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Introduction

Language and vision research has attracted great attention from both natural language processing (NLP)
and computer vision (CV) researchers. Gradually, this area is shifting from passive perception, templated
language, and synthetic imagery or environments to active perception, natural language, and photo-
realistic simulation or real world deployment. Thus far, few workshops on language and vision research
have been organized by groups from the NLP community. We organize the first workshop on Advances in
Language and Vision Research (ALVR) in order to promote the frontier of language and vision research
and to bring interested researchers together to discuss how to best tackle and solve real-world problems
in this area.
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Extending ImageNet to Arabic using Arabic WordNet

Abdulkareem Alsudais
College of Computer Engineering and Sciences, Prince Sattam bin Abdulaziz University
Al-Kharj, Saudi Arabia
A.Alsudais@psau.edu.sa

Abstract

ImageNet has millions of images that are
labeled with English WordNet synsets. This
paper investigates the extension of
ImageNet to Arabic using Arabic WordNet.
The objective is to discover if Arabic
synsets can be found for synsets used in
ImageNet. The primary finding is the
identification of Arabic synsets for 1,219 of
the 21,841 synsets used in ImageNet,
which represents 1.1 million images. By
leveraging the parent-child structure of
synsets in ImageNet, this dataset is
extended to 10,462 synsets (and 7.1 million
images) that have an Arabic label, which is
either a match or a direct hypernym, and to
17,438 synsets (and 11 million images)
when a hypernym of a hypernym is
included. When all hypernyms for a node
are considered, an Arabic synset is found
for all but four synsets. This represents the
major contribution of this work: a dataset
of images that have Arabic labels for 99.9%
of the images in ImageNet.

1 Introduction

ImageNet is a dataset comprised of 14 million
images (Deng et al., 2009; Russakovsky et al.,
2015). Each image in the dataset is labeled with a
WordNet (Miller, 1995) synset representing the
identifying object in the image. The fall 2011
release of the dataset has a total of 21,841 unique
synsets that are used to label images. The dataset is
organized by dividing these synsets into several
major subtrees. Moreover, ImageNet is structured
in a way that maintains the semantic hierarchical
structure of synsets in WordNet, where each image
is also linked to branches of hypernyms (Figure 1).
ImageNet is one major reason for recent advances
in computer vision research and deep learning
(Cetinic et al., 2018; Stock and Cisse, 2018;
Kornblith et al., 2019).
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Figure 1: Images in ImageNet for the synset “Siberian
husky”. Although an Arabic synset from AWN is not
available for the synset or its direct hypernym, one is
available for the hypernym of the hypernym.

While computer vision research has seen
significant progress in recent years, the focus has
been on English. Limited work exists to extend
research to other languages, including Arabic. This
lack of research may present challenges to
scientists, researchers, and practitioners who seek
to address problems related to computer vision in
Arabic. Furthermore, the unavailability of a large
dataset of images labeled in Arabic may prevent
the development of solutions that address
challenging tasks, such as visual question
answering and image classification in Arabic.
Therefore, a large dataset of images labeled with
Arabic has the potential to progress research in
Arabic computer vision. Moreover, scholars
studying Arabic natural language processing often
develop methods specifically designed for Arabic.
Thus, it is possible that similarly unique methods
are needed for Arabic computer vision.

Proceedings of the First Workshop on Advances in Language and Vision Research, pages 1-6
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The primary objective of this paper is to
investigate the effectiveness of extending
ImageNet to Arabic using Arabic WordNet (AWN)
by searching in AWN for all the synsets used in
ImageNet. AWN was originally developed in 2006
(Black et al., 2006). Since then, several authors
have attempted to extend it by improving its
coverage or quality (Alkhalifa and Rodriguez,
2009; Abouenour et al., 2013; Bond and Foster,
2013; Regragui et al., 2016; Batita et al., 2019).
The possibility of using AWN to extend ImageNet
has been experimented with in one paper
(Alsudais, 2019). In the paper, the author tested
using AWN to find Arabic synsets for a small
sample of 100 images from ImageNet and
indicated that Arabic synsets were found for only
six synsets. However, the author did not attempt to
discover if Arabic synsets were available for
hypernyms of these synsets. This paper attempts to
overcome the problems of limited availability for
direct matches by also searching branches of
hypernyms in AWN. In summary, this paper makes
three major contributions:

e [t investigates the possibility of extending
ImageNet to Arabic using the Arabic
WordNet (AWN).

e [t adds to the limited work in computer
vision research in Arabic.

e [t generates a new, large dataset of images
with Arabic labels. This dataset includes at
least one label for all but four of the 21,841
synsets used in ImageNet.

ImageNet has been used to solve tasks in the
intersection of language and vision research (Zhou
et al., 2018; Chen et al., 2019; Davis et al., 2019;
Vempala and Preot, 2019). For Arabic computer
vision, limited related work currently exists.
Several authors have worked on the generation of
Arabic captions for images (Jindal, 2018; Al-
muzaini et al., 2018). In another paper, a new
dataset related to Arabic computer vision was built.
The authors constructed a dataset of 3,000 clips
that they classified with emotional labels such as
“happy”, “sad”, or “angry” (Shaqgra et al., 2019).
The authors argued that emotional facial
expressions may be different depending on the
cultural context. In other papers, attempts to
connect ImageNet to external resources were made
by linking the synsets in ImageNet to items in
Wikidata (Nielsen, 2018) and by extending a

! http://www.image-net.org/download.php

sample of images in ImageNet to German using
human subjects, which resulted in a dataset of
1,305,602 images (Roller and Schulte, 2013). In
the only other closely related paper, the author
investigated the possibility of generating Arabic
labels for images in ImageNet using an online
translator (Alsudais, 2019). In the paper, the author
targeted a sample of 1,895 images from ImageNet
and used an online translator to generate Arabic
labels for the synsets. A human judge then
evaluated the accuracy of the translations. The
results indicated that the translations were accurate
for 65% of the images, which represented 1,643
unique synsets and 1,910,935 images. This
suggests that solely using a translator to translate
labels of images in ImageNet may not produce
highly accurate results.

2 [Extending ImageNet to Arabic using
Arabic WordNet

In ImageNet, each synset has a name and an ID. To
begin exploring the possibility of finding Arabic
synsets and labels for images in ImageNet using
AWN, all the synsets’ IDs are retrieved from
ImageNet. There are several releases for
ImageNet. In this paper, the fall 2011 release is
used. This release includes 21,841 unique WordNet
synsets, and each is linked to one or many images.
For example, the synset ID “n07873807” includes
1,296 images of “pizza”. There are also 1,186
images for “dish”, the direct hypernym for “pizza”.
Moreover, all the images labeled with “pizza” can
also be labeled with “dish”. Since “dish” is a
hypernym for several other synsets used in
ImageNet, such as “sushi” and “curry”, the number
of images for “dish” extends to all images with a
synset that is a hyponym (child) for “dish”.
ImageNet’s data are downloaded directly from
ImageNet’s website'. ImageNet provides the URLs
of the images. These URLs are viewed in order to
access the images. Due to ongoing developments
related to the removal of problematic images
present in the “person” subtree, ImageNet no
longer provides a method to download the full
dataset directly (Yang et al., 2020). The dataset has
a total of 14,197,122 images. Each synset has an
average of 944 images directly assigned to the
synset. The minimum number of images is 1
image, and the maximum is 2,382 images for a
synset.



2.1 Direct Arabic Synsets for Synsets in
ImageNet

The first step is to investigate if Arabic synsets are
available for each of the 21,841 synsets used in
ImageNet. To complete this, all the synsets IDs are
processed. For each synset, AWN is searched to
find a direct match. There are several versions of
AWN and several methods to access it currently
exist. To gain additional knowledge on WordNet
and AWN, and to determine a reliable method to
access it, the online interfaces for both the Open
Multilingual WordNet (OMW)? (Bond and Paik,
2012) and the Princeton WordNet* (Princeton
University, 2010) are tested. Additionally, the
WordNet interface in the python library NLTK* is
tested. The interface includes the OMW, which has
AWN (Black et al., 2006; Abouenour et al., 2013).
This version of AWN has 9,916 Arabic synsets,
which is less than the number of synsets used in
ImageNet. This is the first indicator that it may not
be possible to find direct matches for all synsets.
Still, it is not clear if it is possible for a synset in
ImageNet to be directly linked to several synsets in
AWN. Based on this experimental phase, the
NLTK interface is selected to access Arabic synsets
in AWN. ImageNet uses WordNet 3.0, which has
synsets IDs that are different than one used in
WordNet 3.1. Therefore, the results in this paper
are necessarily achieved by using WordNet 3.0.

2.2 Arabic Synsets for Hypernyms

Since ImageNet structures synsets based on the
semantic structure of synsets in WordNet, a synset
in ImageNet is essentially a node that is connected
to a branch or several branches of hypernyms. The
objective of this step is to discover if an Arabic
synset in AWN 1is available for the list of
hypernyms linked to a synset. To accomplish this,
the parent-child (or hypernym-hyponym) pairs in
ImageNet are downloaded from a webpage in
ImageNet’s website®. Algorithm 1 includes details
of the steps followed in order to find direct matches
as well as Arabic hypernyms for synsets. The
algorithm relies on the use of a recursive function
that looks for an Arabic synset for all the
hypernyms connected to the synset at all levels.
The stopping condition for this recursive function
is when all possible hypernyms are processed.

2 http://compling.hss.ntu.edu.sg/omw/
3 http://wordnet-rdf.princeton.edu/
4 http://www.nltk.org/howto/wordnet.html

Algorithm 1: Finding direct AWN synsets for
ImageNet’s synsets as well as AWN synsets for all the
hypernyms linked to ImageNet’s synsets.

Input: list of all synsets in ImageNet. “Synset” below
refers to the synset from ImageNet.

Output: 1) Direct AWN: list of Arabic synsets from
AWN that are directly linked to a synset in ImageNet, and
2) Hyper AWN: a list of Arabic synsets from AWN that
are linked to a hypernym of a synset in ImageNet.

