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Abstract

Translating text that diverges from the training domain is a key challenge for machine trans-
lation. Domain robustness—the generalization of models to unseen test domains—is low for
both statistical (SMT) and neural machine translation (NMT). In this paper, we study the per-
formance of SMT and NMT models on out-of-domain test sets. We find that in unknown do-
mains, SMT and NMT suffer from very different problems: SMT systems are mostly adequate
but not fluent, while NMT systems are mostly fluent, but not adequate. For NMT, we identify
such hallucinations (translations that are fluent but unrelated to the source) as a key reason for
low domain robustness. To mitigate this problem, we empirically compare methods that are re-
ported to improve adequacy or in-domain robustness in terms of their effectiveness at improving
domain robustness. In experiments on German—English OPUS data, and German—Romansh
(a low-resource setting) we find that several methods improve domain robustness. While those
methods do lead to higher BLEU scores overall, they only slightly increase the adequacy of
translations compared to SMT.

1 Introduction

Even though neural models have improved the state-of-the-art in machine translation consid-
erably in recent years, they still underperform in specific conditions. One such condition is
out-of-domain translation. Koehn and Knowles (2017) found that neural machine translation
(NMT) systems perform poorly in such settings and that their poor performance cannot be ex-
plained solely by the fact that out-of-domain translation is difficult: non-neural, statistical ma-
chine translation (SMT) systems were superior at this task. For this reason, Koehn and Knowles
(2017) identified translation of out-of-domain text as a key challenge for NMT.

Catastrophic failure to translate out-of-domain text can be viewed as overfitting to the train-
ing domain, i.e. systems learn idiosyncrasies of the domain rather than more general features.
Our goal is to learn models that generalize well to unseen data distributions, including data from
other domains. We will refer to this property of showing good generalization to unseen domains
as domain robustness.

We consider domain robustness a desirable property of NLP systems, along with other
types of robustness, such as robustness against adversarial examples (Goodfellow et al. 2015)
or typos in the input (Belinkov and Bisk, 2018). While domain adaptation with small amounts
of parallel or monolingual in-domain data has proven very effective for NMT (e.g. Luong and
Manning, 2015; Sennrich et al., 2016a; Kobus et al., 2017; Li et al., 2019), the target domain(s)
may be unknown when a system is built, and there are language pairs for which training data is
only available for limited domains. Hence, domain robustness of systems without any domain
adaptation is not only of theoretical interest, but also relevant in practice.
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SRC Aber geh subtil dabei vor.
REF But be subtle about it.

HYP Pharmacokinetic parameters are not significantly affected in patients with renal impair-
ment (see section 5.2).

Figure 1: Example illustrating how a German—English NMT system trained on medical text
hallucinates the translation of an out-of-domain input sentence.

Model architectures and training techniques have evolved since Koehn and Knowles
(2017)’s study, and it is unclear to what extent this problem still persists. We therefore revisit
the hypothesis that NMT systems exhibit low domain robustness. In preliminary experiments,
we demonstrate that current models still fail at out-of-domain translation: BLEU scores drop
drastically for test domains other than the training domain. However, the overall out-of-domain
translation quality of NMT systems is now on par with SMT systems.

An analysis of our baseline systems reveals that hallucinated content occurs frequently
in out-of-domain translations (see Figure 1 for an example). Several authors present anecdotal
evidence for NMT systems occasionally falling into a hallucination mode where translations
are grammatically correct but unrelated to the source sentence (Arthur et al., 2016; Koehn and
Knowles, 2017; Nguyen and Chiang, 2018). Our manual evaluation shows that hallucination is
more pronounced in out-of-domain translation. We therefore expect methods that alleviate the
hallucination problem to indirectly improve domain robustness.

