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Abstract

OpenNMT is a multi-year open-source ecosystem for neural machine translation (NMT) and
natural language generation (NLG). The toolkit consists of multiple projects to cover the com-
plete machine learning workflow: from data preparation to inference acceleration. The systems
prioritize efficiency, modularity, and extensibility with the goal of supporting research into
model architectures, feature representations, and source modalities, while maintaining API sta-
bility and competitive performance for production usages. OpenNMT has been used in several
production MT systems and cited in more than 700 research papers.

1 Introduction

Neural machine translation (NMT) is a recent approach for machine translation that has led
to remarkable improvements, particularly in terms of human evaluation, compared to rule-
based and statistical machine translation (SMT) systems (Wu et al., 2016). From the initial
work on recurrent sequence-to-sequence models (Sutskever et al., 2014) to recent advances on
self-attentional models (Vaswani et al., 2017), a significant amount of contributions explored
various model architectures, hyper-parameter settings, and data preparation techniques. This
exploration is often constrained by engineering issues related to computation efficiency, code
design, and model deployment.

In this context, we introduced OpenNMT ' in late 2016, the first large audience open-
source toolkit to design, train, and deploy neural machine translation models. The OpenNMT
initiative consists of several projects to assist researchers and developers in their NMT journey,
from data preparation to inference acceleration. It supports a wide range of model architectures
and training procedures for neural machine translation as well as related tasks such as natural
language generation and language modeling.

The open source community around neural machine translation is very active and includes
several other projects that have similar goals and capabilities such as Fairseq (Ott et al., 2019),
Sockeye (Hieber et al., 2017), or Marian (Junczys-Dowmunt et al., 2018). In the ongoing de-
velopment of OpenNMT, we aim to build upon the strengths of those systems, while providing
unique features and technology support.

In this paper, we briefly give an overview of the OpenNMT project and its history. We then
present the key features that make OpenNMT particularly suited for research and production.
Finally, we share some benchmarks for comparison and current work directions.

'https://opennmt .net

Proceedings of the 14th Conference of the Association for Machine Translation in the Americas
October 6 - 9, 2020, Volume 1: MT Research Track

Page 102



2 Project overview

OpenNMT is a collection of projects supporting easy adoption of neural machine translation
and related tasks. The project has two actively maintained implementations:

e OpenNMT-py: A user-friendly and multimodal implementation benefiting from PyTorch
ease of use and versatility.

e OpenNMT-tf: A modular and stable implementation powered by the TensorFlow 2
ecosystem.

These implementations provide command line utilities and a Python library to configure,
train, and run models. Each implementation has its own design and set of features, but both
share the goals that started the OpenNMT initiative: ease of use, efficiency, modularity, exten-
sibility, and production readiness. The supported features are compared in Table 1.

Training Py tf Tasks py tf Decoding Py tf
Automatic evaluation v v Image/Video to text v Beam search v v
Checkpoint averaging v v Language modeling ' Coverage penalty v '
Contrastive learning v Sequence classification v CTranslate2 compatibility v v
Early stopping v v Sequence tagging v Ensemble v
Gradient accumulation v v Sequence to sequence v v Length penalty v v
Supervised alignment v v Speech to text v v N-best rescoring v v
Mixed precision v v Summarization v N-gram blocking v
Moving average v v Phrase table v
Multi-GPU v v Models py tf Random noise v v
Multi-node v v ConvS2S v Random sampling v v
Online tokenization v DeepSpeech2 v Replace unknown v v
Pretrained embeddings v v GPT-2 v
Scheduled sampling v Im2Text v Model configuration Py tf
Vocabulary update v Listen, Attend and Spell v Copy attention v
Weighted dataset v v RNMT+ v Coverage attention v
RNN with attention v v Hybrid models v
Transformer v v Multi source v
Multiple input features v v
Relative position v v
Tied embeddings v v

Table 1: Features implemented by OpenNMT-py (column py) and OpenNMT-tf (column tf).