1:  For synset in ImageNet:

2: If find_in AWN (synset) is True then

3: Direct AWN.add (synset, AWN synset)

4. Find_Hypers (synset, synset, 1)

5:  func Find Hypers (synset, hyper_synset, level):
6: Hypers=get hypers (hyper_synset)

7: If length (Hypers) = 0:

8: Stop #no more hypernyms to process

9: For hyper synset in Hypers:

10: If find in AWN (hyper_ synset) is True then
11: Hyper AWN.add (synset,

12: hyper AWN_synset, level)

13: Find Hypers (synset, hyper synset, level+1)

To complete this process, all hypernyms of a
synset are retrieved. In most cases, a synset that is
a leaf node has one or two direct hypernyms. Each
hypernym is searched for in AWN in order to
discover if an Arabic synset for the hypernym exist
in AWN. If one is found, it is added to the set of
Arabic synsets for the primary synset. The level of
the hypernym is also saved. For example, since an
Arabic synset is available for the synset “dish”,
which happens to be a hypernym for “pizza”, the
Arabic synset for “dish” is saved for the “pizza”
synset. Additionally, the number “one” is saved
because “dish” is a direct hypernym for “pizza”.
Similarity, the number “two” is saved for
“nutriment”, which is the hypernym for “dish”. If
a synset has two direct hypernyms, they are both
saved as appearing in level one. Hypernyms are
only saved when an Arabic synset is found.

This step results in a dataset of all AWN synsets
in ImageNet, as well as the Arabic synsets
available at each level of their hypernyms. Since it
is possible for a synset to have two hypernyms, the
objective of searching hypernyms is to indicate if
any Arabic synsets exist for any of the hypernyms.
It is unclear if using hypernyms to label images in
Arabic will produce images with acceptable and
meaningful labels. Future work should investigate
the quality of generated Arabic sysnets.

3 http://www.image-net.org/archive/wordnet.is_a.txt



3 Results

3.1 Direct Arabic Synsets

Images ImageNet AWN
Synset Synset
n00017222: |« s
plantn.02 | <l dude
n03405725: ol
furniture.n, | Ul dakd
01
n00442115: | a3e dalus
swimming.
n.01
n13100156: FINGEIY
poisonous_
| plant.n.01
e s

Table 1: Exampleshof images from ImageNet with
their synsets and Arabic synsets, as found in AWN.

Direct matches were found for 1,219 of the 21,841
synsets used in ImageNet. Some of these identified
synsets are of higher-level categories, while others
are of fine-grained ones. Table 1 includes examples
of images where an Arabic synset was found in
AWN. The table also shows both the English and
Arabic synsets. Since each synset is linked to many
images, the dataset of 1,219 synsets was extended
to 1,150,651 images, which is 8.1% of ImageNet’s
total number of images. This dataset represents a
major contribution of the paper, as it can be used in
several tasks related to Arabic computer vision.
Since all the labels are of direct matches, the
quality of the labels should be high. However,
further examination and full evaluations are
needed for confirmation.

3.2  Arabic Synsets for Hypernyms

To expand the dataset, hypernyms of synsets used
in ImageNet were searched for in AWN. The result
of this extension was the identification of Arabic
synsets for all but four synsets used in ImageNet.
These four synsets include only 1,366 images. This
indicates that there are only 1,366 images in
ImageNet without Arabic synsets in AWN for the
synset or one of its hypernyms in its branch of
hypernyms. A detailed summary of the results is
presented in Table 2. In the table, “AWN’s synsets”
refers to the number of Arabic synsets found for a
synset in ImageNet at each level. The “AWN’s
synset + previous” refers to the total number of
Arabic synsets identified when the synsets found at
level and the previous levels are combined. The
“Images in ImageNet” refers to the total number of
images found for each Arabic synset at each level.

When only the first and second level hypernyms
were considered, the dataset included Arabic
synsets for 79.8% of the synsets and 81.2% of the
images in ImageNet. This represents a large dataset
of 11,533,525 images, all labeled with an Arabic
synset that is either the direct match for the synset
used in ImageNet, the Arabic synset for the
hypernym, or the Arabic synset for the hypernym
of a hypernym. Although a synset in this subset
(Row #5 in Table 2) was found for 17,438 of the
synsets used in ImageNet, many of the identified
Arabic synsets were used more than once since the
total number of synsets in AWN is only 9,916. It is
important to note that as the level of the hypernym
increases, the hypernym become more abstract and
general. For example, some of the 7th-level
hypernyms include “entity”, “act”, and “event”.
Therefore, the usability of Arabic synsets at higher
levels requires additional investigation.

Level

AWN?’s Synsets

AWN’s Synsets +
Previous

Images in ImageNet

Images + Previous

Direct
No person subtree

1,219 (5.58%)
993 (5.22%)

1,150,651 (8.1%)
990,189 (7.6%)

First Hypernym 10,400 (47.6%) 10,462 (47.9%) 7,113,853 (50.1%) 7,177,537 (50.5%)

No person subtree 8,846 (46.5%) 8,890 (46.7%) 6,419,390 (49.3%) 6,469,802 (49.7%)

2nd Hypernym 16,837 (77.0%) 17,438 (79.8%) 11,088,519 (78.1%) 11,533,525 (81.2%)
No person subtree 14,541 (76.5%) 15,064 (79.2%) 10,099,744 (77.6%) 10,508,392 (80.7%)
3rd Hypernym 19,490 (89.2%) | 20,267 (93.7%) | 12,697,838 (89.4%) 13,266,956 (93.4%)
4th Hypernym 20,671 (94.6%) | 21,397 (97.9%) | 13,365,182 (94.1%) 13,916,531 (98.0%)
5th Hypernym 20,816 (95.3%) | 21,751 (99.5%) | 13,483,006 (94.9%) 14,148,669 (99.6%)
6th Hypernym 19,910 (91.1%) | 21,830 (99.94%) | 12,865,510 (90.6%) 14,195,325 (99.8%)
7th Hypernym 18,191 (83.2%) | 21,837 (99.98%) | 11,729,718 (82.6%) 14,195,756 (99.9%)

Table 2: Summary of the number of synsets and number of images found.
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While this dataset of Arabic synsets for images
in ImageNet is likely reliable since it is based on
the utilization of previously existing and evaluated
datasets, certain characteristic of the Arabic
language and naming decisions in AWN suggest
that proper evaluation of the dataset’s accuracy
may be needed. For example, one of the synsets
found in AWN was “nurse”. Unlike English,
Arabic nouns are gendered. Accordingly, in AWN
the Arabic synset for “nurse” is “male nurse”.
Therefore, an automated image classification
system that relies on this synset may suggest “male
nurse” for images of female nurses.

This “nurse” synset is part of the “person”
subtree, which is one of the major subtrees in
ImageNet. This subtree includes several synsets
that have been criticized for issues such as
representation biases and offensive images
(Shankar et al., 2017; Mehrabi et al., 2019). During
this study, it was observed that images in the
“Iraqi” synset were mostly war related. Additional
issues were discovered for images in the “Syrian”
synset. Recently, some of the scientists behind
ImageNet addressed concerns regarding issues in
the “person” subtree and indicated that an upgrade
of ImageNet will be released with two changes: 1)
only up to 158 of the 2,832 synsets in the “person”
subtree will be kept, and 2) attention will be given
to representation biases in images in the synsets
that are not removed (Yang et al., 2020). In
anticipation for these updates, Table 2 also includes
results obtained when the 2,832 synsets in the
“person” subtree were not included. These results
suggest only a minor decrease in percentages of
synsets found in each level.

4 Conclusion

In this paper, the possibility of extending ImageNet
to Arabic is investigated. The following
discoveries were made: 1) an Arabic synset in
AWN exists for 1,219 of the synsets used in
ImageNet, which represents 1,150,651 images, and
2) Arabic synsets in AWN exist for 99.9% of the
images in ImageNet when the branches of
hypernyms for synsets were considered. To
improve the results found, several options are
available. One option is to use the Extended Open
Multilingual Wordnet (1.2), which enhances
Arabic WordNet by utilizing Wiktionary and
Unicode Common Locale Data Repository (Bond
and Foster, 2013). This automatic extension of
AWN increases the total number of unique synsets

available in AWN to 14,650 synsets. Using this
version of AWN would likely find Arabic synsets
for additional images used in ImageNet. Several
other directions for future work exist. One
important extension is to provide an extensive
evaluation of the dataset. Another avenue for
further research would involve investigating the
availably of Arabic synsets for each of the synsets
in ImageNet’s 1,000 object classes, as this subset is
often used in computer vision research.
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Abstract

Scene graph is a graph representation that ex-
plicitly represents high-level semantic knowl-
edge of an image such as objects, attributes of
objects and relationships between objects. Var-
ious tasks have been proposed for the scene
graph, but the problem is that they have a lim-
ited vocabulary and biased information due
to their own hypothesis. Therefore, results of
each task are not generalizable and difficult
to be applied to other down-stream tasks. In
this paper, we propose Entity Synset Align-
ment(ESA), which is a method to create a
general scene graph by aligning various se-
mantic knowledge efficiently to solve this bias
problem. The ESA uses a large-scale lexical
database, WordNet and Intersection of Union
(IoU) to align the object labels in multiple
scene graphs/semantic knowledge. In experi-
ment, the integrated scene graph is applied
to the image-caption retrieval task as a down-
stream task. We confirm that integrating multi-
ple scene graphs helps to get better representa-
tions of images.