As a means to reduce hallucination, we experiment with several techniques and assess their
effectiveness in improving domain robustness: reconstruction (Tu et al., 2017; Niu et al., 2019),
subword regularization (Kudo, 2018), neural noisy channel models (Li and Jurafsky, 2016; Yee
et al., 2019), and defensive distillation (Papernot et al., 2016), as well as combinations of these
techniques. The main contributions of this paper are:

e we perform an analysis of SMT and NMT systems that confirms that while in-domain
BLEU increased, domain robustness remains a major problem even with state-of-the-art
Transformer architectures. Our comparison of SMT and NMT shows differences in how
performance degrades in unseen domains: SMT mostly suffers in terms of fluency, while
NMT tends to produce more fluent, but less adequate translations (hallucinations).

e we test several techniques related to adequacy, robustness, or out-of-domain translation
in regard to their effectiveness in improving domain robustness in NMT. We find that
several techniques are moderately successful, most notably reconstruction, which reduces
the average percentage of hallucinations in out-of-domain test sets from 35% to 29%.

e we show that despite moderate improvements, domain robustness remains a challenge in
NMT, and provide code and data sets to serve as baselines for future work.

2 Data Sets

We report experiments on two different translation directions: German—English (DE—EN)
and German—Romansh (DE—RM).
2.1 German—English

For all DE—EN experiments, we use the same corpora as Koehn and Knowles (2017), available
from OPUS (Lison and Tiedemann, 2016).
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DE-EN DE-RM

domains  corpora size domains  corpora size
medical EMEA 1.1m law Allegra,

IT GNOME, KDE, PHP, Ubuntu, OpenOffice 380k Press Releases 100k
koran Tanzil 540k blogs Convivenza 20k
law JRC-Acquis 720k

subtitles ~ OpenSubtitles2018 22.5m

Table 1: Data sets common to all of our experiments. Size indicates number of sentence pairs.

We use corpora from OPUS to define five domains: medical, IT, koran, law and subtitles.
See Table 1 for an overview of sizes per domain. The domains are quite distant, and we therefore
expect that systems trained on a single domain will have low domain robustness if tested on
other domains.

For each domain, we select 2000 consecutive sentence pairs each for development and
testing. Our test sets are different from Koehn and Knowles (2017), so results are not directly
comparable. In all experiments, the medical domain serves as the training domain, while the
remaining four domains are used for testing.

2.2 German— Romansh

To complement our DE—EN experiments, we also train systems for DE—+RM. Romansh is
a Romance language that, with an estimated 40 000 native speakers, is low-resource, but has
some parallel resources thanks to its status as an official Swiss language. Domain robustness is
of particular relevance in low-resource settings since training data is typically only available for
few domains. Our training data consists of 100 000 sentence pairs, specifically the Allegra cor-
pus by Scherrer and Cartoni (2012) which contains mostly law text, and an in-house collection
of government press releases. As test domain (unseen during training), we use blog posts from
Convivenza'. From both data sets we randomly select 2000 consecutive sentence pairs as test
sets.

3 State-of-the-art Models Exhibit Low Domain Robustness

In this section, we establish that current NMT systems exhibit low domain robustness by ana-
lyzing our baseline systems automatically and manually.

3.1 Experimental Setup for Baseline Models

We use Moses scripts for punctuation normalization and tokenization. We apply truecasing
trained on in-domain training data. Similarly, we apply BPE (Sennrich et al., 2016b) with 32k
(DE—EN) and 16k (DE—RM) merge operations learned from in-domain data. We train two
baselines:

NMT Baseline A standard Transformer base model trained with Sockeye (Vaswani et al.,
2017; Hieber et al., 2018).

SMT Baseline A standard, phrase-based statistical model trained with Moses (Koehn et al.,
2007), using mtrain (L&ubli et al., 2018) as frontend with standard settings.

'https://www.suedostschweiz.ch/blogs/convivenza
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SMT NMT SMT NMT

in-domain in-domain

medical 584  61.5 law 452 525
out-of-domain out-of-domain

IT 214 17.1 blogs 15.5 18.9
koran 14 1.1

law 198 253 (b)

subtitles 4.7 3.4

average (out-of-domain)  11.8 11.7

(a)

Table 2: BLEU scores of (a) baseline DE—EN systems trained on medical data, (b) baseline
DE—RM systems trained on law data.

