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Abstract

A challenge that many online platforms face is
hate speech or any other form of online abuse.
To cope with this, hate speech detection sys-
tems are developed based on machine learning
to reduce manual work for monitoring these
platforms. Unfortunately, machine learning is
vulnerable to unintended bias in training data,
which could have severe consequences, such
as a decrease in classification performance or
unfair behavior (e.g., discriminating minori-
ties). In the scope of this study, we want to
investigate annotator bias — a form of bias
that annotators cause due to different knowl-
edge in regards to the task and their subjective
perception. Our goal is to identify annotation
bias based on similarities in the annotation be-
havior from annotators. To do so, we build a
graph based on the annotations from the differ-
ent annotators, apply a community detection
algorithm to group the annotators, and train for
each group classifiers whose performances we
compare. By doing so, we are able to iden-
tify annotator bias within a data set. The pro-
posed method and collected insights can con-
tribute to developing fairer and more reliable
hate speech classification models.

1 Introduction

A massive problem that online platforms face nowa-
days is online abuse (e.g., hate speech against
women, Muslims, or African Americans). It is a se-
vere issue for our society because it can cause more
than poisoning the platform’s atmosphere. For ex-
ample, Williams et al. (2020) showed a relation
between online hate and physical crime.

Therefore, people have started to develop sys-
tems to automatically detect hate speech or abusive
language. The advances in machine learning and
deep learning have improved these systems tremen-
dously, but there is still much space for enhance-
ments because it is a challenging and complex task

(Fortuna and Nunes, 2018; Schmidt and Wiegand,
2017).

A weakness of these systems is their vulner-
ability to unintended bias that can cause an un-
fair behavior of the systems (e.g., discrimination
of minorities) (Dixon et al., 2018; Vidgen et al.,
2019). Researchers have identified different types
and sources of bias that can influence the perfor-
mance of hate speech detection models. Davidson
et al. (2019), for example, investigated racial bias
in hate speech data sets. Wiegand et al. (2019)
showed that topic bias and author bias of data sets
could impair the performance of hate speech clas-
sifiers. Wich et al. (2020) examined the impact of
political bias within the data on the classifier’s per-
formance. To mitigate bias in training data, Dixon
et al. (2018) and Borkan et al. (2019) developed an
approach.

Another type of bias that caught researchers’ at-
tention is annotator bias. It is caused by the sub-
jective perception and different knowledge levels
of annotators regarding the annotation task (Ross
et al., 2017; Waseem, 2016; Geva et al., 2019).
Such a bias could harm the generalizability of clas-
sification models (Geva et al., 2019). Especially in
the context of online abuse and hate speech, it can
be a severe issue because annotating abusive lan-
guage requires expert knowledge due to the vague-
ness of the task (Ross et al., 2017; Waseem, 2016).
Nevertheless, due to the limited resources and the
demand for large datasets, annotating is often out-
sourced to crowdsourcing platforms (Vidgen and
Derczynski, 2020). Therefore, we want to investi-
gate this phenomenon in our paper. There is already
research concerning annotator bias in hate speech
and online abuse detection. Ross et al. (2017) ex-
amined the relevance of instructing annotators for
hate speech annotations. Waseem (2016) compared
the impact of amateur and expert annotators. One
of their findings was that a system trained with data
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labeled by experts outperforms one trained with
data labeled by amateurs. Binns et al. (2017) inves-
tigated whether there is a performance difference
between classifiers trained on data labeled by males
and females. Al Kuwatly et al. (2020) extended
this approach and investigated the relevance of an-
notators’ educational background, age, and mother
tongue in the context of bias. Sap et al. (2019)
examined racial bias in hate speech data sets and
its impact on the classification performance. To
the best of our knowledge, no one has investigated
annotator bias by identifying patterns in the anno-
tation behavior through an unsupervised approach.
That is why we address the following research ques-
tion in the paper: Is it possible to identify annotator
bias purely on the annotation behavior using graphs
and classification models?

Our contribution is the following:

• A novel approach for grouping annotators ac-
cording to their annotations behavior through
graphs and analyzing the different groups in
order to identify annotator bias.

• A comparison of different weight functions
for constructing the annotator graph modeling
the annotator behavior.

