment in different conditions. Their statistics
are summarized in Table 1.
Augmented Librispeech is a small English→French dataset that has been widely used in pre-
vious studies. It is built starting from the English audiobooks of Librispeech (Panayotov et al.,
2015), whose texts have been aligned with the French translations of their books. The result is
a corpus of 100 hours of speech and 47k segments, which has been doubled by translating all
the source segments with Google Translate.
How2 is an English→Portuguese corpus for multimedia translation. It has been built from
video-tutorials downloaded from Youtube with their transcripts and then translated into Por-
tuguese. Its size is 50% larger than Augmented Librispeech.
MuST-C is a one-to-many multilingual corpus for English→German, Spanish, French, Italian,
Dutch, Portuguese, Romanian, Russian. It has been built from TED talks, using transcripts
and translations provided by www.ted.com after some steps of filtering. Every portion of
MuST-C is currently the largest ST corpus available for the corresponding language pair.

4.3 Data processing and evaluation
For all audio sequences, we compute their spectrograms using 40 Mel-filterbanks. The audio
frames are extracted with windows of 25 milliseconds and steps of 10 milliseconds. Only for
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Librispeech, an additional energy feature is extracted, as described in (Bérard et al., 2018).
The target texts are tokenized (and special characters deescaped) using the Moses toolkit

(Koehn et al., 2007) tokenizer. Text between parentheses is removed from the training data and
from the references in order to remove non-speech audio effects.1 Finally, the resulting texts are
split either into characters as in (Di Gangi et al., 2019b) or with BPE Sennrich et al. (2016)2.
The unidirectional translation experiments use 8, 000 merge rules3, while the multilingual ex-
periments compute 20, 000 merge rules among all the target languages. English texts, used
for training the ASR models, are lower-cased and their punctuation is removed before word
segmentation.

All results are computed using case-sensitive BLEU score on word-level text tokenized
with the Moses toolkit and evaluated with multi-bleu.pl, unless otherwise specified.

5 Experiments and Results

In this section we report on two blocks of experiments. In the first block, we train separate uni-
directional ST models on Librispeech, each language portion of MuST-C, and How2, analysing
how the two segmentation methods affect the final results. In the second block of experiments,
we run one-to-many-multilingual training on MuST-C using two different approaches, again
with both segmentation techniques. For all experiments, we use the same set of hyperparame-
ters described in §4.1.

Work Notes BLEU
(Bérard et al., 2018) Multitask 13.4
(Di Gangi et al., 2019b) 13.5
(Liu et al., 2019) PT 14.3
(Inaguma et al., 2019) BIG + SP 15.7
(Pino et al., 2019) PT + TTS PT 16.4
(Liu et al., 2019) KD 17.0
(Bahar et al., 2019b) BIG + PT + SA 17.0
(Pino et al., 2019) BIG + MT 21.7
This work Char PT 16.2 (16.5)
This work BPE PT 17.1 (17.2)

Table 2: Results on Librispeech. Notes: Multitask = Multitask training with ASR; PT = pre-
training; SP = speed perturbation; TTS PT = pretraining on synthetic data generated with TTS;
KD = knowledge distillation; SA = SpecAugment; BIG = large model.

5.1 Unidirectional direct ST
Librispeech. Table 2 shows the results for Librispeech and compares them with previous
studies. Our character-level model outperforms the one in (Di Gangi et al., 2019b) by +2.7
BLEU points, probably due to the different learning policy with a higher learning rate,4 and
achieves a score of 16.2. The BPE-level model further improves this score by additional 0.9
points, reaching the score of 17.1. Among the other results, we are able to compare only with
the work by Bahar and colleagues, who used mteval-v13.pl for their evaluation. Our
results computed with the same script are reported in parentheses. We find remarkable that our

1MuST-C contains annotations like (Applause), (Laughter), (Music), and others.
2We used the implementation provided in https://github.com/rsennrich/subword-nmt
3It performed better than alternatives in preliminary experiments, but we observed little variability in results.
4The work by Di Gangi and colleagues used Adam with a fixed learning rate of 1e−4 for Librispeech.
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Model De Es Fr It Nl Pt Ro Ru
(Indurthi et al., 2019)

Metalearning Char 17.2 - 29.2 - - - - -
Cascade BPE 20.9 - 33.7 - - - - -
Metalearning BPE 22.1 - 34.1 - - - - -

(Pino et al., 2019)
Cascade - - - - - - 21.0 -
Direct - - - - - - 17.3 -

(Nguyen et al., 2019)
MuST-C only - - - - - 23.6 - -
+ How2 - - - - - 26.9 - -

(Di Gangi et al., 2020)
MuST-C only 17.0 21.5 27.0 17.5 21.8 21.5 16.4 12.2

This work
Char 17.6 21.6 26.5 18.0 21.5 21.6 16.9 11.6
BPE 19.1 23.7 30.3 20.1 23.1 23.7 19.5 12.8

Table 3: Results on MuST-C test sets.

BPE model obtains the same score as the one reported in Bahar et al. (2019b), which has been
trained with SpecAugment (Park et al., 2019). The other results have been added, despite not
being comparable, to show the range of the published scores. Notice that, in (Pino et al., 2019),
the authors achieve only 16.4 BLEU when augmenting the dataset with synthetic audio and
encoder pre-training. To improve this score up to 21.7, the same authors used a big Transformer
model trained on synthetic parallel data generated from the ASR Librispeech dataset translated
with an NMT system. Table 2 also lists the augmentation methods used by the other studies.
These results highlight the importance of the training hyper-parameters. In particular, our model
has about 35M parameters, and its results are comparable with the models used in most of the
other studies that have almost 300M parameters, and are probably overfitting the training data.

MuST-C. The results on all the languages of MuST-C are presented in Table 3. Our character-
level results are similar but not identical to the ones presented in (Di Gangi et al., 2020). Our
BPE-level results outperform the ones at character level by at least 1.2 BLEU point on En-Ru
and up to 3.3 points on En-Fr, with improvements of about 2 points in most of the languages.
This difference should be taken into account when comparing with results reported in literature,
which are obtained with a different segmentation technique.
Also for this benchmark, we report indicative results from previous work but we cannot ensure
that they are obtained with the same tokenization. However, the scores of our models are in the
same range as in the previous studies, confirming their value as strong baselines.

How2. For this experiment, we trained two models with the two different segmentation tech-
niques, and additionally we trained another BPE-based model concatenating the two training
sets of MuST-C and How2. The results are presented in Table 4. The performance of our
character-level model is slightly worse but comparable with the results reported in (Di Gangi
et al., 2020) and in (Nguyen et al., 2019). Both models are trained with character segmentation,
but the second one used a training set augmented with speed perturbation. Our subword-level
model outperforms significantly all the character-level models, obtaining a result of 41.2 that is
equivalent to the score reported in Di Gangi et al. (2019b) when using also MuST-C En-Pt. If
we also add MuST-C to the training set, we get a comparable score to Nguyen et al. (2019) in the
same condition (but using only 400 BPE rules, the best number of segmentation rules according
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Model BLEU
(Di Gangi et al., 2020) 39.4
+ MuST-C 41.0
(Nguyen et al., 2019) CHAR 39.9
+ MuST-C BPE 43.8
This work Char 39.1
This work BPE 41.2
+ MuST-C 43.5

Table 4: Comparing our results on How2 with the published results.

De Nl Es Fr It Pt
Char

Unidirectional 17.6 21.5 21.6 26.5 18.0 21.6
C-Decoder 18.4 21.9 21.1 25.4 17.4 21.5
S-Decoder 18.2 21.7 21.9 26.5 18.5 22.7

BPE
Unidirectional 19.1 23.1 23.7 30.3 20.1 23.7
C-Decoder 20.7 24.6 22.6 27.6 19.3 23.3
S-Decoder 20.9 25.4 23.5 29.9 20.1 25.1

Table 5: BLEU score results with concat (C-*) and sum (S-*) target forcing on 6 languages.
Unidirectional refers to one-to-one systems. The other results are computed with one multilin-
gual system for En→De,NL and one for En→Es,Fr,It,Pt.

to their experiments), which additionally used speed perturbation for data augmentation.