1 Introduction

Beyond detecting and recognizing individual ob-
jects, research for understanding visual scenes is
moving toward extracting semantic knowledge to
create scene graph from natural images. Starting
with (Krishna et al., 2017), various studies have
been proposed to generate this semantic knowl-
edge from images (Zellers et al., 2018; Xu et al.,
2017; Liang et al., 2019; Anderson et al., 2018).
However, each study extracts only highly biased
information from an image due to the limited vo-
cabulary depending on their own hypothesis and
the statistical bias of the dataset. For example, in
(Anderson et al., 2018), the author conducted a
study on extracting information of both object and
attribute for each entity using 1,600 object and 400
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Figure 1: An example of scene graph for a common
image from Visual Genome 200 (VG200) and Visually-
Relevant Relationship (VrR-VG) dataset.

attribute class labels. In addition, (Zellers et al.,
2018; Xu et al., 2017) generate a relationship be-
tween objects in a form of triplet (head entity -
predicate - tail entity) in an image by using 150 ob-
ject and 50 predicate class labels. In (Liang et al.,
2019), the author constructed a Visually-Relevant
Relationships(VrR-VG) based on (Krishna et al.,
2017) to mine more valuable relationships with
1600 objects and 117 predicate class labels. As
such, each task defines and uses its own vocabulary,
but the problem is that the vocabulary is limited. As
shown in Figure 1,If some of objects in an image
do not belong to the dataset-specific vocabulary,
objects as well as relations are omitted frequently
even though they are in an image. In addition, there
are cases where the same object is defined with
different vocabulary in a common image (e.g. man,
person).

In this paper, we propose Entity Synset Align-
ment (ESA) to perform scene graph integration.
With a large-scale lexical database WordNet and
IoU, the ESA aligns the entity labels in scene
graphs generated from each dataset. The contri-
butions of the method proposed in this paper are as
follows: 1) Scene graphs can be generated from raw
image inputs, 2) integrating multiple scene graphs
inferred from each dataset into one via ESA, 3)
the qualitative results show that an integrated scene

Proceedings of the First Workshop on Advances in Language and Vision Research, pages 7-11
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graph can extract richer semantic information in an
image, 4) quantitative results show the significance
of integrated scene graph by applying integrated
scene graph to image-caption retrieval task.

2 Related Work

BottomUp-VG. Bottom-Up VG is a bottom-up at-
tention model that extracts information of both
object and attribute for each entity with 1,600
object and 400 attribute class labels from Visual
Genome(VQG).

VG200. VG200 introduced by (Xu et al., 2017) is
a filtered version of the original VG scene graph
dataset. It contains 150 object and 50 predicate
class labels in 108,077 images, and consists of an
average of 11.5 distinct objects and 6.2 predicates
per image.

VrR-VG. Visually-Relevant Relationships (VrR-
VG) introduced by (Liang et al., 2019) is con-
structed to highlight visually-relevant relationships
using visual discriminator to learn the notion of
visually-relevant.

WordNet. WordNet, a large lexical database of En-
glish, is an ontology that summarizes a relationship
between words and has been integrated into the
Natural Language ToolKit. Nouns, verbs, adjec-
tives and adverbs are grouped into sets of cogni-
tive synonyms (synsets), each representing intrinsic
concept.

3 Method

As shown in Figure 2, we employ bottom-up at-
tention (Anderson et al., 2018) model to generate
only nodes containing information of both object
and attribute, and CompTransR model to gener-
ate scene graphs from raw images. Entity Synset
Alignment(ESA) integrates scene graphs generated
from each dataset. We introduce a simple model,
CompTransR, for scene graph generation in Sec-
tion 3.1 and a scene graph integration technique,
Entity Synset Alignment(ESA) in Section 3.2.

3.1 Compositional Translational Embedding

Compositional Translation Embedding combines
the well-known Knowledge Graph embedding al-
gorithms (i.e., TransR (Lin et al., 2015)) to learn
the semantic relationships between two entities in
a scene graph. Here, we apply transitive constraints
to predict the semantic predicate labels in multiple
symbolic subspaces by learning compositional rep-
resentations of the relationships. As an entity fea-

ture, we extract visual, positional, and categorical
features from a detected bounding box in a given
image, and concatenate them into one. Then, entity
features are transformed to head(h) and tail(t) fea-
tures through single feed-forward neural network.
The feature vectors of head and tail are projected
into multiple latent relational subspaces. We aim to
disentangle the semantic space of the sub-relation
labels. The predicate representation r° ~ t°—h?® is
defined on each latent relational space s. All 7° on
the subspaces are summed out to predict predicate
labels between two entities.

3.2 Entity Synset Alignment (ESA)

Algorithm 1: Entity Synset Alignment
Function ESA (A _obj_list, B_obj_list)
obj_list=A_obj_list
for A_obj in A_obj_list do
A _obj_synset = get_synset(A_obj);
for B_obj in B_obj_list do
B_obj_synset = get_synset(B_obj);
if A_obj in B_obj_synset OR B_obj in
A_obj_synset then
iou = get_IoU(B_obj, A_obj);
if iou is larger than 0.3 then
pass_Flag=True;
Break;
end

end

end

if pass_Flag is True then
Continue;

end

obj_list.append(B_obj);

end

Entity Synset Alignment is an algorithm that in-
tegrates scene graphs generated from each dataset
by using label alignment and Intersection of Union
(IoU). In label alignment process, we use a synset,
a set of synonym(lemma, hypernym, and hyponym)
that shares a common meaning in WordNet, to align
two entity labels. The method using synset com-
pares whether an entity label in a scene graph is
the same entity label in other scene graph, and
aligns. If the entity label is same vocabulary or in
the synset of entity label for other scene graph, then
IoU calculation is implemented to check whether
it indicates same entity. The detailed procedure is
shown in Algorithm 1.



(c) Generated scene graphs
from each dataset

(b) Inference models

(a) Image

(d) Entity Synset Alignment (e) Integrated scene graph

Inference model for VG mEy . .
st
» Label alignment .
Inference model for VG200 B & ———— . .
ToU calculation .
[
Inference model for ViR-VG [ I ] .

Figure 2: An overview of framework which integrates visual semantic knowledge with Entity Synset Align-
ment(ESA). (a) A raw image goes into inference models as an input. (b) Inference models(Bottom-up attention
and CompTransR) generate (c) scene graphs from each dataset(VG, VG200, VrR-VG). (e) Integrated scene graph

is built as an output via (d) Entity Synset Alignment method.

4 Experiments

4.1 Scene Graph Statistics

In Table 1, we measure the average and max num-
ber of object, relation, and attribute with vari-
ous combinations of scene graph datasets. Default
VG200 has 12.53 average number of object and 62
max number of object, default BottomUp-VG has
26.35 average number of object and 55 for max,
and default VrR-VG has 36.77 average number of
object and 167 max number of object. The most
key section of Table 1 is the average number of
object and relation in integrating three datasets in-
creased. This result implies that integrating three
scene graphs into one scene graph can get more
richer scene graph.

4.2 Image-Caption Retrieval Task

To verify the usefulness of our algorithm, we sug-
gest an image-caption retrieval task (Kiros et al.,
2014) as an application of scene graphs. The image-
caption retrieval task needs visual-semantic embed-
dings, which is obtained by mapping the image
features and caption features into joint embedding
space. A general approach for this task is to ob-
tain image features and caption features with pre-
trained model (such as VGGNet (Simonyan and
Zisserman, 2014) for images and S-BERT (Reimers
and Gurevych, 2019) for captions), then to learn
mapping both to joint embedding space for maxi-
mizing similarities. In our case, we substitute im-
age features from the pre-trained CNN model to
scene-graphs and learn the representations of scene-
graphs with simple 2-layer Graph Convolution Net-
works (Kipf and Welling, 2016). Following (Faghri
etal., 2017), we use the Max of Hinge loss for train-

ing:

Ivu(i,c) = mc(lm:[a +5(i,c) — (i, ¢)]+

(1

—i—mic,z:z:[a + (i, ¢) — (i, ¢)]+

where ¢ and ¢ are image features and caption fea-
tures in joint embedding space, s(z,y) is inner-
product similarity function for  and y, [x] =
max(z,0) and « serves as a margin parameter.

4.3 Results

4.3.1 Qualitative Results

Figure 3 shows each generated scene graph for an
image and an integrated scene graph generated. In
each scene graph, person is presented as person
in BottomUp-VG, but woman in VG200 and VrR-
VG. Furthermore, phone and tree(s) nodes are in
BottomUp-VG and VrR-VG, but not in VG200.
On the other hand, BottomUp-VG and VIR-VG
have grass node but not in VG200. In integrated
scene graph, each node has an attribute of each
object such as color and some entities such as per-
son or tree are aligned via ESA. For the setting
of qualitative results, we limit the number of rela-
tion(predicate) between objects to top 20 in gener-
ated each scene graph.

4.3.2 Quantitative Results

To obtain both captions and scene-graphs for im-
ages, we select subset of images, called VG-COCO,
belongs to both MS COCO dataset (Lin et al., 2014)
(for captions) and Visual Genome (VG) dataset (Kr-
ishna et al., 2017) (for scene graphs). We manu-
ally split the VG-COCO dataset with 24,763 train,
1,000 validation and 1,470 test images. To evaluate
the performance of image-caption retrieval task, we
introduce Recall@K (RQK), i.e., the fraction of



Table 1: The average and max number of object, relation and attribute with various combinations of scene graph

datasets.
Method Number of object Number of relation Number of attributes
Avg. Max Avg. Max Avg. Max

VG200 12.53 62 50.0 50 0.0 0

VIR-VG 36.77 167 50.0 50 0.0 0

BU-VG 26.35 55 0.0 0 26.35 55

VG200 A VIR-VG 37.00 167 100 100.0 0.0 0

VG200 A BU-VG 27.21 66 44.39 50 26.35 55

VrR-VG A BU-VG 42.04 141 29.57 50 26.35 55

VG200 A VIR-VG A BU-VG | 41.95 127 79.67 100 26.35 55

Table 2: Quantitative results for our method on image-to-caption retrieval(caption retrieval) and caption-to-image
retrieval(image retrieval) task. BU-VG is an abbreviation of BottomUp-VG.