2 Data

For our study, we use the Personal Attacks corpora
from the Wikipedia Detox project (Wulczyn et al.,
2017). It contains 115,864 comments from English
Wikipedia that were labeled whether they comprise
personal attack or not. In total, there are 1,365,217
annotations provided by 4,053 annotators from the
crowdsourcing platform Crowdflower — approx-
imately 10 annotations for each comment. Each
annotation consists of 5 categories distinguishing
between different types of attack: quoting attack,
recipient attack, third party attack, other attack,
and attack. In our experiments, we only use the 5th

category (attack) because it covers a broader range
than the other labels. Its value is 1 if ”the comment
contains any form of personal attack” (Wikimedia,
n.d.). Otherwise it is 0. The corpora also contain
demographic information (e.g., gender, age, and
education) of 2,190 annotators. But this data is not
relevant to our study.

3 Methodology

Our approach is to group annotators according
to their annotation behavior and analyze perfor-

mance of classification models trained on anno-
tations from these groups. To do so, we firstly
group the annotators according to their annotation
behavior using a graph. Secondly, we split the
data set by the groups and their respective annota-
tions. Thirdly, we train classifiers for each anno-
tator group and then compare their performances.
The reader can find a detailed description of the
steps in the following1:

Creating Annotator Graph
In the first step, we create an undirected un-
weighted graph to model the annotation behavior
of the annotators (e.g., how similar the annotations
of two annotators are). Each node represents an an-
notator. An edge between two nodes exists if both
annotators annotate at least one same data record.
Additionally, each edge has a weight that models
the similarity between the annotations of the data
records. To calculate the weight, we selected four
functions that we will compare:

1. Agreement Rate: It is the percentage in
which both annotators agree on the annota-
tion for a data record:

a =
nagree

nagree + ndisagree

where nagree is the number of data records
that both annotated and assigned the same la-
bels to and ndisagree is the number of data
records that both annotated and assigned dif-
ferent labels.

2. Cohen’s kappa (Cohen, 1960): It is often
used as a measure for inter-rater reliability.

κ =
p0 − pe
1− pe

where p0 is the ”proportion of observed agree-
ments” (Sim and Wright, 2005, p.258) among
the data records annotated by both annotators
and pe is ”proportion of agreements expected
by chance” (Sim and Wright, 2005, p.258)
among the records. The range of κ is between
−1 and +1. +1 corresponds perfect agree-
ment; ≤ 0 means agreement at chance or no
agreement (Cohen, 1960). If both annotators
select the same label for all records, κ is not

1Code available on GitHub: https://github.com/
mawic/graph-based-method-annotator-bias
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defined. In this case, we remove the edge. An
alternative would be to keep the edge and as-
sign 1. But we rejected this idea because of
the following consideration. Let us assume
that we have 4 annotators (A,B,C, and D). A
and B assigned the same label to the same
comment. C and D assigned the same labels
to the same 20 comments. In both cases, κ is
not defined. Assigning the same value (e.g., 1)
to both edges would weigh both equally. But
the edge between C and D should receive a
higher weight because the agreement between
A and B could be a coincidence.

3. Krippendorff’s alpha (Krippendorff, 2004):
It is another inter-rater reliability measure,
which is defined as follows:

α = 1− D0

De

”where D0 is the observed disagreement
among values assigned to units of analysis
[...] and De is the disagreement one would
expect when the coding of units is attributable
to chance rather than to the properties of these
units” (Krippendorff, 2011, p.1). Further de-
tails of the calculation are provided by Krip-
pendorff (2011). Similar to κ, α is not defined
if the annotators choose the same label for all
records. We handle this case in the same way
as above.

4. Heuristic: To overcome the undefined issue,
we define a heuristic weight function taking
the relative agreement rate and the number of
commonly annotated data records (overlap)
between two annotators into account. The
function is defined by four boundary points:

• The maximum weight (1.0) is reached,
if two annotators commonly annotated
n data records and agree on all annota-
tions. n is the maximal number of data
records that is commonly annotated by
two annotators and is defined by the data
set.

• The minimum weight (0) is reached, if
two annotators commonly annotated n
data records and disagree on all annota-
tions.

• A weight that is 20% larger than the min-
imum weight (0.2) is reached, if two an-

notators commonly annotated only one
data record and disagree.

• A weight that is 60% larger than the min-
imum weight (0.6) is reached, if two an-
notators commonly annotated only one
data record and agree.

The transition between the four boundary
points is gradually calculated. The algorithm
can be found in the appendix. The purpose
of the approach is to consider the overlap be-
sides the agreement rate because the larger
the overlap the more reliable is the agreement
rate. Cohen’s alpha and Krippendorff’s alpha
provide this, but their weakness is the unde-
fined issue, which is a realistic scenario for
our annotation task.

All weight functions are normalized between 0
and 1 to make the results comparable, if they are
not already in this range.