The ecosystem is completed by tools that are used in both OpenNMT-py and OpenNMT-tf:

e Tokenizer: A fast and customizable text tokenization library that includes Unicode-based
segmentation, subword training and encoding (BPE and SentencePiece), protected se-
quences, and case annotation.

e CTranslate2: An optimized inference engine for Transformer models which comes with
a custom C++ implementation supporting fast CPU and GPU execution, quantization, par-
allel translations, and interactive decoding.

Finally, these different projects are integrated in nmt-wizard-docker which proposes a
way to containerize NMT frameworks and provide a unique command line interface for training,
translating, and serving models.

All projects are released on GitHub? under the MIT license.

2https://github.com/OpenNMT
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2.1 History

OpenNMT was first released in late 2016 as a Torch7 implementation. This version was the
result of a collaboration between Harvard NLP and SYSTRAN and was based on seq2seq-attn,
an open-source project developed by Harvard student Yoon Kim. The original demonstration
paper (Klein et al., 2017) was awarded “Best Demonstration Paper Runner-Up” at ACL 2017.

After the release of PyTorch (Paszke et al., 2019), the Facebook A.I. Research team shared
a complete rewrite of the project that later became OpenNMT-py and initiated the sunsetting of
the Torch7 version of OpenNMT. The ecosystem was then extended with OpenNMT-tf which
prioritized production, while OpenNMT-py had a focus on research at this time.

After more than 3 years of active development, OpenNMT projects have been starred by
over 7,400 users. A community forum? is also home of 970 users and more than 9,800 posts
about NMT research and how to use OpenNMT effectively.

2.2 Adoption

Cited in over 700 scientific publications as of May 2020, OpenNMT has also been directly
used in numerous research papers. The system is employed both to conduct new experiments
and as a baseline for sequence-to-sequence approaches. OpenNMT was used for other tasks
related to neural machine translation such as summarization (Gehrmann et al., 2018), data-to-
text (Wiseman et al., 2017), image-to-text (Deng et al., 2017), automatic speech recognition
(Ericson, 2019) and semantic parsing (van Noord and Bos, 2017).

OpenNMT also proved to be widespread in industry. Companies such as SYSTRAN
(Crego et al., 2016), Booking.com (Levin et al., 2017), or Ubiqus* are known to deploy Open-
NMT models in production. We note that a number of industrial entities published scientific pa-
pers showing their internal experiments using the framework such as SwissPost (Girletti et al.,
2019) and BNP Paribas (Mghabbar and Ratnamogan, 2020), while NVIDIA used OpenNMT as
a benchmark for the release of TensorRT 6°.

3 Key features

3.1 Model architectures catalog

While OpenNMT initially focused on sequence-to-sequence models applied to translation, it
has been extended to support additional architectures and model components (see Table 1).

Multiple architectures. The toolkits implement the most used architectures for neural ma-
chine translation: recurrent with attention (Bahdanau et al., 2015; Luong et al., 2015), self-
attentional (Vaswani et al., 2017), and convolutional (Gehring et al., 2017). The project also
includes components for other tasks such as encoders for non-text inputs, decoders for genera-
tive languages models, and copy attention mechanisms (See et al., 2017) for summarization.

Modular design. We focus on modularity to allow ideas from one paper to be reused in
another context. OpenNMT-tf pushes this mindset to the extreme by requiring users to configure
their model via Python code. This enables a high level of modelling freedom to support custom
architectures such as hybrid sequence-to-sequence models (Chen et al., 2018), multi-source
Transformer models (Libovicky et al., 2018), and nested input features.

3https://forum.opennmt .net/

‘https://slator.com/features/how-ubiqus-deploys-neural-machine-translation—
in-language-operations/

Shttps://news.developer.nvidia.com/tensorrt6-breaks—bert-record
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Model size | CPU GTX1080 GTX1080Ti RTX2080Ti | BLEU
OpenNMT-tf 367MB | 217.6 1659.2 1762.8 1628.3 26.9
OpenNMT-py 542MB | 179.1 1510.0 1709.3 1406.2 26.7
CTranslate2 374MB | 3894 3081.3 3388.0 4196.2 26.7
+ intl6 197MB | 413.6 3055.7 3380.4 4202.9 26.7
+ int8 110MB | 508.3 2654.8 2734.6 31434 26.8
+ vmap 12IMB | 646.2 29215 2992.1 3312.9 26.6

Table 2: This table compares model size and translation speed (target tokens per second) for a base
English-German Transformer. The BLEU scores are computed on an undisclosed test set and are reported
to show that quality is comparable. All runs use a batch size of 32 and a beam size of 4. The CTranslate2
models are generated from the OpenNMT-py model weights. There is a noticeable drop in performance
on RTX for both -tf and -py for an unknown reason at the time of this publication.