Caption Retrieval Image Retrieval
Method R@I R@5 R@I0| R@1 R@5 R@I0
CNN based ResNet-152 26.9 65.1 79.4 242 36.4 39.9
VG200 222 57.6 73.2 19.7 34.6 39.5
VIR-VG 28.1 66.2 80.4 232 37.2 40.9
BU-VG 27.0 65.4 80.6 23.1 37.0 40.7
GCN based VG200 A VIR-VG 29.3 67.6 81.9 234 374 41.0
VG200 A BU-VG 29.4 68.7 82.8 24.1 37.5 41.1
VIR-VG A BU-VG 27.9 70.5 83.2 23.7 37.7 41.4
VG200 A VIR-VG A BU-VG  27.2 70.0 82.4 24.7 37.7 41.0

queries for which the correct item is retrieved in
the closest K points to the query in the embedding
space. We adopt R@1, R@5, R@10 metrics, as
used in (Faghri et al., 2017).

First, to understand the effectiveness of scene
graph based approach, we compare graph based
method (GCN based) to CNN based model (Resnet-
152). ResNet-152 trains the whole CNN networks,
starting from pretrained model parameters. Here,
we note that graph based method shows superior
performance than the CNN based model, even
though the graph based model exploits the simple
two-layer graph convolution operations.

Second, we evaluate our proposed method with
various combinations of VG200, VrR-VG and
BottomUp-VG. The results show that integrated
scene graph generally works better than default
scene graph. The overall quantitative results for
image-caption retrieval are presented in Table 2.

5 Conclusion

In this paper, we present a simple and efficient
method to integrate multiple visual semantic knowl-
edge into general scene graph. With a large-scale
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lexical database WordNet and IoU, the ESA aligns
the entity labels in scene graphs generated from
each dataset. The integrated scene graph has richer
information and is less biased. To evaluate our pro-
posal, we conduct the image-caption retrieval task
as a down-stream task and show better performance
than each scene graph. For future work, we plan to
integrate more diverse visual semantic knowledge
such as Human-object interaction (Gkioxari et al.,
2018).
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Abstract

Visual Question Generation (VQG), the task
of generating a question based on image
contents, is an increasingly important area
that combines natural language processing
and computer vision. Although there are
some recent works that have attempted to
generate questions from images in the open
domain, the task of VQG in the medical
domain has not been explored so far. In
this paper, we introduce an approach to
generation of visual questions about radiology
images called VQGR, i.e. an algorithm that
is able to ask a question when shown an
image. VQGR first generates new training
data from the existing examples, based
on contextual word embeddings and image
augmentation techniques. It then uses the
variational auto-encoders model to encode
images into a latent space and decode natural
language questions. Experimental automatic
evaluations performed on the VQA-RAD
dataset of clinical visual questions show that
VQGR achieves good performances compared
with the baseline system. The source code
is available at https://github.com/
sarrouti/vqgr.

1 Introduction

VQG refers to generating natural language
questions based on the images contents. It is
a new and exciting problem that combines both
natural language processing (Sarrouti and Alaoui,
2017, 2020) and computer vision techniques
(Mostafazadeh et al., 2016; Zhang et al., 2016).
The motivation for the VQG task is two-fold: (1)
generating large scale Visual Question Answering
(VQA) pairs to produce more training data at little
cost (Ben Abacha et al., 2019) and (2) improving
efficiency of human annotation for VQA datasets
construction (Li et al., 2018). In addition to the
aforementioned motivations, medical VQG could
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also benefit both doctors and patients. For example,
patients could use questions provided by VQG
systems to better understand medical images and
start a conversation with their doctors. Moreover,
such systems could support medical education,
medical decision, and patient education (Lau et al.,
2018).

A few recent works have attempted to generate
questions from images in the open domain.
However, the task of VQG in the medical domain
has not been studied or explored. One major
problem with medical VQG is the lack of large
scale labeled training data which usually requires
huge efforts to build.

In this paper, we introduce VQGR, a VQG
system that is able to generate natural language
questions when shown radiology images. In
summary, this paper makes the following
contributions:

1. To the best of our knowledge, generating
questions based on images contents has not
been explored in the medical domain. This
work is the first attempt to generate questions
about radiology images.

. In the medical domain, the lack of large sets
of labeled data makes training supervised
learning approaches inefficient. To overcome
the data limitation of medical VQG, we
present data augmentation on both the images
and the questions.

. VQGR is based on the variational
auto-encoders architecture and designed so
that it can take a radiology image as input and
generate a natural question as output.

. Experimental evaluations performed on the
VQA-RAD dataset of clinical questions
and radiology images show that VQGR is
effective.

Proceedings of the First Workshop on Advances in Language and Vision Research, pages 12—18
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The paper is organized as follows: Section 2
surveys related work. Section 3 describes the
proposed VQG approach. Section 4 presents
experimental results and discussion.

2 Related Work

Question generation, an increasingly important
area, is the task of automatically creating natural
language questions from a range of inputs, such
as natural language text (Kalady et al., 2010;
Kim et al., 2019; Li et al., 2019), structured data
(Serban et al., 2016) and images (Mostafazadeh
et al., 2016). In this work, we are interested in
generating questions from medical images. VQG in
the open-domain benefited from the available large
annotated datasets (Agrawal et al., 2015; Goyal
et al., 2019; Johnson et al., 2017). There is a variety
of work studying generative models for generating
visual questions in the open domain (Masuda-Mora
et al., 2016; Zhang et al., 2016). Recent VQG
approaches have used autoencoders architecture
for the purposes of VQG (Jain et al., 2017; Li et al.,
2018; Krishna et al., 2019). The successes of these
systems have primarily been a result of variational
autoencoders (VAEs) (Kingma and Welling, 2013).
Conversely, VQG in the medical domain is still a
challenging and under-explored task (Hasan et al.,
2018; Ben Abacha et al., 2018, 2019).

Although a high-quality manually created
medical VQA dataset exists, VQA-RAD (Lau et al.,
2018), this dataset is too small for training and
there is a need for VQG approaches to create
training datasets of sufficient size. Generating
new training data from the existing examples
through data augmentation is an effective approach
that has been widely used to handle the data
insufficiency problem in the open domain (Sahin
and Steedman, 2018; Kobayashi, 2018). Due to
the problem of data scarcity in medical VQG, we
automatically generate new training data. In this
paper, we present VQGR, a VQG system capable
of generating questions about radiology images.
The system is based on the VAE architecture and
data augmentation.

3 Methods

The goal of this study is to generate natural
language questions based on radiology image
contents. The overview of VQGR is shown in
Figure 1.
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3.1 Data Augmentation

Questions. We generated new training examples
based on question augmentation. For a given
medical question g, we generate a set of new
questions. During the augmenting process, we
use all the VQA-RAD training data D = {¢; }" ;
where n is the number of training questions. We
expand each training question g; into a set of
instances qf where k is the number of derived
pairs for each training question. To do so, we
first select nouns and verbs as candidate words,
using the part-of-speech tags NN, NNS, NNPS, NNP,
VBD, VBP, VBN, VBG, VBZ, VB'. Each candidate
word is then replaced by contextually similar words
using Wiki-PubMed-PMC embedding® which was
trained using four million English Wikipedia,
PubMed, and PMC articles. Similar words k
for a given word are retrieved from the word
embeddings space using cosine similarity. We
compute cosine similarity between a weight vector
of the given word w; in the question and the
vectors for each word w; in the pre-trained word
embeddings. We carried out several experiments
with k = {5, 10, 15, 20, 30} and found that the best
result in terms of evaluations metrics (described in
Subsection 4.2) can be achieved with k& = 20. For
instance, for a given question “Are the kidneys
normal?”’, we generate the followings questions:
“Were the kidneys normal?”, “Are the pancreas
normal?, “Are the intestines normal?”, “Are the
isografted normal?”’, Are the livers normal?, “Are
the lungs normal?”, “Are the organs normal?”, etc.
Images. We also generated new training instances
based on image augmentation techniques. To do so,
we applied flipping, rotation, shifting, and blurring
techniques to all VQA-RAD training images.

3.2 Visual Question Generation

The proposed VQGR system is based on the
variational autoencoders architecture (Kingma and
Welling, 2013). It first encodes the image before
generating the question. VAEs consist of two
neural network modules, encoder, and decoder, for
learning the probability distributions of data p(z).
The encoder creates a latent variable z from raw
data x and transforms it into latent space z — space.
The decoder plays the role of recovering = using
z extracted from the latent space. Let ¢(z|x)

"We used NLTK to perform part-of-speech tagging.
http://evexdb.org/pmresources/
vec—space—-models/
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Figure 1: Overview of VQGR: a VQG model from radiology images.

and p(z|z) be the probability distributions of the
encoder and the decoder, respectively. Training of
the encoder and decoder proceeds by maximizing
marginal likelihood logp(x). Expanding the
equation and finding the evidence lower bound
(ELBO) yields:

> Ezwqg( |x) [IOgPQS(‘T‘Z)] -

KL(gs(2|)[[p(2))
= ELBO

log p(x) 0

The loss function of VAEs is the negative
log-likelihood with a regularizer. The loss function
l; for datapoint x; is:

(d)a ) = Zqu(Z|xz)[logp¢(xl’z)]

(2)

KL(qo(2]x:)p(2))
where B, go(z|2:) [l0g Dy (4] 2)] is  the
reconstruction error and KL(gg(z|x)||p(2))

is the Kullback-Leibler divergence regularization
term. ¢ and 6, the parameters for the decoder
distribution pg(x|z) and the encoder distribution
qo(z|z) respectively.

Given an image v, a CNN is used for obtaining
a feature map and encoding the dense vectors h,,
into a latent (hidden) representation z-space. It
then reconstructs the inputs from the z-space using
a simple Multi Layer Perceptron (MLP) which is
a neural network with fully connected layers. It
generates the reconstructed image features h., and
optimizes the model by minimizing the following
l5 loss:

Ly = [|ho — holl2 (3)

We used the reparameterization trick (Kingma
and Welling, 2013), to generate means pu, and
standard deviations o, combine it with a sampled
unit Gaussian noise € to generate:

4)

2= Uy + €0,
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We assumed that z follows a multivariate
Gaussian distribution with diagonal covariance.