Detecting Annotator Groups

The goal of the next step is to group the annotators
according to their annotation behavior. For this
purpose, we apply the Louvain method, an unsu-
pervised algorithm for detecting communities in a
graph (Blondel et al., 2008). After that, we filter
the communities with at least 250 members. Oth-
erwise, the groups do not comprise enough data
records that were annotated by their members in
order to train a classification model.

Splitting Data According to Groups

After detecting the groups, we split the comments
and annotations according to the groups. For each
weight function and the corresponding graph, we
do the following: We select those comments that
were annotated by at least one member of every
group. For each group, we create a data set con-
taining these comments and the annotations from
the group’s members. The label for each comment
is the majority vote of the group’s annotators. In
addition, we create a further data set that serves as
a baseline and is called group 0 for all experiments.
The data set contains the same comments, but the
labels are the results of all 4,053 annotators. After
that, all data sets for a weight function are split in
a training and test set in the same manner to ensure
the comparability of the data sets. This is done for
each of the four weight functions.
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Weight function Agreement Rate Cohen’s kappa Krippendorff’s alpha Heuristic Function

Number of nodes 4,053 4,053 4,053 4,053
Number of edges 1,560,078 691,229 691,229 1,560,078
Average degree 769.8 341.1 341.1 769.8
Density 0.190 0.084 0.084 0.190
Connected componets 1 5 5 1
Distribution of
edge weights

0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

×106

0.0 0.5 1.0 0.0 0.5 1.0 0.25 0.50 0.75

Median

Table 1: Graph metrics

Training Classification Models for Groups and
Comparing Their Performances

For the classification model, we use a pre-trained
DistilBERT that we fine-tune for our task (Sanh
et al., 2019). It is smaller and faster to train than
classical BERT, but it provides comparable per-
formance (Sanh et al., 2019). In the context of
abusive language detection, it shows a similar per-
formance like larger BERT models (Vidgen et al.,
2020). Since we need to train several models for
different weight functions and groups, we choose
the lighter model.

The basis of our classification model is the
pre-trained distilbert-base-uncased,
which is the distilled version version of
bert-base-uncased. It has 6 layers, a
hidden size of 768, 12 self-attention heads, and
66M parameters. To fine-tune the model for our
task, we apply the 1cycle learning rate policy
suggested by Smith (2018) with a learning rate of
5e-6 for 2 epochs. The batch size is 64 and the
size of the validation set is 10% of the training set.
Furthermore, we limit the number of input tokens
to 150. The task that DistilBERT is fine-tuned for
is to distinguish between the labels ”ATTACK”
and ”OTHER”.

After training the models, we compare their per-
formances (F1 macro). For this purpose, each
model is evaluated on its own test set and the one
from the other groups including group 0, which
represents all annotators. Instead of reporting the

F1 score, we report them relatively to our baseline
(group 0) because it allows a better comparison of
the results. Additionally, the actual F1 score are
not relevant for this analysis.

4 Results

The experiments show that our proposed method
enables the grouping of annotators according to
similar annotation behavior. Classifiers separately
trained on data from the different groups and eval-
uated with the other groups’ test data exhibit no-
ticeable differences in classification performance,
which confirms our approach. The detailed results
can be found in the following:

Annotator Graph

We created one graph for each weight function.
Table 1 provides the key metrics of the generated
graphs. It is conspicuous that the graphs with Co-
hen’s kappa and Krippendorff’s alpha weight func-
tion have only 691,229 edges, while the other twos
have 1,560,078. This difference also causes the
divergence of the average degree and density. The
reason for the difference is that many relations be-
tween two annotators comprise only one comment.
If both agree on an annotation, Cohen’s kappa and
Krippendorff’s alpha are not defined; consequently,
we do not have an edge. Therefore, graphs with
these weight functions have fewer edges.
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Weight function Agreement Rate Cohen’s kappa Krippendorff’s al-
pha

Heuristic Func-
tion

Number of identified groups 4 10 10 4
Number of selected groups 3 4 4 3

AVG(annotators/groups) 970.50 738.00 731.20 959.50
SD(annotators/groups) 635.81 651.00 659.90 629.92

Size of training set/test set 69,792 / 17,448 19,736 / 4,934 17,941 / 4,485 68,696 / 17,174
Distribution of

group sizes
(selected groups)