3.2 Scalable training

As GPU performance has been drastically improving in the last few years, it has been important
for software to take it into account not to introduce unnecessary bottlenecks. Both OpenNMT-
py and OpenNMT-tf have been constantly optimized to keep up with the available computing
power and its intricacies, as well as most mainstream training methods.

Optimized and parallel training. Training efficiency was an early focus of OpenNMT. It
can run the training on multiple GPUs and machines using data parallelism. OpenNMT imple-
mentations are also compatible with mixed precision training to make use of NVIDIA’s Tensor
Cores, and when possible, they employ graph execution.

Optimizations for low-resource hardware. We also strive to make NMT training possible
on low memory systems. OpenNMT supports gradient accumulation which is a way to simulate
larger batch sizes that do not fit on the available GPU memory. OpenNMT-py is also able to
shard the loss computation to reduce memory usage.

Efficient data pipeline. Both OpenNMT implementations make use of a producer-consumer
design to feed examples to the training. This effectively reduces the data pipeline latency as
well as the overall memory usage.

3.3 Optimized and interactive inference engine

CTranslate2 is a unique project that accelerates the execution of Transformer variants trained
with OpenNMT-py and OpenNMT-tf. It is a custom C++ implementation with no runtime
dependency on PyTorch or TensorFlow. The engine can run on CPU and GPU and is up to 4
times faster than a baseline PyTorch execution as shown in Table 2.

Specialized engine. As the engine focuses on executing specific model architectures, it im-
plements graph-level optimizations such as layer fusion, memory reusing, and caching.

Fast backend. On CPU, most of the heavy lifting is done by Intel MKL which is a reference
library when it comes to high performance matrix operations. On GPU, the implementation
uses several libraries provided by NVIDIA: Thrust, cuBLAS, and TensorRT.

Model quantization. Quantization support in deep learning frameworks is often incomplete,
especially for sequence models. However, CTranslate2 fully supports 16-bit and 8-bit GEneral
Matrix Multiplication (GEMM) to reduce the memory and computation requirements.

Multi-level parallelism. The parallelism can be configured at the batch and file levels. The
first level refers to the number of OpenMP threads used to execute a batch while the second
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corresponds to the number of batches that are executed in parallel. This multi-level approach
allows to trade-off latency and throughput.

Decoding optimizations. Multiple decoding tricks can be combined to accelerate speed, for
instance restricting target vocabulary using a pretrained mapping, removing finished translations
from the batch, sorting sentences by length, or skipping last Softmax in greedy decoding.

Interactive decoding. CTranslate2 also supports interactive decoding features such as auto-
completing partial translations and returning alternatives at a specific position in the translation.

3.4 Efficient and customizable tokenization

Tokenizer is a standalone project that provides practical C++ and Python APIs for text tokeniza-
tion. It focuses on efficiency and includes features that we found useful for training high-quality
translation models.

Configurable reversibility. The tokenization can be made reversible by marking either joints
or spaces. These markers can be attached to the input tokens or injected as separate tokens.

Advanced text segmentation. Several flags can finely control where to segment: on digits,
on alphabet change, on case change, etc. Additionally, we introduced special control characters
to prevent segmentation in delimited sequences.

Subword training and encoding. The project can train and apply SentencePiece (Kudo and
Richardson, 2018) and BPE (Sennrich et al., 2016) models, while making them compatible with
all features listed above.

3.5 Model serving

OpenNMT also provides components to serve translation models. OpenNMT-py includes a
REST server that can manage multiple models and unload those that are not used. The server
integrates CTranslate2 for efficient execution and Tokenizer for on-the-fly tokenization.