We always test on several domains, including the training domain. We use a beam size
of 10 to translate test data. We report case-sensitive BLEU (Papineni et al., 2002) scores on
detokenized text, computed with SacreBLEU (Post, 2018)>.

3.2 Analysis of Baseline Systems

Tables 2a and 2b show automatic evaluation results for all our baseline models. Neural models
achieve good performance on the respective in-domain test sets (61.5 BLEU on medical for
DE—EN; 52.5 BLEU on law for DE—RM), but on out-of-domain text, translation quality is
clearly diminished, with an average BLEU of roughly 12 (DE—EN) and 19 (DE—RM). The
following analysis will focus on our DE—EN baseline systems.

Compared to results reported by Koehn and Knowles (2017), NMT has improved markedly
since their study was conducted, and is now on par with SMT in out-of-domain settings (11.8
BLEU versus 11.7). However, on the in-domain test set, our NMT baseline outperforms the
SMT baseline by 3 BLEU. This result suggests that higher in-domain performance does not
guarantee better out-of-domain translations.

Unknown words constitute one possible reason for failing to translate out-of-domain texts.
As shown in Table 3a, the percentage of words that are not seen during training is much higher
in all out-of-domain test sets. However, unknown words cannot be the only reason for low
translation quality: The test sets with the lowest BLEU scores (koran and subtitles) actually
have an out-of-vocabulary (OOV) rate similar to the IT test set, where BLEU scores are much
higher for both baseline models.

Additionally, our SMT baseline shows better generalization to some domains unseen at
training time, while the average BLEU is comparable to the NMT baseline. In the /T domain,
the result is most extreme: the SMT system beats the neural system by 4.3 BLEU. This demon-
strates that the low domain robustness of NMT is not (only) a data problem, but also due to the
model’s inductive biases.

As a further control, we train additional baseline systems trained on a/l domains.> We use
it to test whether the data we have held out for out-of-domain testing is inherently more difficult
to translate than the in-domain test set. The results in Table 3b show that this is not the case.

2SacreBLEU version signature: BLEU+c.mixed+#.1+s.expttok.13a+v.1.4.1.
3The subtitles domain (23m sentences) was subsampled to 1m sentence pairs so as not to overwhelm the remaining
domains (3m sentences in total). We also removed any overlap between the training and test sets.
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OOV rate SMT NMT

in-domain in-domain

medical 2.42% medical 53.2 61.4

out-of-domain out-of-domain

IT 20.09% IT 31.9 44.7

koran 18.63% koran 15.2 15.9

law 9.39% law 58.3 62.3

subtitles 18.16% subtitles 14.9 18.5
(a) average (out-of-domain)  30.1 354

(b)

Table 3: For the language pair DE—EN: (a) Out-of-vocabulary (OOV) rates of in-domain and
out-of-domain test sets. (b) BLEU scores of baselines trained on a concatenation of a/l domains.

For the NMT baseline, BLEU ranges between 15.9 and 62.3, with an average out-of-domain
BLEU of 35.4.

3.2.1 Hallucination

NMT models can be understood as language models of the target language, conditioned on a
representation of a source text. This means that NMT models have no explicit mechanism—as
SMT models do—that enforces coverage of the source sentence, and if the representation of an
out-of-domain source sentence is outside the training distribution, it can be seemingly ignored.
This gives rise to a tendency to hallucinate translations, i.e. to produce translations that are
fluent, but unrelated to the content of the source sentence (Lee et al., 2018).

We hypothesize that hallucination is more common in out-of-domain settings. A small
manual evaluation performed by the main author confirms that this is indeed the case. We
evaluate the fluency and adequacy of our baselines (we refer to them as NMT and SMT). In a
blind setup, we annotate a random sample of 100 sentence pairs per domain. As controls, we
mix in pairs of (source, actual reference), treating the reference translation as an
additional system.