500

750

1000

1250

1500

1750

Table 2: Results of community detection

Community Detection

Table 2 shows the results of community detec-
tion. While the Louvain algorithm split the graphs
with the Agreement Rate and Heuristic Function
as weight functions in 4 groups, 10 groups in the
graph with Cohen’s kappa and with Krippendorff’s
alpha were detected. An explanation for the di-
vergence is the difference between the number of
edges of the graphs. Since the groups have various
numbers of members, we select only these with at
least 250 annotators due to two reasons. By do-
ing so, we ensure that we have enough annotated
comments to train the classifiers. It may be noted
at this juncture that only comments were selected
for the training/test set if they were annotated by
the group. Therefore, groups with a small number
of annotators would have reduced the size of the
training/test set. The distribution of the size of the
training/test set is similar to the one of the numbers
of identified groups. For Agreement Rate we have
69,792 annotated comments for the training set and
17,448 for the test set, for the Heuristic Function
69,696 and 17,174, for the Cohen’s kappa 19,736
and 4,934, and for Krippendorff’s alpha 17,941 and
4,485. The smaller data sizes for the last two are
related to the smaller average size of groups.

To compare the different groups, we computed
the inter-rater agreement for each group and be-
tween the groups by using Krippendorff’s alpha. To
calculate the rate between the groups, we compute
Krippendorff’s alpha using the union of all annota-
tions from both groups. The inter-rater agreement
scores (in percent, 100% means perfect agreement)
for all four weight functions are depicted in Fig-
ure 1. The first column of each subfigure shows

the inter-rater agreement within each group. The
4/5 columns right to the line provide the inter-rater
agreement between the groups, and the last column
shows the average inter-rater agreement between
the groups. Please note that the inter-rater agree-
ment scores are hard to compare between the differ-
ent weight functions/subfigures because the groups,
the comments, and the annotations are different. To
a certain degree, the results of the Agreement Rate
and the Heuristic Function are comparable and the
one of Cohen’s kappa and Krippendorff’s alpha be-
cause these pairs have the same number of groups
and a similar number of comments. If we look
at the inter-rater agreement within the groups (first
column of each subfigure), we see that the groups
exhibit varying scores and that the deviations to the
baseline (group 0, data set average) also differ. If
the score is higher than the baseline, the group is
more coherent in regards to the annotations. If it
is lower, the group is less coherent. Furthermore,
the more scores are higher than the baseline, the
better because it means that the algorithm is able
to create more coherent groups.

Considering these aspects, we can say that Krip-
pendorff’s alpha and Heuristic Function produce
better results than the other two. In the case of the
Heuristic Function, the distance between the low-
est and highest inter-rater reliability score (49.2%
vs. 39.8%) is larger than the one of the Agreement
Rate. In the case of Krippendorff’s alpha, the dis-
tance between the lowest and highest score is the
same as for Cohen’s kappa. However, groups 3 and
4 of Krippendorff’s alpha (49.8% and 50.0%) have
higher scores than the two groups of Cohen’s kappa
with the highest inter-rater reliability (49.5% and
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Figure 1: Inter-rater agreement within and between groups for different weight functions

48.7%). In both cases, the distance function is able
to split the annotators into more coherent groups
and a remainder than the other distance function.
Since both distance functions and their results are
hard to compare due to a different number of com-
ments and groups, we choose both (Krippendorff’s
alpha and Heuristic Function) for the last part of
the experiment.

Classification Models and Their Performances

Instead of reporting the macro-F1 scores for the
classifiers trained on the different group-specific
training sets and tested on the all group-specific
test sets, we report them relatively to the baseline
(trained on group 0 and tested on group 0) for easier
comparison, as depicted on Figure 2. The baseline
for Krippendorff’s alpha has a macro-F1 score of
85.27%, the one of Heuristic Function 88.57%. In
addition to the relative scores, the figures contain
an extra column and row with average values for
better comparability.

It is conspicuous that the deviations reported in
the first column of each matrix are lower than the
rest. The reason is the following: These columns
report the performances of the classifiers for the

different groups on the baseline test set. Since the
baseline test set has the largest number of annota-
tions, the labels are more coherent. Consequently,
classifiers perform better on the baseline test set
than on their own, less coherent test sets.