5.2 Multilingual direct ST

One-to-many multilingual translation uses a single model to translate one source language (En-
glish in this case) into two or more target languages. As there is a single encoder and a single
decoder shared among all the language directions, the model requires to be informed about the
target language. To this aim, the target forcing approach by Johnson et al. (2017) pre-pends
to the source sentence a “language token” indicating the target language. In multilingual ST
there is no source sentence (the input is indeed a sequence of audio features), so some varia-
tions have been proposed to adapt this approach. Inaguma et al. (2019) proposed to prepend
the language token to the target sequence, replacing the start of sentence token. Di Gangi et al.
(2019c) proposed two variants: concat, which is analogous to the method proposed by Inaguma
and colleagues; and sum, which performs an element-wise sum of the language token embed-
ding to all the elements in the target sequence. Here, we run experiments at both character- and
BPE-level with the two methods and verify if their claims about the BPE segmentation being
less effective holds true in the multilingual case.

We train two groups of systems, one for En→{De,Nl} (Germanic) and one for
En→{Es,Fr,It,Pt} (Romance), using both segmentation strategies as well as the two target forc-
ing variants in the decoder. The results are presented in Table 5. Our character-level models
improve slightly and comparably over the unidirectional systems for the Germanic targets, while
for the Romance targets the sum approach is better by improving by more than 1 BLEU point
for Portuguese and smaller improvements in the other cases. However, the difference between
the concat and sum approaches is more evident in the BPE-level case, where the former is gen-
erally worse than the unidirectional systems and the latter is comparable or better. The larger
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improvements are for German, Dutch and Portuguese with, respectively, +1.8, +2.3 and +1.4.
For the Romance languages, the concat approach produces in general a score degradation with
respect to the unidirectional systems. The sum approach, instead, is at least on par with the uni-
directional baselines. The only real improvement among Romance languages can be measured
for Portuguese, which has about 25% less data than the other languages and can benefit from
positive transfer learning. The reason of the different behaviors of multilingual approaches is
beyond the scope of this paper and we defer the analysis to other studies. These results indicate
that, besides significantly outperforming the character-level models also in the multilingual set-
ting (up to 3.7 BLEU points in En-Nl), under some conditions (for the Germanic languages) the
BPE-level models can benefit more also from the multilingual training, widening the already
large gap between the baselines.

6 Analysis

We are now interested in understanding why the BPE-level models are better performing than
their character-level counterparts. To this aim, we analyze the translation quality on sentences
with different target lengths and the output distribution peakiness. The goals are: i) checking
if the differences between the two models depend on the sentence length, and ii) verifying the
idea that character-level models need to memorize more (see §3).

Length comparison. The plots in Figures 1 and 2 show the BLEU scores achieved by the
systems for groups of different reference length (measured in number of characters) for, re-
spectively, En-Fr and En-Ru. Let DELTA be the reference length difference between BPE and
character segmentations, we can observe that it has a clear upward trend in En-Fr, while in
En-Ru DELTA is larger in the first bin, before increasing again for the longest sentences. The
trend for character-level models is to have a larger BLEU score in the second bin than in the
first one, then a smooth transition to the third bin, and finally a dramatic degradation in the last
two bins. The degradation in the last two bins is less evident for the BPE-level models. Similar
patterns are found in the other language directions. This first analysis shows that BPE-level
models achieve a higher quality in all length bins and can better manage long translations.

Figure 1: BLEU score by reference length (number of characters) for character- and BPE-level
models in English-French.

TER. The TER (Snover et al., 2006) scores translations at sentence level as a function of er-
rors (insertions, deletions, substitutions, shifts) with respect to a reference. We compute TER
with a focus on MuST-C French translations to obtain more details about the score difference
between the two systems. We use the sentence-level scores to divide the translations in three
groups according to the system that produced the best translation (or a tie). We say that the
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Figure 2: BLEU score by reference length (number of characters) for character- and BPE-level
models in English-Russian.

Figure 3: Histograms of the probabilities of the symbols selected by beam search in the test set
of MuST-C En-Fr.

system that produces the best translation is the winner for that segment. The results are sum-
marized in Table 6. First, we can observe a big difference on the percentage of wins for the two
systems: the BPE-level system wins in 44.6% of the cases, against 30.2% for the Char-level
system and only a 25% of ties. When breaking the results according to the segment groups,
both systems achieve the lowest average error rate in the Tie group. By a manual inspection, we
found that these are not easy or short sentences that are translated equally, but the systems gen-
erate different translations often with different errors, which are overall balanced though. Then,
it is interesting to understand whether a pattern exists in the Char Winner group. We found that
these are mostly hard cases in terms of terminology. Both systems produce poor translations in
such cases, but the shorter translations by the Char-level system reduce the TER. For the BPE
winner segments, the TER difference can range from small to high values, and it increases with
the reference length. To summarize, this inspection found that the BPE-level system is equal to
or better than the Char-level system on 70% of the segments, and the superiority is clear on long
segments. Also, it suggests that systems trained on such small datasets suffer from significant
vocabulary issues and data augmentation methods can be considered as a partial but effective
solution to this problem.

Distribution peakiness. The peakiness of the output conditional distribution is an indicator of
how the model is confident in its choice. Over-confident distributions are a signal of over-fitting
and Meister et al. (2020) showed that models producing higher-entropy distributions provide
better translation. Here, we consider the conditional probability of each token selected by beam
search in the whole test set, and group them in bins of size 0.05. In the general case, this
approach would give little information about the whole distribution, but in this case we find
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Char Winner BPE Winner Tie Total % Win
Char 51.2 61.4 46.3 57.6 30.2
BPE 66.1 46.4 46.3 53.9 44.6

Table 6: Average TER of the two systems on the groups of sentences where the best translation
is produced by Char, BPE, or there is a tie. The best translation is decided according to the TER
score for each individual sentence. The last two columns show the TER computed on the whole
test set and the percentage of times when one system won.

Figure 4: Comparison of the length of the produced output with respect to the reference.

that it is sufficient to discriminate the working of the two types of system. We show only the
results with MuST-C En-Fr, but the other models follow a similar behavior. As it is shown in
Figure 3, both models have their mode in the bin containing probabilities between 0.9 and 0.95.
However, while for the BPE-level model the mode accounts for less than 20% of the cases,
for the character-level model it is more than 70%. Additionally, the cumulative probability
of the bins from 0.8 to 1.0 is 0.90. This shows that the probability mass is concentrated in
one single symbol in the vast majority of cases. A manual inspection revealed that the few
occurrences of low probabilities for the first choice occur mostly in two cases: when choosing
the first character of a word, mostly for content words, or for choosing the first character of a
suffix when it decides a word inflection. The network is thus capable of outputting easily some
memorized sequences, and its uncertainty increases only in a few critical points. This model
overconfidence may reduce the effectiveness of beam search in evaluating alternative options
because of the large score difference.

Discussion. Our analysis revealed that BPE-level models produce, in average, better transla-
tions for all reference lengths with a higher difference in the longest sentences. The inability
of character-level models to properly translate long sequences is confirmed by their tendency to
generate shorter outputs, as shown in Figure 4. Additionally, BPE-level models produce better
translations more often than the char-level models do (44% vs 30%, see Table 6). Finally, we
found that character-level models generate output conditional distributions that are significantly
more peaked, confirming their higher reliance on memorization and overfitting. Cherry et al.
(2018) observed for NMT that character-level models require a very large capacity, which can
be the topic of future work. Here, we showed that our results hold for a large number of domains
and target languages, and with strong baseline models.