Finally, it uses a decoder LSTM to generate the
question ¢ from the z-space. The decoder takes a
sample from the latent dimension z-space, and uses
that as an input to output the question §. It receives
a “start” symbol and proceeds to output a question
word by word until it produces an “end” symbol.
We used the Cross Entropy loss function to evaluate
the quality of the neural network and to minimize
the error L, between the generated question ¢ and
the ground truth question q. The generation of each
word of the question can be written:

6 = arg max p(w|v, wo, .., w—1) (5
weW

where w; is the predicted word at ¢ step, W denotes

the word vocabulary, and w; represents the i-th

ground-truth word.

The final loss of VQGR is as follows:

LVQGR = >\1Lg + M KL+ M\3L, (6)

where KL is Kullback-Leibler divergence which
allows to know how well our variational posterior
q(z|v) approximates the true posterior p(z|v).
A1, A2, A3 are hyperparameters that control the
variational loss, the question generation loss, and
the reconstruction loss, respectively.

4 Experimental Results

4.1 Dataset

In this study, we used the VQA-RAD dataset
(Lau et al., 2018) of clinical visual questions
and images. It contains 315 images and 3,515
corresponding questions. Each image is associated
with more than one questions. In this work,
we are particularly interested in questions about
‘Modality”, “Abnormality”, “Organ”, and “Plane”.



The training set consists of 69,598 questions and
1,673 images after applying data augmentation,
and 1,269 questions and 239 images before data
augmentation. Table 1 presents the number of
questions and images associated to each of the
selected categories. The test set contains 100
reference questions with associated categories and
images.

Category #Questions #Images
Abnormality  397/18642 112/784
Modality 288/5534 54/378
Organ 73/16408 135/945
Plane 163/9216 99/693
Other 348/19798 81/567
Total 1269/69598 239/1673
Table 1:  The number of questions and images

associated to each category. The values after ““/”
represent the number of questions and images obtained
by data augmentation techniques.

4.2 Evaluation Metrics

To investigate the performance of the proposed
VQGR system, we perform both automatic and
manual evaluations.

4.2.1 Automatic evaluation

VQG is a sequence generation problem. Therefore,
we used a variety of language modeling evaluation
metrics such as BLEU, ROUGE, METEOR, and
CIDEr to measure the similarity between the
system-generated questions and the ground-truth
questions of the test set. We use the evaluation
package published by (Chen et al., 2015).

4.2.2 Human evaluation

For human evaluation, we follow the standard
approach in evaluating text generation systems
(Koehn and Monz, 2006), as used for question
generation by (Du and Cardie, 2018; Hosking
and Riedel, 2019). We manually checked the
generated questions and rated them in terms
of relevancy, grammaticality, and fluency. The
relevancy of a question is determined by the
relationship between the question, image and
category. Grammaticality refers to the conformity
of a question to the grammar rules. Fluency refers
to the way individual words sound together within
a question. The rating process has been done
by two experts at the U.S. National Institutes of
Health. For each rating scheme, the human raters
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are required to give a rating ranging from 1 to 3
scale (1 = completely not satisfying the rating, 3 =
fully satisfying the rating scheme).

4.3 Implementation Details

We implemented the VQGR and the
baseline models using PyTorch.  We used
ImageNet-pretrained ResNet-50 (He et al., 2016)
provided by PyTorch as the image encoder and
do not fine-tune its weights. LSTM decoder is
used for generating questions. All images are
resized to 224*224. Adam optimiser with a
learning rate of 0.0001 and a batch size of 32
is used. All models are trained for 40 epochs
and the best validation results are used as final
results. The source code is publicly available at
https://github.com/sarrouti/vqgr.

4.4 Results and Discussion

Table 2 presents a comparison between the VQGR
and the baseline systems in terms of multiple
language modeling metrics. The baseline system is
trained on the original VQA-RAD dataset without
data augmentation. VQGR is trained on the data
generated by our data augmentation techniques.
We can see that VQGR performs significantly
better across all metrics in comparison to the
baseline model. The results demonstrate that our
data augmentation techniques helped considerably,
producing a significant improvement. As we
discussed above, one major challenge in medical
VQG is the lack of large training datasets. To avoid
overfitting the model, small data might require
models that have low complexity. Whereas the
proposed VAE requires a large amount of training
data as it tries to learn deeply the underlying data
distribution of the input to output new sequences.

Model Bl B2 B3 B4 M RL C
Baseline 31.4 14.6 7.8 3.2 104 38.8 21.1
VQGR 55.0 43.3 37.9 34.5 29.3 56.3 31.1

Table 2: Automatic evaluation results of the VQGR
and the baseline models in terms of BLEU-1 (B1),
BLEU-2 (B2), BLEU-3 (B3), BLEU-4 (B4), METEOR
(M), ROUGE-L (RL) and CIDEr (C).

Table 3 shows the results of the human
evaluation. We randomly selected 20 (image,
question) pairs from the test set for a manual
evaluation by two experts. Detailed guidelines for
the raters are listed in subsection 4.2.2. Inter-rater
reliability was calculated on each of the 3 measures.



F1-score for each measure is presented in Table 4.
Most of the reliability scores are close to 0.50,
which is considered satisfactory reliable. The
human evaluation showed that VQGR achieves
close to human performance in terms of relevancy,
grammaticality, and fluency. We have not reported
the human evaluation results of the baseline system
since it returns the same trivial question “what
is the abnormality in this image?” for all given
images. This question could be asked about any
radiology image, even a normal image, without
even looking at it. Our goal is to develop
approaches capable of asking non-trivial questions,
which is not possible without understanding the
image contents, at least to some extent.

Model R G F Score
VQGR 78.3 933 80.0 83.8
Table 3: Human evaluation results in terms of

relevancy (R), grammaticality (G) and fluency (F). The
score is the average of R, G and F. These numbers are
the average of annotators scores and divided by 60 to
have them between 0 and 1. The perfect score is 100.

Model R G F
VQGR 0.42 0.27 0.51
Table 4: Inter-rater Reliability based on Fl-score

(Hripcsak, 2005). R, G and F indicate relevancy,
grammaticality and fluency, respectively.

Overall, VQG in the medical domain is a
very challenging task, and VQGR provides a
practical alternative to generate visual questions
about radiology images. Figure 2 provides example
questions generated by Lau et al. (2018) (ground
truth questions) and the VQGR system. From these
samples, we can see that the generated questions
are consistent with the ground truth.

5 Conclusion and Future Work

We presented the first attempt to generate visual
questions in the medical domain. We first presented
a data augmentation method to generate new
training questions and images from the VQA-RAD
dataset. We then introduced the VQGR model that
generates questions from radiology images. The
results of the automatic and manual evaluations
showed that VQGR outperforms the baseline model
by generating fluent and relevant questions.

In the future, we will investigate the use of the

16

Generated questions vs. ground truth

what type of mri is used to acquire this
image ?

mri imaging modality used for this
image?

what is seen in the lung apices ?

what abnormalities are in the lung apices
9

is a ring enhancing lesion present in the
right lobe of the liver?
is the liver normal ?

Figure 2: Examples of test images with the generated
questions (shown in blue) and the ground truth.

generated questions to advance VQA in the medical
domain.
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Abstract

Task success is the standard metric used to
evaluate referential visual dialogue systems.
In this paper we propose two new metrics that
evaluate how each question contributes to the
goal. First, we measure how effective each
question is by evaluating whether the question
discards objects that are not the referent. Sec-
ond, we define referring questions as those
that univocally identify one object in the im-
age. We report the new metrics for human di-
alogues and for state of the art publicly avail-
able models on GuessWhat?!. Regarding our
first metric, we find that successful dialogues
do not have a higher percentage of effective
questions for most models. With respect to the
second metric, humans make questions at the
end of the dialogue that are referring, confirm-
ing their guess before guessing. Human dia-
logues that use this strategy have a higher task
success but models do not seem to learn it.

1 Introduction

GuessWhat?! (de Vries et al., 2017) is a cooperative
two-player referential visual dialogue game. One
player (the Oracle) is assigned a referent object in
an image, the other player (the Questioner) has to
guess the referent by asking yes/no questions.
Referential visual dialogue has a clear task suc-
cess metric: whether the Questioner is able to cor-
rectly identify the referent at the end of the dia-
logue. The need of going beyond this metric to
evaluate the quality of the dialogues has already
been observed. So far attention has been put on the
linguistic skills of the models (Shukla et al., 2019;
Shekhar et al., 2019) and their dialogue strate-
gies (Shekhar et al., 2018; Pang and Wang, 2020).
But still the models are evaluated without consid-
ering how much each question contributes to the
goal. We propose two new metrics for evaluating
questions. First, a question is effective if it rules out
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at least one possible distractor (Krahmer and van
Deemter, 2012). Second, a question is referring if
it uniquely identifies one object in the image.

Figure 1 gives a game played by humans as an
example. In the image there are 8 candidate objects:
the referent object is the cow marked in green and
the distractors are the other 6 cows and the wooden
stick. The dialogue is highly effective: 80% of
the questions eliminate at least one distractor. The
figure shows for each question its answer, how
many distractors (#D) are left after each answer and
whether the question is effective or not effective.
The last question is not effective but it is referring,
it uniquely identifies the referent. Interestingly,
question 2 is also referring but not with respect to
the referent, so the dialogue needs to go on.

In the next section we review previous work.
Then, we define the metrics formally and calculate
them over the Guesswhat?! SOTA models. Finally,
we argue that models, differently from humans, do
not confirm their guess before guessing.

2 Previous work

Despite recent progress in the area of vision and
language, recent work (Jain et al., 2019) in the
navigation task (VLN) argues that current research
leaves unclear how much of a role language plays
in this task. They point out that dominant evalua-
tion metrics have focused on goal completion rather
than how each action contributes to the goal. His-
torically, the performance of VLN models has been
evaluated with respect to the objective of reach-
ing the goal location (Anderson et al., 2018). The
nature of the path an agent takes, however, is of
clear practical importance: it is undesirable for any
robotic agent in the physical world to reach the
destination by taking a lot of deviation or getting
into dangerous zones. Jain et al. (2019) propose
alternative metrics that evaluate the intermediate

Proceedings of the First Workshop on Advances in Language and Vision Research, pages 19-25
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. is it a cow?