OpenNMT-tf models are compatible with TensorFlow Serving which is a scalable solu-
tion to serve machine learning models. OpenNMT-tf models are also compatible with the
OpenNMT-py REST server via the CTranslate2 integration.

4 Benchmarks

OpenNMT, as a comprehensive project geared towards Neural Machine Translation, can be
used in a fairly straightforward way to build SOTA systems and experiment on various tasks.
Anyone can throw together a competitive system using the right data, processing and training
procedures. For instance, the results for English to German translation in Table 3 are obtained
with the following configuration:

Data: English to German WMT19 task, with the addition of ParaCrawl v5 instead of v3.
Tokenization: 40,000 BPE merge operations, learned and applied with Tokenizer.
Model: Transformer Medium (12 heads, 768 d,ode1 Size, 3072 dy ¢ size).

Training: Trained with OpenNMT-py on 6 RTX 2080 Ti, using mixed precision. Initial
batch size is around 50,000 tokens, final batch size around 200,000 tokens.

o Inference: Shown scores are obtained with beam search of size 5 and average length
penalty.

This vanilla system is constrained to the WMT rules to facilitate reproducibility. The
commercial systems it is compared to are not constrained and we don’t know the extent of the
additional data that may be used. It is also very likely they use some bigger models, when we
restrained this experiment to a Transformer Medium to keep the computation budget reasonable.
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System ntl4 ntlS ntl6é ntl7 ntl8 ntl9 | Wall time GPU time

@30k steps 309 331 381 313 472 406 8h 48h
@100k steps | 329 345 393 328 477 41.1 54h 324h
Online G 309 339 386 31.6 48.0 439 -

Online M 323 343 405 33.1 48.8 438 -

Table 3: OpenNMT system vs. some commercial systems. (BLEU scores obtained with Sacre-
BLEU v1.3.7, online translations performed in April 2020.)

During the WMT19 campaign (Barrault et al., 2019), the best BLEU score for English
to German was 44.9 but the best human evaluated system scored only 42.7 with an ensemble
of Big Tranformers. It is also important to stress that we found many WMT19 references in
the test sets (whether for English to German or some other pairs) were obviously being post
edits of commercial systems. A very simple way to outline this phenomenon was to score each
document with these commercial systems and show the huge difference in BLEU points for
some of them. On the other hand, these systems were not over-performing in the same way for
previous years test sets. This has been reported by several papers in the WMT19 campaign.

Extending this to a more complete setup, with internal datasets as well as a bigger archi-
tecture, OpenNMT tools allow to reach a superior performance. Some results for an internal
English to French setup are presented in Table 4.

System ntl4 finance legal general life sciences
OpenNMT | 43.2 46.6 37.2 39.6 55.9
Online G 433 43.6 339 37.9 50.8
Online M 37.6 36.2 282 36.7 46.4

Table 4: OpenNMT English to French model performance on test sets of various domains.
(BLEU scores obtained with SacreBLEU v1.3.7, online translations performed in April 2020.)

5 Current work

As OpenNMT aims to provide a state-of-the-art ecosystem for neural machine translation, we
are continuously reproducing published papers with the goal of cherry-picking features with
significant impact and implementing technologies that are part of the complete translation work-
flow. For example, we are currently working on combining translation memories with NMT.

We are also interested in further accelerating model inference via the CTranslate2 project.
Future works include a better support of reduced precision on GPU and integration of optimized
backends for non-Intel CPUs.

Finally, we are planning on massively releasing ready-to-use state-of-the-art models for a
collection of language pairs to simplify the adoption of NMT.

6 Summary

We presented OpenNMT, an open-source ecosystem for neural machine translation and natural
language generation. The toolkit contains multiple projects and features to cover the complete
model production workflow. The main implementations, OpenNMT-py and OpenNMT-tf, sup-
port many configurable models and efficient training procedures to produce high-quality mod-
els. We also published CTranslate2, an optimized inference engine which to our knowledge
is one of the fastest decoder of Transformer models. All projects are available on GitHub at
https://github.com/OpenNMT.
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