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Abstract

We propose a novel alignment mechanism
to deal with procedural reasoning on a
newly released multimodal QA dataset, named
RecipeQA. Our model is solving the textual
cloze task which is a reading comprehension
on a recipe containing images and instructions.
We exploit the power of attention networks,
cross-modal representations, and a latent align-
ment space between instructions and candi-
date answers to solve the problem. We intro-
duce constrained max-pooling which refines
the max-pooling operation on the alignment
matrix to impose disjoint constraints among
the outputs of the model. Our evaluation result
indicates a 19% improvement over the base-
lines.

1 Introduction

Procedural reasoning by following several steps to
achieve a goal is an essential part of our daily tasks.
However, this is challenging for machines due to
the complexity of instructions and commonsense
reasoning required for understanding the proce-
dure (Dalvi et al., 2018; Yagcioglu et al., 2018;
Bosselut et al., 2017).

In this paper, we tackle the task of procedural
reasoning in a multimodal setting for understanding
cooking recipes. The RecipeQA dataset (Yagcioglu
et al., 2018) contains recipes from internet users.
Thus, understanding the text is challenging due to
the different language usage and informal nature
of user-generated texts. The recipes are along with
images provided by users which are taken in an
unconstrained environment. This exposes a level
of difficulty similar to real-world problems.

The tasks proposed with the dataset include tex-
tual cloze, visual cloze, visual ordering, and visual
coherence. Here, we focus on textual cloze. An
example of this task is shown in Figure 1. The
input to the task is a set of multimodal instructions,
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three textual items from the question and a place-
holder to be filled by the answer. The answer has
to be chosen from four options. The three ques-
tion items and the correct answer make a sequence
which correctly describes the steps of the recipe.

To design our model, we rely on the intuition that
given question items, each answer describes exactly
one step of the recipe. Hence, we design a model
to make explicit alignments between the candidate
answers and each step and use those alignment
results, given the question information. This align-
ment space is latent due to not having any direct
supervision based on provided annotations.

Using multimodal information and representa-
tions by making a joint space for comparison has
been broadly investigated in the recent research
(Hessel et al., 2019; Wu et al., 2019; Li et al., 2019;
Suetal., 2020; Yu et al., 2019; Fan and Zhou, 2018;
Tan and Bansal, 2019; Nam et al., 2017). Our work
differs from those as we do not have direct super-
vision on multimodal alignments. Moreover, the
task we are solving uses the sequential nature of
visual and textual modality as a weak source of
supervision to build a neural model to compare the
textual representation of context and the answers
for a given question representation.

Procedural reasoning has been investigated on
different tasks (Amac et al., 2019; Park et al., 2017).
While PRN (Amac et al., 2019) is proposed on
RecipeQA, their model does not apply to the tex-
tual cloze task. (Park et al., 2017) is using pro-
cedural reasoning on multimodal information to
generate a story from a sequence of images. How-
ever, the textual cloze task is about filling a blank
in a sequence given a set of textual options.

Our model exploits the latent alignment space
and the positional encoding of questions and an-
swers while applying a novel approach for con-
straining the output space of the latent alignment.
Moreover, we exploit cross-modality representa-
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Pizza Pancakes

Stepl: You need the following ingredients ...
-

400 gr. flour 3 eggs ... i " 5
Step2: Take a bowl and add the flour and v e, Y
Step3: Take a cutting board and knife ... =
Step4: Bake the veggies in separate pieces...

p veggl * P pd Step 1 Step 2 Step 3 Step 5
Step5: Heat up the pan and poor a little
Question: Choose the best title for the missing blank to correctly complete the recipe.
Making the Dough. Preparing Veggies. Baking.

Answers: A.)Preparation B. Pizza Cones C. Fillings D. Cut the Portrait

Figure 1: A sample of textual cloze task

tions based on cross attention to investigate the
benefits from information flow between images
and instructions. We compare our results to the
provided baselines in (Yagcioglu et al., 2018) and
achieve the state-of-the-art by improving over 19%.

2 Proposed Model

We design a model to solve a structured output pre-
diction on the textual cloze task. The intuition of
our model is that the correct answer option should
describe precisely one instruction, and this instruc-
tion should not be already described with other
items in the question. Hence, our model assumes
the instruction and question as the context and can-
didate answers as an additional input to the align-
ment process. Moreover, to incorporate the order of
the sequence in question items and the placeholder,
we utilize a one-hot encoding vector of positions
to be concatenated with the candidate answers and
question items’ representations.

We give the instructions to a sentence splitter
using Stanford Core NLP library (Manning et al.,
2014). The output is then tokenized by Flair data
structure (Akbik et al., 2018) and embedded with
BERT (Devlin et al., 2019). The words’ embed-
dings are passed to an LSTM layer and the last
layer is used as the instruction representation. We
propose two different approaches to include images
representations. These proposals are described in
Section 3.3. An overview of our approach is shown
in Figure 2.