. in the front?

DN A~ W N =

Human question

. is it the big cow in the middle?
. a cow on the left?

. first cow near us on the right?

Answer | #D | Effective
yes | 6 True
no | 5 True
no| 3 True
yes | O True
yes | O False

Figure 1: Human-human dialogue on the Guesswhat?! referential task extracted from (de Vries et al., 2017). The
referent is highlighted in green. #D is the number of distractors remaining after the question is answered. Four
out of five questions eliminate distractors and, hence, are effective according to our definition. The last question is

referring with respect to the intended referent.

steps taken towards the goal for the VLN task.

As argued by (Lowe et al., 2019), the vast ma-
jority of recent papers on emergent communication
show that adding a communication channel leads
to an increase in task success. This is a useful in-
dicator, but provides only a coarse measure of the
agent’s learned communication abilities. As we
move towards more complex environments, it be-
comes imperative to have a set of finer tools that
allow qualitative and quantitative insights into the
emergence of communication. This may be espe-
cially useful to allow humans to monitor agents’
behaviour, whether for fault detection, assessing
performance, or even building trust.

Following this idea of not only focusing on goal
completion but on evaluating how much each step
contributes to the goal, in this paper we propose
two new metrics for referential dialogue. We agree
with (Thomason et al., 2019) that incremental eval-
uation metrics such as ours should look further back
into the dialogue history. We believe that language
and vision systems should also be evaluated on as-
pects such as grammatically, truthfulness, diversity
and other aspects as done in previous work (Lee
etal., 2018; Ray et al., 2019; Xie et al., 2020; Mura-
hari et al., 2019). In this paper we focus on whether
a question is effective and referential considering
the dialogue history and the visual context.

One of the motivations for referential visual dia-
logue is to provide robots with the ability to iden-
tify objects through dialogue with a human as the
robot moves. The task we address in this paper is a
simplification. In our setup, the view of the robot
is static, it is a picture. For our work we use the
GuessWhat?! dataset (de Vries et al., 2017).

Recently, Sankar et al. (2019) showed that sev-
eral end-to-end dialogue systems do not take dia-
logue history into account. In this paper we are
particularly interested in the GuessWhat?! models

20

that generate questions explicitly modelling the di-
alogue history (Zhang et al., 2018; Shukla et al.,
2019; Pang and Wang, 2020)."

3 Dataset and Evaluation Metrics

In this section we briefly introduce the dataset and
we define the evaluation metrics that we use.

3.1 GuessWhat?!

GuessWhat?! (de Vries et al., 2017) is a cooperative
game where two players talk in order to identify an
object in an image. The player known as the Ques-
tioner has to guess the referent by asking yes/no
questions. The other player, the Oracle, knows
the referent object and answers the questions. The
GuessWhat?! dataset contains games of different
complexity, ranging from easy images with the ref-
erent and only one distractor, to images with up to
19 distractors. The dataset is composed of more
than 150k human-human dialogues containing an
average of 5.3 questions in natural language cre-
ated by turkers playing the game on MS COCO
images (Lin et al., 2014).

3.2 Effective and referring questions

Our definition of effective question is based on the
set of candidate objects: the reference set RS. We
compute RS for each question ¢;. The reference
set before the dialogue starts, R.S(qp), contains all
the objects in the image. That is, it contains the list
of objects annotated in the dataset and given to the
Oracle model. Human Oracles did not have access
to this list. At each dialogue turn ¢, RS(q;) is the
set of objects in RS(g;—1) such that the answer A
to g¢ on those objects is the same than the answer
to ¢; on the referent r. All answers A are computed
using the Oracle proposed in (de Vries et al., 2017)

"Unfortunately, the code or test dialogues of some previous
work are not available (Zhang et al., 2018; Shukla et al., 2019).



whose accuracy on the test set is 79%. Formally:

RS(qt) = {o; € RS(qt—1) | Algs,0:) = Algs,7)}

We say that a question q; is not effective iff
RS(q) = RS(q:—1); that is, the question does
not exclude any distractor. In our definition, an
effective question excludes at least one distractor;
hence, RS(q:) C RS(g:—1). The effectiveness of
the dialogue is given by the percentage of effective
questions it has. In the example given in Figure 1,
the last question of the dialogue, namely, “first
cow near us on the right?” is not effective by our
definition. Strictly speaking, it does not exclude
any distractor and the human could have guessed
after turn 4. This last question verifies the guessed
referent by constructing a referring expression for
it that is relative to the speaker’s position. We say
that this question is referring.

We say that a question ¢, is referring wrt the ref-
erent 7 iff A(q;,7) = “yes” and A(q, 0;) = “no”
for all other objects o; in the image. As we do with
effectiveness, we calculate A by using the Oracle
model (de Vries et al., 2017) repeateadly over all
objects. That is, if a question uniquely identifies
the referent then its answer is “yes” only for the
referent. In the example in Figure 1, the last ques-
tion is not effective but it is referring, it uniquely
identifies the referent. Interestingly, question 2 is
also referring but not with respect to the referent, so
the dialogue needs to go on. One may expect that
referring questions are realized using the definite
determiner “the” as in question 2, but this is not
always the case as observed in question 5.

4 Experiments and results

In this section we describe the GuessWhat!? SOTA
models for which the code or the test set dialogues
have been released and we present our results.

4.1 Models and experiments

Models usually implement the Questioner player
using two agents: the QGen which generates the
questions and the Guesser which takes a finished
dialogue and makes a guess for the referent.

We took the dialogues generated by different
SOTA models on the test set of the split defined
in (de Vries et al., 2017). The Baseline (BL) model
proposed by de Vries et al. (2017) is an encoder-
decoder architecture conditioned by image and
dialogue features for the QGen. Its Guesser is
a MLP that embeds the list of candidate objects
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and chooses the referent conditioned by the dia-
logue and the image features. The Reinforcement
Learning (RL) model (Strub et al., 2017) casts the
problem into a reinforcement learning task and
trains the previous model with policy gradient. The
Visually-Grounded State Encoder (GDSE) models,
both Supervised Learning (SL) and Cooperative
Learning (CL) (Shekhar et al., 2019) use a visually
grounded dialogue state that takes the visual fea-
tures and each new question to create a shared rep-
resentation used for both QGen and Guesser. They
differ in that SL is trained in a supervised fashion
while CL samples new objects from pictures and
makes the agents train in a cooperative learning
fashion on those artificially generated games. Last,
Visual Dialogue State Tracking (VDST) (Pang and
Wang, 2020) extends the QGen with a represen-
tation of the probability of each object being the
referent.

For each of the models, we calculate the refer-
ence sets for each question in their dialogues. We
calculated the percentage of effective questions in
each dialogue comparing failed and successful dia-
logues. For the last question in each dialogue we
calculate whether it is effective and/or referring.

4.2 Results

In this section we first exemplify our metrics
over dialogues generated by two models and then
present the quantitative results.

Figure 2 shows an example of both metrics on a
game on which VDST and CL are successful. Ef-
fectiveness is 60 for VDST and 40 for CL. Our def-
inition of effectiveness not only accounts for ques-
tion repetitions, but it also captures paraphrases
and context-dependent redundancies. Examples of
context dependent redundancy can be seen for both
systems. In the VDST dialogue, 4 is redundant
because, in this image, there is no cake that is both
in the front and in the top. In CL dialogue, question
2 is redundant because all cakes in the image are
dark brown. There are no referring questions in
the VDST dialogue. The CL dialogue finishes with
a referring and effective question that is realized
using a definite article. The question even includes
the connector “so” giving the feeling that the sys-
tem intends to verify its guess. However, the same
system uses a definite determiner in question 3 as
if the question was referring but it is not (there are
three dark brown cakes).

We report quantitative results for humans and



VDST

. is it food?

. is it in the left?

. is it in the front?
. is it in the top?

. in the middle?

DN B W N =

GDSE-CL
yes | 1. is it food? yes
yes | 2. is it a cake? yes
yes | 3. is it the dark brown? yes
no | 4. is it the entire cake? yes
no | 5. so the most left of the brown ones? yes

Figure 2: Dialogues generated by VDST and CL in a successful game. Non effective in italics. There are no
referring questions in the VDST dialogue. The CL dialogue finishes with a referring and effective question that is

realized using a definite article.

for the 5-question and 8-question setups for SOTA
models. Table 1 shows average number of ques-
tions (#Q), task success (TS) and effectiveness for
each of the models and the human dialogues. The
table also shows the percentage of dialogues whose
last turn is effective and/or referring.

The results suggest that models make more non-
effective questions than one may expect. Surpris-
ingly, successful dialogues generated by models do
not have a higher percentage of effective questions.
Even for humans, effectiveness is not considerably
higher for successful dialogues. Human effective-
ness is higher in almost every column of the table,
the VDST model is close. Humans do not see
the list of annotated objects as the Guesser mod-
els do. They rely on their sight on the image and
they may ask questions that discard objects present
in the image but not annotated in the dataset and
hence not part of the reference set we calculate.
All of these questions are marked as non-effective
because they discard objects invisible to our metric
and to the models. Hence, human effectiveness
could be higher than we have calculated using the
GuessWhat?! dataset object annotations.

Humans and models alike ask non-effective ques-
tions mostly at the end of the dialogue. The ef-
fectiveness decreases as dialogue progresses for
models and humans and reaches its lowest level
in the last turn as shown in Table 1. Interestingly,
models and humans seem to be using the last turn
for different purposes. 26% of human dialogues
end with a referring question while the model that
reaches the highest value for this metric has only
a 7%. We found that human task success for the
dialogues that end with a referring question is 95%
while it is 80% for the rest.