7 Related work

Direct ST has been proposed with the idea to skip the transcription phase of a cascaded system
to improve translation quality (Bérard et al., 2016). However, the small data condition of this
task appeared to be the main obstacle to overcome, which has been tackled with techniques
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like transfer learning or multitask learning (Weiss et al., 2017; Bérard et al., 2018) in order to
leverage knowledge from the tasks of ASR and MT. This techniques resulted to be useful, but
the improvements were limited and really effective only in very small data conditions (Anasta-
sopoulos and Chiang, 2018; Bansal et al., 2018). Furthermore, Sperber et al. (2019) argued that
current sequence-to-sequence architectures are not effective in leveraging the additional data,
and an evolution of the two-stage-decoding model (Kano et al., 2017) is more data-efficient. In
an attempt to transfer knowledge from MT to ST, Liu et al. (2019) used knowledge distillation,
but the real game-changing approach appeared to be the use of synthetic parallel data generated
with TTS and MT systems (Jia et al., 2019). Pino et al. (2019) showed that using data with the
target side generated by MT outperforms model pretraining. Separately, Bahar and colleagues
studied the contributions of pretraining and of the CTC loss for multitask learning (Bahar et al.,
2019a) and the effectiveness of SpecAugment (Bahar et al., 2019b), but without synthetic paral-
lel data. In a different attempt to leverage more data, Di Gangi et al. (2019c) and Inaguma et al.
(2019) proposed multilingual ST. Despite showing a general direction of improvement, the re-
sults from these studies are not directly comparable for several reasons: i) the use of characters
or subwords in the target side; ii) the use of different model architectures, with sizes ranging
from 9M to about 300M parameters; iii) the studies experiment only on few datasets, and the
results obtained in small datasets are not always portable to larger datasets. We tried to shed
light on some of the mentioned problems by 1) proving that the target segmentation is highly
relevant for the final result, 2) using a single architecture and model size that can be compared
with literature, and 3) setting strong baselines for 10 common benchmarks.

8 Conclusion

The optimal target text segmentation was a source of doubts according to literature on direct
speech translation, with studies making strong claims in one sense or another without a clear
proof. In this work, we performed a thorough investigation across different ST benchmarks
using hyperparameters proposed for the character level, and we found that the BPE segmen-
tation is always preferable both in terms of computational burden and translation quality. Our
experimental results define new strong baselines for the chosen benchmarks, often performing
similarly to models using data augmentation. In light of our findings, we invite the community
to take into account the target segmentation when comparing different systems and to take more
care of their baselines to really measure improvements in the field.
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Abstract
Translating text that diverges from the training domain is a key challenge for machine trans-
lation. Domain robustness—the generalization of models to unseen test domains—is low for
both statistical (SMT) and neural machine translation (NMT). In this paper, we study the per-
formance of SMT and NMT models on out-of-domain test sets. We find that in unknown do-
mains, SMT and NMT suffer from very different problems: SMT systems are mostly adequate
but not fluent, while NMT systems are mostly fluent, but not adequate. For NMT, we identify
such hallucinations (translations that are fluent but unrelated to the source) as a key reason for
low domain robustness. To mitigate this problem, we empirically compare methods that are re-
ported to improve adequacy or in-domain robustness in terms of their effectiveness at improving
domain robustness. In experiments on German→English OPUS data, and German→Romansh
(a low-resource setting) we find that several methods improve domain robustness. While those
methods do lead to higher BLEU scores overall, they only slightly increase the adequacy of
translations compared to SMT.

1 Introduction

Even though neural models have improved the state-of-the-art in machine translation consid-
erably in recent years, they still underperform in specific conditions. One such condition is
out-of-domain translation. Koehn and Knowles (2017) found that neural machine translation
(NMT) systems perform poorly in such settings and that their poor performance cannot be ex-
plained solely by the fact that out-of-domain translation is difficult: non-neural, statistical ma-
chine translation (SMT) systems were superior at this task. For this reason, Koehn and Knowles
(2017) identified translation of out-of-domain text as a key challenge for NMT.

Catastrophic failure to translate out-of-domain text can be viewed as overfitting to the train-
ing domain, i.e. systems learn idiosyncrasies of the domain rather than more general features.
Our goal is to learn models that generalize well to unseen data distributions, including data from
other domains. We will refer to this property of showing good generalization to unseen domains
as domain robustness.

We consider domain robustness a desirable property of NLP systems, along with other
types of robustness, such as robustness against adversarial examples (Goodfellow et al. 2015)
or typos in the input (Belinkov and Bisk, 2018). While domain adaptation with small amounts
of parallel or monolingual in-domain data has proven very effective for NMT (e.g. Luong and
Manning, 2015; Sennrich et al., 2016a; Kobus et al., 2017; Li et al., 2019), the target domain(s)
may be unknown when a system is built, and there are language pairs for which training data is
only available for limited domains. Hence, domain robustness of systems without any domain
adaptation is not only of theoretical interest, but also relevant in practice.
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SRC Aber geh subtil dabei vor.

REF But be subtle about it.

HYP Pharmacokinetic parameters are not significantly affected in patients with renal impair-
ment (see section 5.2).

Figure 1: Example illustrating how a German→English NMT system trained on medical text
hallucinates the translation of an out-of-domain input sentence.

Model architectures and training techniques have evolved since Koehn and Knowles
(2017)’s study, and it is unclear to what extent this problem still persists. We therefore revisit
the hypothesis that NMT systems exhibit low domain robustness. In preliminary experiments,
we demonstrate that current models still fail at out-of-domain translation: BLEU scores drop
drastically for test domains other than the training domain. However, the overall out-of-domain
translation quality of NMT systems is now on par with SMT systems.

An analysis of our baseline systems reveals that hallucinated content occurs frequently
in out-of-domain translations (see Figure 1 for an example). Several authors present anecdotal
evidence for NMT systems occasionally falling into a hallucination mode where translations
are grammatically correct but unrelated to the source sentence (Arthur et al., 2016; Koehn and
Knowles, 2017; Nguyen and Chiang, 2018). Our manual evaluation shows that hallucination is
more pronounced in out-of-domain translation. We therefore expect methods that alleviate the
hallucination problem to indirectly improve domain robustness.

As a means to reduce hallucination, we experiment with several techniques and assess their
effectiveness in improving domain robustness: reconstruction (Tu et al., 2017; Niu et al., 2019),
subword regularization (Kudo, 2018), neural noisy channel models (Li and Jurafsky, 2016; Yee
et al., 2019), and defensive distillation (Papernot et al., 2016), as well as combinations of these
techniques. The main contributions of this paper are:

• we perform an analysis of SMT and NMT systems that confirms that while in-domain
BLEU increased, domain robustness remains a major problem even with state-of-the-art
Transformer architectures. Our comparison of SMT and NMT shows differences in how
performance degrades in unseen domains: SMT mostly suffers in terms of fluency, while
NMT tends to produce more fluent, but less adequate translations (hallucinations).

• we test several techniques related to adequacy, robustness, or out-of-domain translation
in regard to their effectiveness in improving domain robustness in NMT. We find that
several techniques are moderately successful, most notably reconstruction, which reduces
the average percentage of hallucinations in out-of-domain test sets from 35% to 29%.

• we show that despite moderate improvements, domain robustness remains a challenge in
NMT, and provide code and data sets to serve as baselines for future work.

2 Data Sets

We report experiments on two different translation directions: German→English (DE→EN)
and German→Romansh (DE→RM).

2.1 German→English
For all DE→EN experiments, we use the same corpora as Koehn and Knowles (2017), available
from OPUS (Lison and Tiedemann, 2016).
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DE–EN DE–RM

domains corpora size domains corpora size

medical EMEA 1.1m law Allegra,
IT GNOME, KDE, PHP, Ubuntu, OpenOffice 380k Press Releases 100k
koran Tanzil 540k blogs Convivenza 20k
law JRC-Acquis 720k
subtitles OpenSubtitles2018 22.5m

Table 1: Data sets common to all of our experiments. Size indicates number of sentence pairs.

We use corpora from OPUS to define five domains: medical, IT, koran, law and subtitles.
See Table 1 for an overview of sizes per domain. The domains are quite distant, and we therefore
expect that systems trained on a single domain will have low domain robustness if tested on
other domains.