Figure 2a shows the results for Krippendorff’s al-
pha distance function. The first observation is that
the classifiers of groups 1 (+0.54) and 4 (+0.32) per-
form better on the baseline test set (group 0) than
the baseline classifier. We can ascribe this to the
fact that group 1 (48.4%) and group 4 (49.8%) have
higher inter-rater reliability scores than the baseline
(44.1%), meaning the annotations of groups 1 and
4 are more coherent. However, group 3 shows that
higher inter-rater reliability does not directly imply
a better performance on the baseline. It has a score
of 50.0%, but it performs worse on the baseline test
set (-0.23) and all classifiers perform poorly on the
test set of group 3. A possible explanation can be
that the annotations within the group are coherent
but less coherent with respect to all other annota-
tions. Group 2 exhibits the lowest performance
on the baseline test set (-0.89) and all classifiers
perform poorly on its test set. The reason is the no-
ticeably low inter-rater reliability of 31.4% — the
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Figure 2: Macro F1 scores relative to the baseline (0,0)

lowest of all Krippendorff’s alpha’s groups. The
low score indicates that the community detection
algorithm grouped the annotators together whose
annotation behavior is less compatible with the
other’s one.

In the case of the Heuristic Function (cf. Fig-
ure 2b), we can also find a group that performs
better on the baseline test set than the baseline clas-
sifier and that has a high inter-rater reliability score
(49.2%) — group 1 (+0.07). The explanation is
the same as the one for groups 1 and 4 of Krippen-
dorff’s alpha. The classifier with the largest dis-
crepancy is the one of group 3 (-0.30). This should
not be surprising because group 3 has the lowest
inter-rater reliability within the group (39.8%) and
between the group and the baseline (46.2%). That
is also the reason why all groups perform poorly on
the test set of group 3. The group is comparable to
group 2 of Krippendorff’s alpha. Annotators that
have an annotation behavior different from the rest
are grouped together.

5 Discussion

The results show that the proposed method is suit-
able for identifying annotator groups purely based
on annotation behavior. The deviations in inter-
rater agreement rates of the groups and in the clas-
sifiers’ performances prove this.

In regards to the weight functions, we found that
both Krippendorff’s alpha and Heuristic Function
are more suitable than the other functions. Both
are able to separate the annotators into different

groups based on their annotation behavior. How-
ever, it is difficult to choose a winner between both
because of missing comparability. An advantage of
our Heuristic Function in regards to Krippendorff’s
alpha as weight functions is that it does not have
the undefined issue if two annotators assign only
one type of label to the comments to be labeled. A
potential improvement could be to combine Krip-
pendorff’s alpha weight function with the Heuristic
Function.

The results of our method can be linked to anno-
tator bias in the following manner: An identified
annotator group that has a high inter-rater agree-
ment within the group, but poor classification per-
formance on the other test sets indicates that it has
a certain degree of bias as the group’s annotation
behavior differs from the rest. For such insights,
we see currently two possible use cases:

• The insights can be used to mitigate annotator
bias. The annotations of these groups can
either be weighted differently or deleted to
avoid transferring the bias to the classification
model.

• The insights can be used to build classification
models that model the annotator bias. This can
be helpful for tasks that do not have one truth
but rather multiple perspectives. In the case
of online abuse, it is possible that one group
is more tolerant towards abusive language and
another one less tolerant.

The novelty of our approach is that it is unsu-
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pervised and does not require any stipulation of
bias that you want to detect in advance. Existing
approaches, such as Binns et al. (2017), who in-
vestigated gender bias, or Sap et al. (2019) and
Davidson et al. (2019), who examined racial bias,
defined in their hypothesis which kind of bias they
want to uncover. Our method, however, does not
require any pre-defined categories to detect bias.

6 Conclusion

In this paper, we proposed a novel graph-based
method for identifying annotator bias through
grouping similar annotation behavior. It differs
from existing approaches by its unsupervised na-
ture. But the method requires further research and
refinement. To address our limitations, we propose
the following future work:

Firstly, we used only one data set for our study.
The approach, however, should be also tested and
refined with other data sets. The Wikipedia Detox
project, for example, provides two more data sets
with the same structure, but with different tasks
(toxicity and aggression). In general, data availabil-
ity is a challenge of this kind of research because
hate speech data sets mostly contain aggregated an-
notations. Therefore, we urge researchers releasing
data sets to provide the unaggregated annotations
as well.

Secondly, other approaches for grouping the an-
notators should be investigated. We used only one
community detection method, the Louvain algo-
rithm. But there are many more methods, such as
the Girvan-Newman algorithm (Girvan and New-
man, 2002) and the Clauset-Newman-Moore algo-
rithm (Clauset et al., 2004).

Thirdly, our methods should be extended so that
it can handle smaller groups. Our current approach
requires at least 250 annotators in a group to ensure
that we have enough training data. But it would
be interesting to investigate smaller groups in the
hope that these groups are more coherent in regards
to their annotation behavior.
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