Evaluation of adequacy The annotator is presented with a sentence pair and asked to
judge whether the translation is adequate, partially adequate or inadequate.

Evaluation of fluency We use the same data as for the evaluation of adequacy, however,
the annotator is shown only the translation, without the corresponding source sentence. The
annotator is asked whether the given sentence is fluent, partially fluent or not fluent.

Figure 2 shows the results of the manual evaluation in terms of adequacy and fluency. For
visualization, individual fluency values are computed as follows:

1.0xny +0.5%n, +0.0*n,

Where n ¢, n, and n,, are the number of fluent, partially fluent and non-fluent translations,
respectively. Adequacy values are computed in the same way. On the in-domain test set, both
baselines achieve high adequacy and fluency, with the NMT baseline effectively matching the
adequacy and fluency of the reference translations.

Regarding adequacy, the in-domain samples contain only a small number of translations
with content unrelated to the source (1% to 2%). On out-of-domain data, on the other hand,
both baselines produce a high number of inadequate translations: 57% (SMT) and 84% (NMT).
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Figure 2: Manual evaluation of adequacy and fluency for DE—EN. Legend: marker col-
ors are different systems, marker types are different domains. SR=Subword Regularization,
D=Distillation, R=Reconstruction

in-domain  OOD average

Reference 2% 2%
NMT 2% 35%
SMT 1% 4%
NMT + Subword Regularization 1% 37%
NMT + Distillation 3% 33%
NMT + Reconstruction 1% 29%

Table 4: Percentage of translations judged to be hallucinations (both not adequate and at least
partially fluent) in the manual evaluation.

These results suggest that the extremely low BLEU scores on these two test sets (see Table 2a)
are in large part due to made up content in the translations.

Regarding fluency in out-of-domain settings, SMT and NMT baselines behave very differ-
ently: SMT translations are more adequate, while NMT translations are more fluent. This trend
is most extreme in the koran domain, where only 2% of SMT translations are found to be fluent
(compared to 36% for NMT).

Further analysis of both annotations shows that NMT translations found to be inadequate
are not necessarily disfluent in out-of-domain settings. Table 4 shows that, on average, on out-
of-domain data, 35% of NMT translations are both inadequate and fluent, while the same is
only true for 4% of SMT translations. We refer to translations of this kind as hallucinations.

To summarize our analysis of baseline models, we find that the domain robustness of
current NMT systems is still lacking and that inadequate, but fluent translations are a prominent
issue. This motivates our choice of techniques to improve domain robustness.

4 Approaches to Improve Domain Robustness

We discuss approaches that can potentially remedy the problem of low domain robustness, and
compare them in subsequent experiments.

4.1 Subword Regularization

Subword regularization (Kudo, 2018) is a form of data augmentation that, instead of applying
a fixed subword segmentation like BPE, probabilistically samples a new subword segmentation
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for each epoch. At test time, the model either uses 1-best segmentation, or translates the k-best
segmentations and selects the highest-probability translation.

Kudo (2018) reports large improvements on low-resource and out-of-domain settings. In
particular, improvements on in-house patent, web, and query test sets were in the range of 2—-10
BLEU. In this work, we evaluate subword regularization on public datasets. We apply sampling
at training time and translate 1-best segmented sentences at test time.

4.2 Defensive Distillation

We hypothesize that defensive distillation can be used to improve domain robustness. Defensive
distillation exploits knowledge distillation to fend off adversarial attacks.

Knowledge distillation is a technique to derive models from existing ones, instead of train-
ing from scratch. The idea was introduced for simple image classification models by Ba and
Caruana (2014) and Hinton et al. (2015). A first model (called the teacher) is trained in the
usual fashion. Then, a second model (called the student) is trained using the predictions of the
teacher model instead of the labels in the training data.