For each domain, we select 2000 consecutive sentence pairs each for development and
testing. Our test sets are different from Koehn and Knowles (2017), so results are not directly
comparable. In all experiments, the medical domain serves as the training domain, while the
remaining four domains are used for testing.

2.2 German→Romansh
To complement our DE→EN experiments, we also train systems for DE→RM. Romansh is
a Romance language that, with an estimated 40 000 native speakers, is low-resource, but has
some parallel resources thanks to its status as an official Swiss language. Domain robustness is
of particular relevance in low-resource settings since training data is typically only available for
few domains. Our training data consists of 100 000 sentence pairs, specifically the Allegra cor-
pus by Scherrer and Cartoni (2012) which contains mostly law text, and an in-house collection
of government press releases. As test domain (unseen during training), we use blog posts from
Convivenza1. From both data sets we randomly select 2000 consecutive sentence pairs as test
sets.

3 State-of-the-art Models Exhibit Low Domain Robustness

In this section, we establish that current NMT systems exhibit low domain robustness by ana-
lyzing our baseline systems automatically and manually.

3.1 Experimental Setup for Baseline Models
We use Moses scripts for punctuation normalization and tokenization. We apply truecasing
trained on in-domain training data. Similarly, we apply BPE (Sennrich et al., 2016b) with 32k
(DE→EN) and 16k (DE→RM) merge operations learned from in-domain data. We train two
baselines:

NMT Baseline A standard Transformer base model trained with Sockeye (Vaswani et al.,
2017; Hieber et al., 2018).

SMT Baseline A standard, phrase-based statistical model trained with Moses (Koehn et al.,
2007), using mtrain (Läubli et al., 2018) as frontend with standard settings.

1https://www.suedostschweiz.ch/blogs/convivenza
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SMT NMT

in-domain
medical 58.4 61.5

out-of-domain
IT 21.4 17.1
koran 1.4 1.1
law 19.8 25.3
subtitles 4.7 3.4

average (out-of-domain) 11.8 11.7

(a)

SMT NMT

in-domain
law 45.2 52.5

out-of-domain
blogs 15.5 18.9

(b)

Table 2: BLEU scores of (a) baseline DE→EN systems trained on medical data, (b) baseline
DE→RM systems trained on law data.

We always test on several domains, including the training domain. We use a beam size
of 10 to translate test data. We report case-sensitive BLEU (Papineni et al., 2002) scores on
detokenized text, computed with SacreBLEU (Post, 2018)2.

3.2 Analysis of Baseline Systems

Tables 2a and 2b show automatic evaluation results for all our baseline models. Neural models
achieve good performance on the respective in-domain test sets (61.5 BLEU on medical for
DE→EN; 52.5 BLEU on law for DE→RM), but on out-of-domain text, translation quality is
clearly diminished, with an average BLEU of roughly 12 (DE→EN) and 19 (DE→RM). The
following analysis will focus on our DE→EN baseline systems.

Compared to results reported by Koehn and Knowles (2017), NMT has improved markedly
since their study was conducted, and is now on par with SMT in out-of-domain settings (11.8
BLEU versus 11.7). However, on the in-domain test set, our NMT baseline outperforms the
SMT baseline by 3 BLEU. This result suggests that higher in-domain performance does not
guarantee better out-of-domain translations.

Unknown words constitute one possible reason for failing to translate out-of-domain texts.
As shown in Table 3a, the percentage of words that are not seen during training is much higher
in all out-of-domain test sets. However, unknown words cannot be the only reason for low
translation quality: The test sets with the lowest BLEU scores (koran and subtitles) actually
have an out-of-vocabulary (OOV) rate similar to the IT test set, where BLEU scores are much
higher for both baseline models.

Additionally, our SMT baseline shows better generalization to some domains unseen at
training time, while the average BLEU is comparable to the NMT baseline. In the IT domain,
the result is most extreme: the SMT system beats the neural system by 4.3 BLEU. This demon-
strates that the low domain robustness of NMT is not (only) a data problem, but also due to the
model’s inductive biases.

As a further control, we train additional baseline systems trained on all domains.3 We use
it to test whether the data we have held out for out-of-domain testing is inherently more difficult
to translate than the in-domain test set. The results in Table 3b show that this is not the case.

2SacreBLEU version signature: BLEU+c.mixed+#.1+s.exp+tok.13a+v.1.4.1.
3The subtitles domain (23m sentences) was subsampled to 1m sentence pairs so as not to overwhelm the remaining

domains (3m sentences in total). We also removed any overlap between the training and test sets.
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OOV rate

in-domain
medical 2.42%

out-of-domain
IT 20.09%
koran 18.63%
law 9.39%
subtitles 18.16%

(a)

SMT NMT

in-domain
medical 53.2 61.4

out-of-domain
IT 31.9 44.7
koran 15.2 15.9
law 58.3 62.3
subtitles 14.9 18.5

average (out-of-domain) 30.1 35.4

(b)

Table 3: For the language pair DE→EN: (a) Out-of-vocabulary (OOV) rates of in-domain and
out-of-domain test sets. (b) BLEU scores of baselines trained on a concatenation of all domains.

For the NMT baseline, BLEU ranges between 15.9 and 62.3, with an average out-of-domain
BLEU of 35.4.

3.2.1 Hallucination
NMT models can be understood as language models of the target language, conditioned on a
representation of a source text. This means that NMT models have no explicit mechanism—as
SMT models do—that enforces coverage of the source sentence, and if the representation of an
out-of-domain source sentence is outside the training distribution, it can be seemingly ignored.
This gives rise to a tendency to hallucinate translations, i.e. to produce translations that are
fluent, but unrelated to the content of the source sentence (Lee et al., 2018).

We hypothesize that hallucination is more common in out-of-domain settings. A small
manual evaluation performed by the main author confirms that this is indeed the case. We
evaluate the fluency and adequacy of our baselines (we refer to them as NMT and SMT). In a
blind setup, we annotate a random sample of 100 sentence pairs per domain. As controls, we
mix in pairs of (source, actual reference), treating the reference translation as an
additional system.

Evaluation of adequacy The annotator is presented with a sentence pair and asked to
judge whether the translation is adequate, partially adequate or inadequate.

Evaluation of fluency We use the same data as for the evaluation of adequacy, however,
the annotator is shown only the translation, without the corresponding source sentence. The
annotator is asked whether the given sentence is fluent, partially fluent or not fluent.

Figure 2 shows the results of the manual evaluation in terms of adequacy and fluency. For
visualization, individual fluency values are computed as follows:

1.0 ∗ nf + 0.5 ∗ np + 0.0 ∗ nn

Where nf , np and nn are the number of fluent, partially fluent and non-fluent translations,
respectively. Adequacy values are computed in the same way. On the in-domain test set, both
baselines achieve high adequacy and fluency, with the NMT baseline effectively matching the
adequacy and fluency of the reference translations.

Regarding adequacy, the in-domain samples contain only a small number of translations
with content unrelated to the source (1% to 2%). On out-of-domain data, on the other hand,
both baselines produce a high number of inadequate translations: 57% (SMT) and 84% (NMT).
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(a) in-domain (b) out-of-domain

Figure 2: Manual evaluation of adequacy and fluency for DE→EN. Legend: marker col-
ors are different systems, marker types are different domains. SR=Subword Regularization,
D=Distillation, R=Reconstruction

in-domain OOD average

Reference 2% 2%

NMT 2% 35%
SMT 1% 4%

NMT + Subword Regularization 1% 37%
NMT + Distillation 3% 33%
NMT + Reconstruction 1% 29%

Table 4: Percentage of translations judged to be hallucinations (both not adequate and at least
partially fluent) in the manual evaluation.

These results suggest that the extremely low BLEU scores on these two test sets (see Table 2a)
are in large part due to made up content in the translations.