4.3 Analysis of Oracle accuracy

The computation of both metrics involves using
an automatic Oracle. Even though this Oracle
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achieves high accuracy on the test set, this ac-
curacy is actually measured on human-generated
questions. In this section we evaluate this Ora-
cle calculating its accuracy for different types of
questions. We also report the different types of
questions that the systems produce. The types of
questions generated by systems show a distribution
shift from those generated by humans. We argue
that machine-generated questions are easier and
the performance of the Oracle should be equal or
higher for them than for the human ones.

Following Shekhar et al. (2019), we classify
questions into different types and evaluate the Ora-
cle accuracy for each type. We distinguish between
eight types of questions. The first type are those
that include a noun representing the category of the
referent (e.g., ‘is it a dog?’); we use the categories
of objects defined in MS COCO (Lin et al., 2014).
Then we consider questions about properties usu-
ally realized as adjectives or prepositional phrases.
We make a distinction between color, shape, size,
texture, location, and action questions. The clas-
sification is done by extracting keywords for each
question type from the human dialogues, and then
assigning each question to as many types as it fits.
A question may be tagged with several attribute
classes if more than one keyword is present. E.g.,
“Is it the white one on the left?” is classified as
both color and location. The list of keywords is
available in (Shekhar et al., 2019).

In Table 2 we can see that the distribution of
types of questions varies from model to model and
differs to the distribution in humans. Humans make
more questions about the color, size, shape of the
target as well as about the action that the target is
performing (e.g. “is she skiing?”’). Some models
make more questions about the object (e.g. BL,
SL and CL) and about the location (e.g. RL and
VDST). The table also reports the Oracle accuracy
on the human dataset per type of question. The



Effectiveness Last Turn
Model #Q | TS All | Failure | Success | Effective | Referring
BL (de Vries et al., 2017) 8 [40.7 264 | 275 24.7 4.2 4.46
SL (Shekhar et al., 2019) 8 [49.7]129.1| 314 26.9 7.4 5.64
RL (Strub et al., 2017) 8 [563|32.6| 365 29.6 35 2.60
CL (Shekhar et al., 2019) 8 584302 323 28.6 7.6 6.08
BL (de Vries et al., 2017) 5 408 | 38.8 | 39.8 374 11.9 5.20
SL (Shekhar et al., 2019) 5 | 478|422 | 44.6 39.9 16.4 7.42
RL (Strub et al., 2017) 5 | 584 |48.6| 529 45.1 23.0 2.68
CL (Shekhar et al., 2019) 5 | 537|447 | 478 42.6 18.5 6.32
VDST (Pang and Wang, 2020) 5 1644|529 | 574 51.0 28.7 1.82
Humans (H) (de Vries et al., 2017) | 5.3 | 84.1 | 56.9 | 54.7 57.3 33.6 26.01

Table 1: Task success (TS), Effectiveness and Last Turn Effectiveness by model in the test set. Effectiveness is
reported for all dialogues and dialogues ending in failure or success. For VDST we only report the results for
5 question dialogues as we only had access to these dialogues. For the last turn of the dialogues we report the

percentage of effective and referring questions.

hardest types of question for the Oracle are color
and size questions. All models ask fewer of these
questions than humans. Also most models, except
for VDST and RL, ask more object questions than
humans; this is the type of question for which the
Oracle has the highest accuracy. The models VDST
and RL ask more location questions. However, we
have manually observed that the location questions
that cause more errors for the Oracle are questions
regarding order (e.g. “the third counting from the
left?”’). Such questions constitute 8% of the human
questions and have an accuracy of 58% but are
not made by VDST and RL. The type of location
questions asked by VDST are illustrated in Figure 2.
We have argued that models make questions that are
easier for the Oracle than those made by humans.
We hypothesize that the Oracle accuracy is then
higher for machine-generated questions. We will
investigate this hypothesis further in future work.

5 Conclusions

We proposed two new metrics for evaluating Guess-
what?! dialogues. Effectiveness, as we defined it,
evaluates whether the question can rule out at least
one possible distractor. We consider a question to
be effective if it is able to make the reference set
smaller both if the question is answered with ‘yes’
as well as if it is answered with ‘no’. We observe
that it decreases as dialogues advance and reaches
its lowest level in the last turn. We also find that
successful dialogues do not have a higher percent-
age of effective questions. This is surprising, and
hints at the fact that there are other strategies to

Type |[Acci BL SL RL CL VDST H
Obj | 94 |49.0048.08 24.00 46.40 36.44 38.12
Color| 63 |2.75 13.00 0.12 12.51 0.01 15.50
Shape| 67 | 0.00 0.01 0.00 0.02 0.00 0.30
Size |60]0.02 0.33 0.02 0.39 0.01 1.38
Tex |70(0.00 033 0.01 0.15 0.00 0.89
Loc |67 |47.2537.09 74.80 38.54 64.80 40.00
Act |65(1.34 797 0.66 7.60 0.30 7.59
Other| 75 |1.12 5.28 0.49 590 0.03 8.60

Table 2: Oracle accuracy per type of question and ques-
tion distribution for the models. We report BL, SL, RL
and CL question type distribution with 8 questions, and
VSDT with 5 questions and the human dialogues.

accomplish reference identification other than ask-
ing effective questions. One of such strategies is
captured by our second metric: questions that may
not be effective but are referring.

Humans seem to use the last turn to confirm their
guess before guessing. Human dialogues that con-
firm the guess using a referring questions have a
higher task success than those which do not. We
plan to explore whether models can learn to con-
firm their guess before guessing. As future work
we plan to refine our referring metric. We have
observed that some dialogues do not make explicit
the object category in the confirmation. E.g. “the
one near us on the right?” in Figure 1. By our defi-
nition, this question would not be referring because
it is also true for the wooden stick.

We believe that our metrics could be heuristics
that guide the training of end-to-end models.
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Abstract

We propose a novel alignment mechanism
to deal with procedural reasoning on a
newly released multimodal QA dataset, named
RecipeQA. Our model is solving the textual
cloze task which is a reading comprehension
on a recipe containing images and instructions.
We exploit the power of attention networks,
cross-modal representations, and a latent align-
ment space between instructions and candi-
date answers to solve the problem. We intro-
duce constrained max-pooling which refines
the max-pooling operation on the alignment
matrix to impose disjoint constraints among
the outputs of the model. Our evaluation result
indicates a 19% improvement over the base-
lines.

1 Introduction

Procedural reasoning by following several steps to
achieve a goal is an essential part of our daily tasks.
However, this is challenging for machines due to
the complexity of instructions and commonsense
reasoning required for understanding the proce-
dure (Dalvi et al., 2018; Yagcioglu et al., 2018;
Bosselut et al., 2017).

In this paper, we tackle the task of procedural
reasoning in a multimodal setting for understanding
cooking recipes. The RecipeQA dataset (Yagcioglu
et al., 2018) contains recipes from internet users.
Thus, understanding the text is challenging due to
the different language usage and informal nature
of user-generated texts. The recipes are along with
images provided by users which are taken in an
unconstrained environment. This exposes a level
of difficulty similar to real-world problems.

The tasks proposed with the dataset include tex-
tual cloze, visual cloze, visual ordering, and visual
coherence. Here, we focus on textual cloze. An
example of this task is shown in Figure 1. The
input to the task is a set of multimodal instructions,
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three textual items from the question and a place-
holder to be filled by the answer. The answer has
to be chosen from four options. The three ques-
tion items and the correct answer make a sequence
which correctly describes the steps of the recipe.

To design our model, we rely on the intuition that
given question items, each answer describes exactly
one step of the recipe. Hence, we design a model
to make explicit alignments between the candidate
answers and each step and use those alignment
results, given the question information. This align-
ment space is latent due to not having any direct
supervision based on provided annotations.

Using multimodal information and representa-
tions by making a joint space for comparison has
been broadly investigated in the recent research
(Hessel et al., 2019; Wu et al., 2019; Li et al., 2019;
Suetal., 2020; Yu et al., 2019; Fan and Zhou, 2018;
Tan and Bansal, 2019; Nam et al., 2017). Our work
differs from those as we do not have direct super-
vision on multimodal alignments. Moreover, the
task we are solving uses the sequential nature of
visual and textual modality as a weak source of
supervision to build a neural model to compare the
textual representation of context and the answers
for a given question representation.

Procedural reasoning has been investigated on
different tasks (Amac et al., 2019; Park et al., 2017).
While PRN (Amac et al., 2019) is proposed on
RecipeQA, their model does not apply to the tex-
tual cloze task. (Park et al., 2017) is using pro-
cedural reasoning on multimodal information to
generate a story from a sequence of images. How-
ever, the textual cloze task is about filling a blank
in a sequence given a set of textual options.

Our model exploits the latent alignment space
and the positional encoding of questions and an-
swers while applying a novel approach for con-
straining the output space of the latent alignment.
Moreover, we exploit cross-modality representa-

Proceedings of the First Workshop on Advances in Language and Vision Research, pages 2631
(©2020 Association for Computational Linguistics



Pizza Pancakes

You need the following ingredients ...

Stepl:
400 gr. flour 3 eggs ...

Step2: Take a bowl and add the flour and

Step3: Take a cutting board and knife ...

Step4: Bake the veggies in separate pieces..

Step5: Heat up the pan and poor a little

Step 1

Step 2

Step 3

Step 5

Question:
Making the Dough.

Answers: A.)Preparation

B. Pizza Cones

Choose the best title for the missing blank to correctly complete the recipe.

Preparing Veggies.

C. Fillings D. Cut the Portrait

Baking.

Figure 1: A sample of textual cloze task

tions based on cross attention to investigate the
benefits from information flow between images
and instructions. We compare our results to the
provided baselines in (Yagcioglu et al., 2018) and
achieve the state-of-the-art by improving over 19%.