Typically, knowledge distillation is used to approach the performance of a complex teacher
model (or ensemble of models) with a simpler student model. Another application is defensive
distillation (e.g. Papernot et al. 2016), where the student shares the network architecture with
the teacher, with the purpose not being model compression, but improving the model’s gener-
alization to samples outside of its training set, and specifically robustness against adversarial
examples (Szegedy et al., 2013; Goodfellow et al., 2014).

Defensive distillation has been shown to be effective at improving robustness to adversarial
examples in image recognition. In this work, we apply it to NMT and test its effect on domain
robustness, which Papernot et al. (2016) hint at but do not empirically test. As proposed by
Kim and Rush (2016), we train the student model on teacher translations produced with beam
search, instead of training on soft prediction labels.

4.3 Reconstruction

Reconstruction (Tu et al., 2017) is a change to the model architecture that addresses the prob-
lem of adequacy. The authors propose to extend encoder-decoder models with a reconstructor
component that learns to reconstruct the source sentence from decoder states. The reconstructor
has two uses: as a training objective, it forces the decoder representations to retain information
that will be useful for reconstruction; during inference, it can provide scores that can be used
for reranking.

However, we observed in initial experiments that reconstruction from hidden states can be
too easy: the reconstruction loss on training batches diminishes very quickly, to the point of
being insignificant. To prevent the model from simply reserving parts of the decoder hidden
states to memorize the input sentence, we use reconstruction from actual translations instead of
hidden states (Niu et al., 2019). Translations are produced with differentiable sampling via the
Straight-Through Gumbel Softmax (Jang et al., 2017), which still allows joint optimization of
translation and reconstruction. While Niu et al. (2019) implement reconstruction for recurrent
architectures, we apply the technique to Transformers.

In order to avoid introducing any additional parameters for reconstruction, as recom-
mended in Niu et al. (2019), we train a multilingual, bi-directional system with shared pa-
rameters as a further baseline. This bi-directional system is used to initialize the fine-tuning of
reconstruction models. We empirically test whether our bilingual baseline and this multilingual
baseline have comparable performance.
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4.4 Neural Noisy Channel Reranking

Even though the methods we presented previously do lead to improved out-of-domain transla-
tion quality, the models still suffer from low adequacy. Also, our reconstruction models only
perform reconstruction during training, and the reverse translation direction is not exploited, for
instance by reranking translations (Tu et al., 2017).

We conjecture that this problem can be addressed with a neural noisy channel model (Li
and Jurafsky, 2016). Standard NMT systems only model p(y|x), which can lead to a “failure
mode that can occur in conditional models in which inputs are explained away by highly pre-
dictive output prefixes” (Yu et al., 2017). Noisy channel models propose to also model p(z|y)
and p(y) to alleviate this effect.

In practical terms, noisy channel models are implemented by modifying the core decoding
algorithm, or simply as n-best list reranking. We adopt the latter, since n-best list reranking
was shown to have equal or better performance than more computationally costly methods that
score partial hypotheses during beam search (Yee et al., 2019).

5 Experimental Setup for Proposed Methods

This section describes how we preprocessed data and trained the models described in Section
4. Unless stated otherwise, the data is preprocessed in the same way as for the baselines (see
Section 3.1).

Subword Regularization Models We integrate subword regularization in Sockeye, using
the Python library provided by Kudo (2018)*. The training data is not segmented with BPE in
this case. Instead, the training tool is given truecased data, and new segmentations are sampled
before each training epoch. We use the following hyperparameters: we set the smoothing pa-
rameter o to 0.1 and use an n-best size of 64. For the validation and test data we use 1-best
segmentation.

Defensive Distillation Models We use our baseline Transformer model as the teacher
model. We translate the original training set with beam size 10. The student is trained on the
translations of the teacher model using the same hyperparameters and being initialized with the
parameters of the teacher model.