Regarding fluency in out-of-domain settings, SMT and NMT baselines behave very differ-
ently: SMT translations are more adequate, while NMT translations are more fluent. This trend
is most extreme in the koran domain, where only 2% of SMT translations are found to be fluent
(compared to 36% for NMT).

Further analysis of both annotations shows that NMT translations found to be inadequate
are not necessarily disfluent in out-of-domain settings. Table 4 shows that, on average, on out-
of-domain data, 35% of NMT translations are both inadequate and fluent, while the same is
only true for 4% of SMT translations. We refer to translations of this kind as hallucinations.

To summarize our analysis of baseline models, we find that the domain robustness of
current NMT systems is still lacking and that inadequate, but fluent translations are a prominent
issue. This motivates our choice of techniques to improve domain robustness.

4 Approaches to Improve Domain Robustness

We discuss approaches that can potentially remedy the problem of low domain robustness, and
compare them in subsequent experiments.

4.1 Subword Regularization
Subword regularization (Kudo, 2018) is a form of data augmentation that, instead of applying
a fixed subword segmentation like BPE, probabilistically samples a new subword segmentation
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for each epoch. At test time, the model either uses 1-best segmentation, or translates the k-best
segmentations and selects the highest-probability translation.

Kudo (2018) reports large improvements on low-resource and out-of-domain settings. In
particular, improvements on in-house patent, web, and query test sets were in the range of 2–10
BLEU. In this work, we evaluate subword regularization on public datasets. We apply sampling
at training time and translate 1-best segmented sentences at test time.

4.2 Defensive Distillation

We hypothesize that defensive distillation can be used to improve domain robustness. Defensive
distillation exploits knowledge distillation to fend off adversarial attacks.

Knowledge distillation is a technique to derive models from existing ones, instead of train-
ing from scratch. The idea was introduced for simple image classification models by Ba and
Caruana (2014) and Hinton et al. (2015). A first model (called the teacher) is trained in the
usual fashion. Then, a second model (called the student) is trained using the predictions of the
teacher model instead of the labels in the training data.

Typically, knowledge distillation is used to approach the performance of a complex teacher
model (or ensemble of models) with a simpler student model. Another application is defensive
distillation (e.g. Papernot et al. 2016), where the student shares the network architecture with
the teacher, with the purpose not being model compression, but improving the model’s gener-
alization to samples outside of its training set, and specifically robustness against adversarial
examples (Szegedy et al., 2013; Goodfellow et al., 2014).

Defensive distillation has been shown to be effective at improving robustness to adversarial
examples in image recognition. In this work, we apply it to NMT and test its effect on domain
robustness, which Papernot et al. (2016) hint at but do not empirically test. As proposed by
Kim and Rush (2016), we train the student model on teacher translations produced with beam
search, instead of training on soft prediction labels.

4.3 Reconstruction

Reconstruction (Tu et al., 2017) is a change to the model architecture that addresses the prob-
lem of adequacy. The authors propose to extend encoder-decoder models with a reconstructor
component that learns to reconstruct the source sentence from decoder states. The reconstructor
has two uses: as a training objective, it forces the decoder representations to retain information
that will be useful for reconstruction; during inference, it can provide scores that can be used
for reranking.

However, we observed in initial experiments that reconstruction from hidden states can be
too easy: the reconstruction loss on training batches diminishes very quickly, to the point of
being insignificant. To prevent the model from simply reserving parts of the decoder hidden
states to memorize the input sentence, we use reconstruction from actual translations instead of
hidden states (Niu et al., 2019). Translations are produced with differentiable sampling via the
Straight-Through Gumbel Softmax (Jang et al., 2017), which still allows joint optimization of
translation and reconstruction. While Niu et al. (2019) implement reconstruction for recurrent
architectures, we apply the technique to Transformers.

In order to avoid introducing any additional parameters for reconstruction, as recom-
mended in Niu et al. (2019), we train a multilingual, bi-directional system with shared pa-
rameters as a further baseline. This bi-directional system is used to initialize the fine-tuning of
reconstruction models. We empirically test whether our bilingual baseline and this multilingual
baseline have comparable performance.
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4.4 Neural Noisy Channel Reranking
Even though the methods we presented previously do lead to improved out-of-domain transla-
tion quality, the models still suffer from low adequacy. Also, our reconstruction models only
perform reconstruction during training, and the reverse translation direction is not exploited, for
instance by reranking translations (Tu et al., 2017).

We conjecture that this problem can be addressed with a neural noisy channel model (Li
and Jurafsky, 2016). Standard NMT systems only model p(y|x), which can lead to a “failure
mode that can occur in conditional models in which inputs are explained away by highly pre-
dictive output prefixes” (Yu et al., 2017). Noisy channel models propose to also model p(x|y)
and p(y) to alleviate this effect.

In practical terms, noisy channel models are implemented by modifying the core decoding
algorithm, or simply as n-best list reranking. We adopt the latter, since n-best list reranking
was shown to have equal or better performance than more computationally costly methods that
score partial hypotheses during beam search (Yee et al., 2019).

5 Experimental Setup for Proposed Methods

This section describes how we preprocessed data and trained the models described in Section
4. Unless stated otherwise, the data is preprocessed in the same way as for the baselines (see
Section 3.1).

Subword Regularization Models We integrate subword regularization in Sockeye, using
the Python library provided by Kudo (2018)4. The training data is not segmented with BPE in
this case. Instead, the training tool is given truecased data, and new segmentations are sampled
before each training epoch. We use the following hyperparameters: we set the smoothing pa-
rameter α to 0.1 and use an n-best size of 64. For the validation and test data we use 1-best
segmentation.

Defensive Distillation Models We use our baseline Transformer model as the teacher
model. We translate the original training set with beam size 10. The student is trained on the
translations of the teacher model using the same hyperparameters and being initialized with the
parameters of the teacher model.

Reconstruction Models We implement differentiable sampling reconstruction for Trans-
former models in Sockeye and release the implementation.5 We first train a multilingual Trans-
former model using the approach of Johnson et al. (2017).

After early stopping, we continue training with reconstruction as an additional loss. All
hyperparameters remain the same, except for the new loss and a lower initial learning rate. For
testing we select the model with the lowest validation perplexity. We use the reconstruction loss
only for training, not for reranking.

Noisy Channel Reranking For each hypothesis, we store an n-best list of 50. We produce
the following scores: p(y|x) (usual translation score), p(x|y) (translation score in reverse direc-
tion) and p(y) (language model score in target language). p(y|x) and p(x|y) are computed with
the same model since it is bi-directional.

In order to produce p(y) scores we train a Transformer language model with fairseq (Ott
et al., 2019) using standard settings. We impose a large penalty of −100 for hypotheses that
contain subwords not found in the target side training data.

The final hypothesis score for reranking is computed as a weighted multiplication:

score(x, y) = p(y|x)λtf ∗ p(x|y)λtb ∗ p(y)λlm

4https://github.com/google/sentencepiece
5https://github.com/ZurichNLP/sockeye/tree/domain-robustness
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DE→EN DE→RM

λtf λtb λlm λtf λtb λlm

(5) Multilingual 0.7 0.26 0.04 0.9 0.09 0.01
(6) Reconstruction 0.6 0.32 0.08 0.9 0.09 0.01

(7) Multilingual + SR 0.5 0.42 0.08 0.9 0.09 0.01
(8) Reconstruction + SR 0.5 0.46 0.04 0.9 0.09 0.01

Table 5: Best weights for noisy channel reranking found with grid search on in-domain devel-
opment set. Row numbers correspond to the ones in Table 6. λtf=forward translation weight,
λtb=backward translation weight, λlm= language model weight

The best weights are found with simple grid search on the in-domain development set, with
λtf ∈ [0.0, 0.1, ..., 1.0], λlm ∈ [0.0, 0.01, ..., 0.1, 0.2, ..., 1.0], and λtb = 1 − λtf − λlm. The
best weight combination is then used to compute scores and perform reranking for the test data
of all domains. Table 5 lists optimal weights found for each model individually.