2  Proposed Model

We design a model to solve a structured output pre-
diction on the textual cloze task. The intuition of
our model is that the correct answer option should
describe precisely one instruction, and this instruc-
tion should not be already described with other
items in the question. Hence, our model assumes
the instruction and question as the context and can-
didate answers as an additional input to the align-
ment process. Moreover, to incorporate the order of
the sequence in question items and the placeholder,
we utilize a one-hot encoding vector of positions
to be concatenated with the candidate answers and
question items’ representations.

We give the instructions to a sentence splitter
using Stanford Core NLP library (Manning et al.,
2014). The output is then tokenized by Flair data
structure (Akbik et al., 2018) and embedded with
BERT (Devlin et al., 2019). The words’ embed-
dings are passed to an LSTM layer and the last
layer is used as the instruction representation. We
propose two different approaches to include images
representations. These proposals are described in
Section 3.3. An overview of our approach is shown
in Figure 2.

Question representation is the last layer of an
LSTM on question items. The representation of
each question item is the concatenated vector of
a one-hot position encoding and word embedding
obtained from BERT. The candidate answers’ rep-
resentations are computed using the same approach.
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We concatenate the question representation to each
instruction. Then, the similarity of each candidate
answer and instruction is computed using the co-
sine similarity and form a similarity matrix. We
use S to denote the similarity matrix. The rows of
this matrix are candidate answers and the columns
represent the recipe steps. The value of \S;; indi-
cates the similarity score of candidate ¢ and step
J.

For training the model, we define two differ-
ent objectives directly applied to the similarity
matrix. The textual cloze task does not have the
direct supervision required for the alignment be-
tween candidates and steps, and our objective is
designed to use the answer of the question to train
this latent space of alignments. For imposing the
constraint of the alignment to be disjoint between
steps and candidates, one way is to simply compute
the maximum of each row in the similarity matrix
and use that as the aligned step for each candidate
answer; However, we introduce constrained max-
pooling which is a more sophisticated approach
as shown in Figure 3. We compare these two al-
ternatives in the experimental results. We apply
an iterative process to select the most related pair
of instruction (a column) and answer candidate
(a row) while removing the related column and
row each time until all candidate answers find their
aligned instruction. We denote the final selected
maximum scores by m = (S14,, 5%,, S35, S4i, )
where i. € [1,number_of _steps]| is the index of
the step with maximum alignment score with can-
didate cand for all pairs of candidates ¢ and d,
c 7é(i = 1 75 iq-

Respectively, we define two following objectives.
The first objective maximizes the distance between
the maximum score of the correct answer and the
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Figure 2: An overview of proposed model

maximum score of another random wrong answer
candidate. Furthermore, by fixing the instruction
with the maximum alignment with the correct an-
swer, it decreases the score of the other candidates
alignments with that instruction. The second objec-
tive, increases the maximum similarity score of the
answer to approach to 1 while decreasing the other
maximum scores to be lower than 0.1.
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Figure 3: The matrix operation for constrained max-
pooling

Loss = max(() Sri, — Sai, +0.1)+

E max

c#a

— Sgi, +0.1) 2

cza

4
Loss = (1 — Sg;,) + Zmax(o, Sei. — 0.1)
c#a
(2)

Where a € {1,2,3,4} is the correct an-
swer number and r is a random index from
{1,2,,3,4} — {a}. The main difference in ob-
jective 1 and objective 2 is the regularization term

28

on the selected instruction column in the alignment
matrix.

3 Experiment

3.1 Baselines

Hasty Student (Tapaswi et al., 2016) is a simple
approach considering only the similarity between
elements in question and candidate answers. This
baseline fails to get good results due to the intrinsic
of the task.

Impatient Reader (Hermann et al., 2015) com-
putes attention from answers to the recipe for
each candidate and despite being a complicated
approach, yet it fails to get good results on the task.
Moreover, multimodal Impatient reader approach
uses both instructions and corresponding images.

3.2 Results

The RecipeQA textual cloze task contains 7837
training, 961 validation, and 963 test examples. A
learning rate of 4 — el is used for the first half
and then 8 — e2 for the second half of training
iterations. We use the momentum of 0.9 for all
variations of our model. We train for 30 iterations
with a batch size of 1 and optimize the weights
using an SGD optimizer. For word embedding, the
pre-trained BERT embedding in Flair framework is
used. For the image representations, ResNet50 (He
et al., 2016) pre-trained on Imagenet (Russakovsky
et al., 2015) using PyTorch library (Paszke et al.,
2019) is applied.

Table 1 presents the experimental results. We
call the model variations which use the loss objec-
tive in Equation (1) as Model-obj 1 and the ones
that use the loss in Equation (2) as Model-obj 1
Using the objective in Formula (1) yields better re-
sults in all experiments. This indicates the benefit



of using the column-wise disjoint constraint on the
similarity matrix. Also, using multimodal infor-
mation yields 1.12% improvement. We elaborate
further on the comparison between multimodal and
unimodal results in Section 4.

We provide our Pytorch implementation publicly
available on Github !

3.3 Multimodal Results

In order to investigate the usefulness of the images
in solving the textual cloze task, we propose two
different models that incorporate the image repre-
sentation in addition to the textual information of
recipe steps. The first variation receives ResNet50
representations of the images and, after applying an
LSTM layer, pulls the last layer as image represen-
tation. Finally, it concatenates the image represen-
tation to the question and instruction representation
in the main architecture before applying the MLP
and computing the cosine similarities.

The second variation as shown in figure 4,
uses a more complex architecture introduced in
LXMERT (Tan and Bansal, 2019). We modify the
architecture of LXMERT and apply it to the word
embedding and image representations to flow the
information from each to another. The updated
word embedding and image representations are
passed to an LSTM, and its last layer is used to
represent the visual and textual information of a
step. In the end, these representations are concate-
nated to each other and the question representation
to build the instruction vector representation. We
report the results of these model variations in Ta-
ble 1. Using the cross modality representations
based on LXMERT provided extensive way to flow
the information from text and image to each other
and yields the best results.

4 Discussion and Analysis

We did qualitative analysis using some examples
and their results to better understand the behaviour
of the proposed model. Our model is almost able to
detect all matched candidates with the instructions
(in case that there exist multiple matches) but fails
to choose the one that completes the sequence of
the question items. This indicates the shortage
of procedural hints inside our architecture while
the latent alignment is proven to be practical. By
analysing the results, we found interesting cases

"https://github.com/HLR/LatentAlignmentProcedural
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Instructions
Step 5: Heat up ...

<

LXMERT

[

Tokensv v Images
HEEEN [ 1]
~~ ~~
LSTM LSTM
Last layer Last layer
Pooling Pooling

I——>Cat<——|
v

Step 5

Representation

Figure 4: Using LXMERT for integrating multimodal
information on steps

where either multimodal or unimodal architectures
could yield more accurate predictions.
Multimodal - , Unimodal +:
e Images contain misleading information (see
example in Figure 5).
e Image quality is low.
e Images are not showing the steps correctly.
e Text contains direct mentions of candidate an-
SWers.

Questions
?

Materials Needed Sprinkling Microwave
Candidate answers:

A)Cutting

B.Halloween Baked Apples
D.Pile It Up

B: -0.688 C: -0.607 D: -0.625
C:

C.Turn Apple Slices
0520
Multi-modal Scores ~ A: -0.129  B: -0.249 D: -0.153

Figure 5: The image is misleading the multimodal set-
ting to choose apple slices rather than cutting option

Uni-modal scores
-0.088

Multimodal + , Unimodal -:
o The sequence of the images provide detailed
steps and good quality.
o The entities in candidates answers are shown
in the pictures but not in the text.
o The recipes instructions are very short and the
images provide more information.



Models Accuracy p@2
Human 73.6 -
Hasty Student 26.89 -
Impatient Reader 28.03 -
Impatient Reader (multimodal) 29.07 -
Model-Obj 1 46.35 78.7
Model-Obj 2 43.36 -
Model-Obj 1 (multimodal) 45.41
Model-Obj 1 (multimodal) + LXMERT 47.5 77.5
Model-Obj 1 (multimodal) + LXMERT - ConstrainedMaxPooling 46.9 76.3

Table 1: Evaluation on the test set

In some cases, the multimodal information can fix
the errors resulted from not considering the order of
events in the proposed architecture. Our intuition is
that, although, the textual model does not contain
information from previous steps, the images carry
useful information on what has been already done.
An example of this is shown in Figure 6, where
co-reference resolution is required to answer the
question correctly.

Step 4: Push the bread down with a
spatula to get it toasty.

Step 5: Once it has started to siz-
zle flip it. The new top side should
be a golden brown.

S Questions
> e o 1.2dd Butter.
< g 3. ?

2.Press the Bread.
4.Cut the Sandwich.

Candidate answers: A.Grilled Cheese Experiment B.Grilled Cheese
C.Flip the Sandwich D)Flip the Bread!

A: -0.743 B: -0.760 |C: -0.522| D: -0.591

A: -0.298 B: -0.287 C: -0.122 |D: -0.110

Uni-modal scores

Multi-modal Scores

Figure 6: The images lead the model to understand that
”it” refers to bread rather than sandwich

Furthermore, we have tested our multimodal ar-
chitecture with representations of ResNet101 and
the results dropped. We confirmed this experiment
by re-implementing Hasty Student approach on vi-
sual coherence task (that has 68% accuracy with
ResNet50) and obtained 35% lower than ResNet50.
This can be due to the lack of quality of images
resulting in extra noise when using a more com-
plicated network. Thus, ResNet50 achieves better
accuracy by producing more abstract representa-
tions of the images.

5 Conclusion and Future Work

We proposed a model for RecipeQA textual cloze
task which exploits the latent alignment of question
items with instructions. Moreover, we investigated
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the benefit of using multimodal information in this
task by comparing three different architectures and
provided qualitative analysis on some examples to
justify the results. Our model exceeded the base-
lines and improved the SOTA by over 19%. As a
future direction, we will investigate the usage of
the latent alignment in other tasks. We will apply
more complex methods on textual abstractions and
attention mechanisms to link the candidate answers
with the recipe instructions. Investigating how to
incorporate the question order in the architecture is
another direction.
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