Reconstruction Models We implement differentiable sampling reconstruction for Trans-
former models in Sockeye and release the implementation.’ We first train a multilingual Trans-
former model using the approach of Johnson et al. (2017).

After early stopping, we continue training with reconstruction as an additional loss. All
hyperparameters remain the same, except for the new loss and a lower initial learning rate. For
testing we select the model with the lowest validation perplexity. We use the reconstruction loss
only for training, not for reranking.

Noisy Channel Reranking For each hypothesis, we store an n-best list of 50. We produce
the following scores: p(y|x) (usual translation score), p(x|y) (translation score in reverse direc-
tion) and p(y) (language model score in target language). p(y|x) and p(z|y) are computed with
the same model since it is bi-directional.

In order to produce p(y) scores we train a Transformer language model with fairseq (Ott
et al., 2019) using standard settings. We impose a large penalty of —100 for hypotheses that
contain subwords not found in the target side training data.

The final hypothesis score for reranking is computed as a weighted multiplication:

score(z,y) = p(ylz)* * p(z|y)* * p(y)

“https://github.com/google/sentencepiece
Shttps://github.com/ZurichNLP/sockeye/tree/domain-robustness
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DE—EN DE—RM
At A Aim At A Aim

(5) Multilingual 0.7 026 0.04 0.9 0.09 0.01
(6) Reconstruction 0.6 0.32 0.08 09 0.09 0.01

(7) Multilingual + SR 0.5 042 0.08 0.9 0.09 0.01
(8) Reconstruction + SR 0.5 0.46 0.04 09 0.09 0.01

Table 5: Best weights for noisy channel reranking found with grid search on in-domain devel-
opment set. Row numbers correspond to the ones in Table 6. \; y=forward translation weight,
Arp=backward translation weight, \;,,= language model weight

The best weights are found with simple grid search on the in-domain development set, with
Aef € [0.0,0.1,...,1.0], A, € [0.0,0.01,...,0.1,0.2,...,1.0], and A\pp = 1 — Aty — Aim. The
best weight combination is then used to compute scores and perform reranking for the test data
of all domains. Table 5 lists optimal weights found for each model individually.

6 Results

We evaluate models in terms of BLEU on different domains (see Section 6.1) and also annotate
a subset of translations manually for fluency and adequacy (see Section 6.2).

6.1 Automatic evaluation

Table 6 shows the results of our automatic evaluation. Overall, the proposed methods are able
to outperform the SMT and NMT baselines but not in a consistent manner across domains or
data conditions: an increase in in-domain BLEU does not always mean a similar increase on
out-of-domain data. Similarly, an increase in BLEU in high-resource conditions (DE—EN)
does not consistently lead to better results in low-resource conditions (DE—RM).

Subword regularization The results for subword regularization are mixed (see Row 3 in
Table 6). For DE—EN, in-domain translation quality is comparable to the NMT baseline, while
the average out-of-domain BLEU falls short of the NMT baseline (-0.5 BLEU). However, in
the low-resource condition (DE—RM), subword regularization improves both in-domain and
out-of-domain translation (+1.2 in both cases).

This result is surprising given the larger gains reported by Kudo (2018). To validate our
implementation of subword regularization, we reproduce an experiment from Kudo (2018) with
English-Vietnamese data from IWSLT 15 (see Table 7). With subword regularization we ob-
serve an improvement of 0.8 BLEU, which is lower than the 2 BLEU improvement reported by
Kudo (2018), but we also note that our baseline model is stronger.

If subword regularization is combined with multilingual or reconstruction models (see
Rows 7 and 8 in Table 6), we observe no improvements on in-domain test sets, but gains on
3 out of 4 out-of-domain data sets, indicating that subword regularization is in fact helpful for
domain robustness.