6 Results

We evaluate models in terms of BLEU on different domains (see Section 6.1) and also annotate
a subset of translations manually for fluency and adequacy (see Section 6.2).

6.1 Automatic evaluation
Table 6 shows the results of our automatic evaluation. Overall, the proposed methods are able
to outperform the SMT and NMT baselines but not in a consistent manner across domains or
data conditions: an increase in in-domain BLEU does not always mean a similar increase on
out-of-domain data. Similarly, an increase in BLEU in high-resource conditions (DE→EN)
does not consistently lead to better results in low-resource conditions (DE→RM).

Subword regularization The results for subword regularization are mixed (see Row 3 in
Table 6). For DE→EN, in-domain translation quality is comparable to the NMT baseline, while
the average out-of-domain BLEU falls short of the NMT baseline (-0.5 BLEU). However, in
the low-resource condition (DE→RM), subword regularization improves both in-domain and
out-of-domain translation (+1.2 in both cases).

This result is surprising given the larger gains reported by Kudo (2018). To validate our
implementation of subword regularization, we reproduce an experiment from Kudo (2018) with
English-Vietnamese data from IWSLT 15 (see Table 7). With subword regularization we ob-
serve an improvement of 0.8 BLEU, which is lower than the 2 BLEU improvement reported by
Kudo (2018), but we also note that our baseline model is stronger.

If subword regularization is combined with multilingual or reconstruction models (see
Rows 7 and 8 in Table 6), we observe no improvements on in-domain test sets, but gains on
3 out of 4 out-of-domain data sets, indicating that subword regularization is in fact helpful for
domain robustness.

Defensive Distillation Distilling the training data also leads to improvements in BLEU on
out-of-domain text (see Row 4 in Table 6). The average gain is +1.4 for DE→EN, but only
+0.4 for DE→RM. In-domain performance is either comparable or slightly worse (-0.4 BLEU
for DE→EN) than the NMT baseline. The technique was originally shown to guard against
adversarial attacks, where inputs are only infinitesimally different from training examples. Our
results indicate that generalization to out-of-domain inputs – that are farther from the training
data – is similarly improved.
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DE→EN DE→RM

in-domain average OOD in-domain average OOD

(1) SMT 58.4 11.8 45.2 15.5
(2) NMT 61.5 11.7 52.5 18.9

(3) NMT + SR 61.4 11.2 53.7 20.1
(4) NMT + D 61.1 13.1 52.5 19.3

(5) Multilingual 61.4 11.7 52.8 19.6
(6) Reconstruction 61.5 12.5 53.4 21.2

(7) Multilingual + SR 60.3 12.8 52.4 20.1
(8) Reconstruction + SR 60.3 13.2 52.4 20.3

(9) Multilingual + NC 62.7 11.8 53.1 21.4
(10) Reconstruction + NC 62.8 13.0 53.3 21.6

(11) Multilingual + SR + NC 60.7 12.3 53.1 21.4
(12) Reconstruction + SR + NC 60.8 13.1 52.4 20.7

Table 6: BLEU scores (higher is better) of all systems on test data. SR=Subword Regularization,
D=Distillation, NC=Noisy Channel Model, average OOD=average BLEU score over out-of-
domain test sets.

Baseline Subword
(BPE) Regularization

Kudo (2018) 25.6 27.7 (+ 2.1)
Our results 28.3 29.1 (+ 0.8)

Table 7: Reproducing results from Kudo (2018) on IWSLT 15 English-Vietnamese data.
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Source - die Produktion in der Türkei entspricht 1,3 % der chinesischen Produktion;
Target - Turkey’s volume of production amounts to 1,3 % of Chinese production,

NMT Baseline - the production in slkei is 1.3% of a Chinese hamster ovary (CHO) cell
Multilingual - production in turkei is equivalent to 1.3% of Chinese Hamster production;
Reconstruction - the production in thekei is equivalent to 1.3% of the Chinese production;
Reconstruction + NC - production in the turkei equals 1.3% of the Chinese production;

Table 8: Example translations for DE→EN. Hallucinated parts are shown in bold.

Reconstruction Since reconstruction models are fine-tuned from multilingual models, we
report scores for those multilingual models as well. Row 5 of Table 6 shows that our multi-
lingual models perform equally well or better than the NMT baseline. As shown in Row 6 of
Table 6, reconstruction outperforms the NMT baseline on out-of-domain data for both language
pairs (+0.8 BLEU for DE→EN, +2.3 BLEU for DE→RM), while maintaining (DE→EN) or
improving (+0.9 BLEU for DE→RM) in-domain BLEU.

Noisy Channel Reranking We evaluate the performance of noisy channel reranking in
four different settings: applied to multilingual or reconstruction systems, both with and without
subword regularization. The results are shown in Rows 9 to 12 of Table 6.

For DE→EN, reranking a reconstruction model achieves a good in-domain BLEU (+1.3
over the baseline), and slightly improves out-of-domain translation on average (+0.5 BLEU
over reconstruction). For DE→RM in our low-resource setting, reranking with a noisy channel
model improves the reconstruction model by +0.4 BLEU, producing the best result overall. The
improvement on out-of-domain translation is much larger for the multilingual model (+1.8 over
multilingual model without reranking). Combining reranked models (see Rows 11 and 12 in
Table 6) with subword regularization does not lead to consistent improvements. Out-of-domain
BLEU for DE→RM is slightly better compared to a subword regularization system without
reranking (+0.4 BLEU), while all other scores are comparable or worse.

We believe that the success of reranking could be limited for two reasons. Firstly, model
weights λ are optimized on in-domain data. Oracle experiments that optimize weights on out-
of-domain data show that optimal model weighting differs greatly between domains and could
further improve out-of-domain results by 0.5–1 BLEU on average. Secondly, reranking could
be held back by the lack of diversity among hypotheses in n-best lists.

6.2 Manual evaluation

In a small manual evaluation, we analyze if methods that improve domain robustness in terms
of BLEU also directly address the lack of adequacy in out-of-domain translation (see Section
3.2.1). The results are shown in Figure 2b. For anectodal examples of translations by several
models, see Table 8.

Techniques with a bias for fluency We find that subword regularization increases fluency
by several percentage points in some domains. However, it fails to improve adequacy which
explains why it consequently fails to improve out-of-domain BLEU. Defensive distillation im-
proves translations in a similar way, with a bias for fluency while not consistenly improving the
adequacy of out-of-domain translations.

Reconstruction having a bias for adequacy We show that reconstruction is limiting hal-
lucination on out-of-domain data, reducing the percentage of inadequate translations by 5 per-
centage points on average. We also note that there appears to be a tradeoff between adequacy
and fluency: while reconstruction does improve out-of-domain adequacy, the improvement
comes at the cost of lower fluency.
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7 Discussion

Overall, we emphasize that SMT no longer appears to have higher domain robustness than
NMT—a widely held belief given the findings of Koehn and Knowles (2017). However, SMT
and NMT models achieve comparable domain robustness in different ways: SMT translations
are more adequate (since SMT decoding implicitly enforces coverage), while NMT translations
are more fluent (since an NMT decoder is simply a language model of the target language con-
ditioned on source context). Therefore, evaluating domain robustness with automatic metrics
only can be misleading and hide the fact that models have very different inductive biases, even
if their BLEU score is similar.

Our experiments to reduce NMT hallucination and improve adequacy can be summarized
as follows. Several methods lead to moderate improvements in translation quality, but only re-
construction combined with noisy channel reranking robustly increased BLEU across domains
and data conditions (see Row 10 of Table 6). Other techniques are successful only in certain
conditions. For instance, combining multilingual systems with Subword Regularization im-
proves out-of-domain translation only, but not in-domain quality (see Rows 7–8 of Table 6).
This suggests that techniques found to work well on in-domain test data cannot be assumed to
have a similar effect on out-of-domain data without proper testing.

Our manual evaluation suggests that for NMT systems, an increase in out-of-domain
BLEU also means that translations are slightly more adequate. However, NMT models still
have a strong bias for fluency (all models under the diagonal in Figure 2b) and their adequacy
falls short of the adequacy of SMT systems. Our most successful reconstruction model does
indeed improve adequacy, but at the same time decreases fluency to a certain extent. We be-
lieve radically different approaches are needed to increase the coverage and adequacy of NMT
translations without sacrificing their fluency.

8 Conclusions

Current NMT systems exhibit low domain robustness, i.e. they underperform if they are tested
on a domain that differs strongly from the training domain. This is especially problematic in
settings where explicit domain adaptation is impossible because the target domain is unknown,
or because we are in a low-resource setting where training data is only available for limited
domains. We find that hallucinated translations are a common problem for NMT models in
out-of-domain settings, which partially explains their low domain robustness. Our results show
that several methods yield improved generalization to out-of-domain data. We achieve an im-
provement in average out-of-domain BLEU of 1.5 (DE→EN) and 2.7 (DE→RM), as well as a
reduction in hallucinated translations according to manual evaluation.

We analyzed the fluency and adequacy of translations manually, leading to a discussion of
several pitfalls regarding the evaluation of NMT models in out-of-domain settings. Also, we
believe that future research will need to address the lack of adequacy without losing fluency.
We consider domain robustness an unsolved problem and encourage further research. For this
purpose, we share data and code to serve as a baseline for future experiments.6
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Abstract
Nowadays, very little research for Indigenous languages has been studied. Indigenous lan-
guages bring significant challenges for Natural Language Processing approaches because of
multiple features such as polysynthesis, morphological complexity, dialectal variations with
rich morpho-phonemics, spelling with noisy data and low resource scenarios. Particularly,
morphological segmentation for polysynthetic languages is challenging because a word may
contain many individual morphemes and training data can be extremely scarce. The current
research paper focuses on Inuktitut, one of the Indigenous polysynthetic language spoken in
Northern Canada. First, a rich word segmentation for Inuktitut is studied using a set of rich
features and by leveraging (bi-)character-based and word-based pretrained embeddings from
large-scale raw corpora. Second, we incorporated this pre-processing step into our first Neu-
ral Machine Translation system. Our evaluations showed promising results and performance
improvements in the context of low-resource Inuktitut-English neural machine translation.

1 Introduction

In the Americas, there are a wide range of linguistic families about 140 linguistic families in the
world. About 900 different Indigenous languages spoken in the Americas approximately are
reported in (Mager et al., 2018). In Canada, there is a great diversity of Indigenous languages,
grouped into 12 language families, that have been central to the history of First Nations people,
Métis and Inuit in Canada and continue to play a vital role to this day (Rice, 2011).

This research paper focuses on Inuktitut, one of the Indigenous polysynthetic languages
spoken in Northern Canada and the development of a Neural Machine Translation (NMT) for
Inuktitut-English. The main objective and motivation of this project is the revitalization and
preservation of Indigenous languages and cultural heritage through major tasks in NLP.

However, the development of Indigenous language technology faces many challenges such
as polysynthesis with a high rate of morphemes per word, lack of orthographic normalization,
dialectal variations and lack of linguistic resources and tool such as corpora (Littell et al., 2018).
This first step towards a multilingual NMT framework that will involve several endangered
Indigenous languages of Canada, is essential as the only parallel corpus freely available for
research is the Nunavut-English Hansard corpus (Joanis et al., 2020).

Inspired by the work of Farley (2012), related on the creation of the first Inuktitut morpho-
logical analyzer, we build a neural network-based word segmenter for Inuktitut. The main goal
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of this research is two folds: (1) to investigate empirically several word segmentation meth-
ods on Inuktitut; and (2) to improve low-resource NMT that involves Inuktitut through rich
morphological word segmentation.

The structure of the paper is described as follows: Section 2 presents the state-of-the-art
on MT involving Indigenous languages. In section 3, we describe our methodology. Then, in
section 4, we present our experiments and evaluations. Finally, in section 5, we present our
conclusion and some perspectives for future research.

2 Related work

Farley (2012) developed a morphological analyzer for Inuktitut, which makes use of a finite-
state transducer and hand-crafted rules. This Uqa·Ila·Ut project (Uqailaut)1 is a rule-based
system that involves regular morphological variations of about 3200 head, 350 lexical, and
1500 grammatical morphemes, with heuristics for ranking the various readings. Inspired by the
Uqailaut project of Farley (2012), Micher (2017) applied a segmental recurrent neural network
approach (Kong et al., 2015) from the output of this morphological analyzer for Inuktitut.

The development of MT systems for Indigenous languages have followed the trends in the
field, with rule-based, statistical-based and neural network-based approaches. Micher (2018)
applied the Byte Pair Encoding (BPE) algorithm (Sennrich et al., 2016) pre-processing both the
English and Inuktitut sides of the Nunavut Hansard corpus, in the Inuktitut to English direction,
reported a BLEU score of 30.35. NMT approaches use neural networks architectures that are
fed with very big amounts of parallel texts. However, these resources are currently unavailable
or scarce for most Indigenous languages, especially for the endangered such as Inuinnaqtun,
except Inuktitut-English (Joanis et al., 2020).

3 Methodology

In this section, we present some existing word segmentation methods for Inuktitut as well as
our proposed one.

3.1 Uqailaut morphological analysis
The Uqailaut project, proposed by Farley (2012), is based on a Finite-State Transducers (FST),
while applying several techniques and resources such as grammar rules, linguistic knowledge
and heuristics. The FST-based morphological analyzer produces one or more morphological
predictions for a given word. The heuristics allow to choose the shortest path of the morpholog-
ical analysis. For example, ’katimajiit’ is segmented as ’kati ma ji it’ (Table 1). The root ’kati’
means ’to accumulate; to gather; to join; to unite’. And the suffixes are ’ma’ means ’to be in a
state of’; ’ji’ means ’one whose job is; agent’; ’it’ means ’to be such’.

Segmentation Sentence Example
Raw text ilangit katimajiit : angiqpugut . (Meaning: some members : agreed .)

Reference ila ngit kati ma ji it : angiq pugut .
Uqailaut project (Farley, 2012) ila ngit kati ma ji it : angiq pugut .

BPE (Sennrich et al., 2016) ilangit kati@@ ma@@ jiit : angiq@@ pu@@ gut .
Our proposed approach ila ngit kati ma ji it : angiq pugut .

Table 1: Illustrations on the Inuktitut word segmentation involving our proposed approach and
others

1http://www.inuktitutcomputing.ca/Uqailaut/info.php

Proceedings of the 14th Conference of the Association for Machine Translation in the Americas 
October 6 - 9, 2020, Volume 1: MT Research Track

Page  166



3.2 Byte-Pair Encoding
The byte-pair encoding (BPE), proposed by Sennrich et al. (2016), is an unsupervised word
segmentation that aims at splitting word by subword units, which helps cope with rare and
unknown words. BPE applies the minimum entropy on the subword units, aka tokens, with the
predefined vocabulary size. These tokens look like morphemes, although BPE segmentation
model is based on training data rather than on linguistic knowledge. For example, in Inuktitut,
’katimajiit’ (meaning: members in English) may be segmented as ’kati@@ ma@@ jiit’ (Table
1). This word should be correctly segmented ’kati@@ ma@@ ji@@ it’, in the case of a large-
scale training data. The symbol @@ represents an in-word morpheme boundary.

3.3 Our proposed approach
Neural network-based approaches have shown their efficiency when applied on word segmen-
tation and enhanced with large-scale raw texts to pretrain embeddings. Adding these linguistic
factors allows the neural model to perform better, especially when dealing with data sparseness
or language ambiguity (Kann et al., 2018).