Defensive Distillation Distilling the training data also leads to improvements in BLEU on
out-of-domain text (see Row 4 in Table 6). The average gain is +1.4 for DE—EN, but only
+0.4 for DE—RM. In-domain performance is either comparable or slightly worse (-0.4 BLEU
for DE—EN) than the NMT baseline. The technique was originally shown to guard against
adversarial attacks, where inputs are only infinitesimally different from training examples. Our
results indicate that generalization to out-of-domain inputs — that are farther from the training
data — is similarly improved.
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DE—EN DE—RM

in-domain  average OOD in-domain  average OOD
(1) SMT 58.4 11.8 45.2 15.5
(2) NMT 61.5 11.7 52.5 18.9
(3) NMT + SR 61.4 11.2 53.7 20.1
(4) NMT +D 61.1 13.1 52.5 19.3
(5) Multilingual 61.4 11.7 52.8 19.6
(6) Reconstruction 61.5 12.5 534 21.2
(7) Multilingual + SR 60.3 12.8 52.4 20.1
(8) Reconstruction + SR 60.3 13.2 524 20.3
(9) Multilingual + NC 62.7 11.8 53.1 21.4
(10) Reconstruction + NC 62.8 13.0 53.3 21.6
(11) Multilingual + SR + NC 60.7 12.3 53.1 21.4
(12) Reconstruction + SR + NC 60.8 13.1 524 20.7

Table 6: BLEU scores (higher is better) of all systems on test data. SR=Subword Regularization,
D=Distillation, NC=Noisy Channel Model, average OOD=average BLEU score over out-of-
domain test sets.

Baseline Subword
(BPE)  Regularization

Kudo (2018) 25.6 27.7 (+2.1)
Our results 28.3 29.1 (+0.8)

Table 7: Reproducing results from Kudo (2018) on IWSLT 15 English-Vietnamese data.
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Source - die Produktion in der Tiirkei entspricht 1,3 % der chinesischen Produktion;

Target - Turkey’s volume of production amounts to 1,3 % of Chinese production,
NMT Baseline - the production in slkei is 1.3% of a Chinese hamster ovary (CHO) cell
Multilingual - production in turkei is equivalent to 1.3% of Chinese Hamster production;
Reconstruction - the production in thekei is equivalent to 1.3% of the Chinese production;
Reconstruction + NC - production in the turkei equals 1.3% of the Chinese production;

Table 8: Example translations for DE—EN. Hallucinated parts are shown in bold.

Reconstruction Since reconstruction models are fine-tuned from multilingual models, we
report scores for those multilingual models as well. Row 5 of Table 6 shows that our multi-
lingual models perform equally well or better than the NMT baseline. As shown in Row 6 of
Table 6, reconstruction outperforms the NMT baseline on out-of-domain data for both language
pairs (+0.8 BLEU for DE—EN, +2.3 BLEU for DE—RM), while maintaining (DE—EN) or
improving (+0.9 BLEU for DE—+RM) in-domain BLEU.

Noisy Channel Reranking We evaluate the performance of noisy channel reranking in
four different settings: applied to multilingual or reconstruction systems, both with and without
subword regularization. The results are shown in Rows 9 to 12 of Table 6.

For DE—EN, reranking a reconstruction model achieves a good in-domain BLEU (+1.3
over the baseline), and slightly improves out-of-domain translation on average (+0.5 BLEU
over reconstruction). For DE—RM in our low-resource setting, reranking with a noisy channel
model improves the reconstruction model by +0.4 BLEU, producing the best result overall. The
improvement on out-of-domain translation is much larger for the multilingual model (+1.8 over
multilingual model without reranking). Combining reranked models (see Rows 11 and 12 in
Table 6) with subword regularization does not lead to consistent improvements. Out-of-domain
BLEU for DE—RM is slightly better compared to a subword regularization system without
reranking (+0.4 BLEU), while all other scores are comparable or worse.