Figure 1: The system architecture of Inuktitut Rich Morphological Word Segmentation based
on neural networks

In this research, the word segmentation task is considered as a sequence labeling task.
Given an input sequence, W and C that contain all the input words and the input (bi-)characters.
At each step, the state consists of a sequence of words, W = [w0, w1, ..., wm], that have been
fully recognized, and a sequence of next incoming (bi-)characters C = [c0, c1, ..., cn], as shown
in Figure 1. The architecture is composed of three main layers: the input layer, the hidden
layer and the output layer. The input layer contains the input word sequence transformation
by concatenating pretrained (bi-)character-based and word-based embeddings, with the state
S = 〈W,C〉. On the top of the input representation layer, we use a hidden feature layer h to
merge all input features XW , XC into a single vector. This layer is built with bidirectional
LSTM (Long-Short Term Memory) (Hochreiter and Schmidhuber, 1997).

h = tanh(WhW ·XW +WhC ·XC + bh) (1)
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The output layer o calculates the activation function as an output function and displays the
output hypothesis.

o = softmax(Wo · h+ bo) (2)

4 Experiments

4.1 Data Preparation
We train our NMT model by using the Nunavut Hansard for Inuktitut-English (third edition).
As described in Joanis et al. (2020), this corpus contains 1,293,348 sentences, 5,433 sentences
and 6,139 sentences for the training, development and testing sets, respectively (Table 2).

Dataset #tokens #train #dev #test
Inuktitut 20,657,477 1,293,348 5,433 6,139
English 10,962,904 1,293,348 5,433 6,139

Table 2: Statistics of Nunavut Hansard Inuktitut-English parallel corpus 3.0

In order to pre-train the (bi-)character-based and word-based embeddings for Inuktitut,
these Nunavut Hansard datasets were used with the word2vec toolkit (Mikolov et al., 2013)
with a dimension of 50 and 30 for word-based and (bi-)character-based embeddings, respec-
tively, and option CBOW (Continuous Bag-Of-Words) by default. We observe there are only
97,785 unique terms for word-based vocabulary, 102 unique terms for character-based vocabu-
lary and 1,406 unique terms for bicharacter-based vocabulary (Table 3). To train our rich word
segmenter2, we annotated 11K sentences, 250 sentences, 250 sentences for training, develop-
ment and testing, respectively. We used Uqailaut toolkit (Farley, 2012) to annotate the training
data.

Embedding type #terms #dimension
word-based 97,785 50

character-based 102 30
bicharacter-based 1,406 30

Table 3: Statistics of word-based, (bi)character-based embeddings training by using Nunavut
Hansard Inuktitut-English parallel corpus 3.0 for Inuktitut

4.2 Training Configuration
For word segmentation, we adapted the RichWordSegmenter toolkit (Yang et al., 2017) to train
our Inuktitut word segmenter. The model is composed of 2-layer bi-directional Long Short-term
Memory (LSTM) cells, with a dimension size of 50 for the projection layer to encode the input
sequences and a dimension size of 200 for the hidden layer. The Adam optimizer (Kingma and
Ba, 2014) was used to learn the network’s weights with a learning rate of 0.001. In the BPE
subword segmentation, we used subword-nmt (Sennrich et al., 2016) toolkit to create a BPE
joint source-target vocabulary with dimension of 30,000.

In the preprocessing step, we used Moses (Koehn et al., 2007) tokenizer in all experiments
and Moses preprocessing scripts to clean the training data with a threshold of 50 words by
sentences and without repetitive sentences. We used Marian-nmt (Junczys-Dowmunt et al.,
2018) to train our Transformer-based NMT with the following hyper-parameters settings: 6-
layer depth for both encoder and decoder, embedding dimension of 512, 2048 units in hidden

2Github repository: https://github.com/NgocTanLE/Inuktitut-English-NMT
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layers in the feed-forward networks, optimizer with SGD, an initial learning rate of 0.0003. We
run 50 iterations (#max epochs) with an early stopping based on the cross-entropy scores for
the validation set every 5,000 updates. We used 6-GPUs of NVIDIA GeForce GTX 2080 Ti
12Gb.

Our experiments on NMT using the Transformer-based architecture (Vaswani et al., 2017)
are described as follows: (1) the Baseline with only tokenized training data; (2) System 1 with
only BPE-preprocessed data; (3) System 2 with our proposed Inuktitut word segmentation ; and
(4) System 3 that combines both BPE-segmentation and our proposed word segmentation. In the
system 3, the training data are firstly segmented by using our Inuktitut word segmentation. Then
these segmented training data are secondly processed in subwords with the BPE-segmentation
method.

4.3 Evaluations
Evaluations on word segmentation were performed using different automatic metrics such as
Recall, Accuracy and F-measure. As described in Table 4, the model of EXP2, with all pre-
trained embeddings, showed better performances than the model of EXP1, that uses only pre-
trained word-based embedding, with F-measure of 72.21% and 75.33% (+3.21%) on the test
set respectively (Table 4).

Recall Accuracy F-measure
EXP1 dev 74.52 87.68 80.57

test 64.34 82.28 72.21
EXP2 dev 68.94 80.82 74.41

test 70.57 80.79 75.33

Table 4: Results on Inuktitut word segmentation. EXP1: word-based embedding, EXP2: all
character-based, bicharacter-based, word-based embeddings

The NMT models were evaluated with the BLEU metric (Papineni et al., 2002), with low-
ercase and v13a tokenization, similar to Joanis et al. (2020). All the systems outperformed the
baseline with gains up to +24.32 for the development set and up to +18.44 for the test set in
terms of BLEU scores (Table 5). The performance of our proposed NMT models has signifi-
cantly improved up to +1.03 and to +7.09 of BLEU scores with Systems 1, 2 and 3, respectively,
compared to the NMT system of Joanis et al. (2020).

Experiment dev set test set
Baseline (tokenized) 27.98 23.65

(Joanis et al., 2020) (BPE) 41.40 35.00
System 1 (BPE) 42.62 36.03

System 2 (our Inuktitut WS) 49.12 39.53
System 3 (our Inuktitut WS+BPE) 52.30 42.09

Table 5: Performances on Inuktitut-English NMT in terms of lowercase word BLEU score

Our proposed NMT approach, that incorporates word segmentation for the Inuktitut as
a source language, achieved significant improvement over the baseline system, 39.53 versus
23.65 in terms of BLEU score. Moreover, although our Inuktitut word segmentation model is
trained on a small annotated corpus, the translation model can show good predictions compared
to other models (Table 6). The experimental results have a positive impact on the translation
model performance.
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System Sentence Example

[iu] raw
pikkugijauningit quviasuutauninganut arraagunit 15 @-@ nik uiviititut

ilinniarvimmik
[en] Reference congratulations on celebrating 15 years of the francophone school
[en] Baseline congratulations to 15 years of french school

[en] Joanis et al. (2020) congratulations to the 15 years of the french school
[en] System 1 congratulations to the 15 years of the french school
[en] System 2 congratulations on celebrating 15 years of the french school
[en] System 3 congratulations on celebrating the 15 years of the french school

Table 6: Illustrations on some translation predictions using different NMT systems

5 Conclusion and Perspective

In this paper, we presented an empirical study for rich morphological word segmentation on
Inuktitut in Machine Translation. A neural network-based word segmenter was built for Inuk-
titut Indigenous language, with the use of a rich features set by leveraging (bi-)character-based
and word-based pretrained embeddings from large raw texts. We applied our method to prepro-
cess the Inuktitut source language into an Inuktitut-English NMT system. Our proposed NMT
system showed better performance than the state-of-the-art, as presented in Joanis et al. (2020)
with only BPE-preprocessed training data, thanks to the rich word segmenter.

The interests for Indigenous languages are growing in NLP community. We noticed that
North American languages are the most studied. We observed the past, current NLP researches
have been done for morphology and machine translation. The study of Indigenous languages
could lead us for a more complete understanding of human languages and advance towards
universal NLP models.

Future work will focus on adding more annotated data and additional domain-specific fea-
tures to improve the accuracy of our model. Moreover, we are working towards a multilingual
NMT framework to incorporate more Indigenous languages, more precisely the endangered
ones, with the aim of preserving and revitalizing endangered and Indigenous languages, their
heritage and culture.
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