We believe that the success of reranking could be limited for two reasons. Firstly, model
weights A are optimized on in-domain data. Oracle experiments that optimize weights on out-
of-domain data show that optimal model weighting differs greatly between domains and could
further improve out-of-domain results by 0.5-1 BLEU on average. Secondly, reranking could
be held back by the lack of diversity among hypotheses in n-best lists.

6.2 Manual evaluation

In a small manual evaluation, we analyze if methods that improve domain robustness in terms
of BLEU also directly address the lack of adequacy in out-of-domain translation (see Section
3.2.1). The results are shown in Figure 2b. For anectodal examples of translations by several
models, see Table 8.

Techniques with a bias for fluency We find that subword regularization increases fluency
by several percentage points in some domains. However, it fails to improve adequacy which
explains why it consequently fails to improve out-of-domain BLEU. Defensive distillation im-
proves translations in a similar way, with a bias for fluency while not consistenly improving the
adequacy of out-of-domain translations.

Reconstruction having a bias for adequacy We show that reconstruction is limiting hal-
lucination on out-of-domain data, reducing the percentage of inadequate translations by 5 per-
centage points on average. We also note that there appears to be a tradeoff between adequacy
and fluency: while reconstruction does improve out-of-domain adequacy, the improvement
comes at the cost of lower fluency.

Proceedings of the 14th Conference of the Association for Machine Translation in the Americas
October 6 - 9, 2020, Volume 1: MT Research Track

Page 161



7 Discussion

Overall, we emphasize that SMT no longer appears to have higher domain robustness than
NMT—a widely held belief given the findings of Koehn and Knowles (2017). However, SMT
and NMT models achieve comparable domain robustness in different ways: SMT translations
are more adequate (since SMT decoding implicitly enforces coverage), while NMT translations
are more fluent (since an NMT decoder is simply a language model of the target language con-
ditioned on source context). Therefore, evaluating domain robustness with automatic metrics
only can be misleading and hide the fact that models have very different inductive biases, even
if their BLEU score is similar.

Our experiments to reduce NMT hallucination and improve adequacy can be summarized
as follows. Several methods lead to moderate improvements in translation quality, but only re-
construction combined with noisy channel reranking robustly increased BLEU across domains
and data conditions (see Row 10 of Table 6). Other techniques are successful only in certain
conditions. For instance, combining multilingual systems with Subword Regularization im-
proves out-of-domain translation only, but not in-domain quality (see Rows 7-8 of Table 6).
This suggests that techniques found to work well on in-domain test data cannot be assumed to
have a similar effect on out-of-domain data without proper testing.

Our manual evaluation suggests that for NMT systems, an increase in out-of-domain
BLEU also means that translations are slightly more adequate. However, NMT models still
have a strong bias for fluency (all models under the diagonal in Figure 2b) and their adequacy
falls short of the adequacy of SMT systems. Our most successful reconstruction model does
indeed improve adequacy, but at the same time decreases fluency to a certain extent. We be-
lieve radically different approaches are needed to increase the coverage and adequacy of NMT
translations without sacrificing their fluency.

8 Conclusions

Current NMT systems exhibit low domain robustness, i.e. they underperform if they are tested
on a domain that differs strongly from the training domain. This is especially problematic in
settings where explicit domain adaptation is impossible because the target domain is unknown,
or because we are in a low-resource setting where training data is only available for limited
domains. We find that hallucinated translations are a common problem for NMT models in
out-of-domain settings, which partially explains their low domain robustness. Our results show
that several methods yield improved generalization to out-of-domain data. We achieve an im-
provement in average out-of-domain BLEU of 1.5 (DE—EN) and 2.7 (DE—RM), as well as a
reduction in hallucinated translations according to manual evaluation.

We analyzed the fluency and adequacy of translations manually, leading to a discussion of
several pitfalls regarding the evaluation of NMT models in out-of-domain settings. Also, we
believe that future research will need to address the lack of adequacy without losing fluency.
We consider domain robustness an unsolved problem and encourage further research. For this
purpose, we share data and code to serve as a baseline for future experiments.
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