Question representation is the last layer of an
LSTM on question items. The representation of
each question item is the concatenated vector of
a one-hot position encoding and word embedding
obtained from BERT. The candidate answers’ rep-
resentations are computed using the same approach.

27

We concatenate the question representation to each
instruction. Then, the similarity of each candidate
answer and instruction is computed using the co-
sine similarity and form a similarity matrix. We
use S to denote the similarity matrix. The rows of
this matrix are candidate answers and the columns
represent the recipe steps. The value of \S;; indi-
cates the similarity score of candidate ¢ and step
gJ.

For training the model, we define two differ-
ent objectives directly applied to the similarity
matrix. The textual cloze task does not have the
direct supervision required for the alignment be-
tween candidates and steps, and our objective is
designed to use the answer of the question to train
this latent space of alignments. For imposing the
constraint of the alignment to be disjoint between
steps and candidates, one way is to simply compute
the maximum of each row in the similarity matrix
and use that as the aligned step for each candidate
answer; However, we introduce constrained max-
pooling which is a more sophisticated approach
as shown in Figure 3. We compare these two al-
ternatives in the experimental results. We apply
an iterative process to select the most related pair
of instruction (a column) and answer candidate
(a row) while removing the related column and
row each time until all candidate answers find their
aligned instruction. We denote the final selected
maximum scores by m = (S14,, 5%s,, S35, S4i,)s
where i, € [1, number_of _steps] is the index of
the step with maximum alignment score with can-
didate cand for all pairs of candidates ¢ and d,
c#d = i. # igq.

Respectively, we define two following objectives.
The first objective maximizes the distance between
the maximum score of the correct answer and the
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Figure 2: An overview of proposed model

maximum score of another random wrong answer
candidate. Furthermore, by fixing the instruction
with the maximum alignment with the correct an-
swer, it decreases the score of the other candidates
alignments with that instruction. The second objec-
tive, increases the maximum similarity score of the
answer to approach to 1 while decreasing the other
maximum scores to be lower than 0.1.
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Figure 3: The matrix operation for constrained max-
pooling

Loss = max(0, Syi, — Sqi, +0.1)+

- (1)
Z max(0, S¢i, — Sqi, +0.1)
c#a
4
Loss = (1 — Sg;,) + Zmax(O, Sei. — 0.1)
c#a
(2)

Where a € {1,2,3,4} is the correct an-
swer number and r is a random index from
{1,2,,3,4} — {a}. The main difference in ob-
jective 1 and objective 2 is the regularization term
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on the selected instruction column in the alignment
matrix.

3 Experiment

3.1 Baselines

Hasty Student (Tapaswi et al., 2016) is a simple
approach considering only the similarity between
elements in question and candidate answers. This
baseline fails to get good results due to the intrinsic
of the task.

Impatient Reader (Hermann et al., 2015) com-
putes attention from answers to the recipe for
each candidate and despite being a complicated
approach, yet it fails to get good results on the task.
Moreover, multimodal Impatient reader approach
uses both instructions and corresponding images.

3.2 Results

The RecipeQA textual cloze task contains 7837
training, 961 validation, and 963 test examples. A
learning rate of 4 — el is used for the first half
and then 8 — e2 for the second half of training
iterations. We use the momentum of 0.9 for all
variations of our model. We train for 30 iterations
with a batch size of 1 and optimize the weights
using an SGD optimizer. For word embedding, the
pre-trained BERT embedding in Flair framework is
used. For the image representations, ResNet50 (He
et al., 2016) pre-trained on Imagenet (Russakovsky
et al., 2015) using PyTorch library (Paszke et al.,
2019) is applied.

Table 1 presents the experimental results. We
call the model variations which use the loss objec-
tive in Equation (1) as Model-obj 1 and the ones
that use the loss in Equation (2) as Model-obj 1.
Using the objective in Formula (1) yields better re-
sults in all experiments. This indicates the benefit



of using the column-wise disjoint constraint on the
similarity matrix. Also, using multimodal infor-
mation yields 1.12% improvement. We elaborate
further on the comparison between multimodal and
unimodal results in Section 4.

We provide our Pytorch implementation publicly
available on Github .

3.3 Multimodal Results

In order to investigate the usefulness of the images
in solving the textual cloze task, we propose two
different models that incorporate the image repre-
sentation in addition to the textual information of
recipe steps. The first variation receives ResNet50
representations of the images and, after applying an
LSTM layer, pulls the last layer as image represen-
tation. Finally, it concatenates the image represen-
tation to the question and instruction representation
in the main architecture before applying the MLP
and computing the cosine similarities.

The second variation as shown in figure 4,
uses a more complex architecture introduced in
LXMERT (Tan and Bansal, 2019). We modify the
architecture of LXMERT and apply it to the word
embedding and image representations to flow the
information from each to another. The updated
word embedding and image representations are
passed to an LSTM, and its last layer is used to
represent the visual and textual information of a
step. In the end, these representations are concate-
nated to each other and the question representation
to build the instruction vector representation. We
report the results of these model variations in Ta-
ble 1. Using the cross modality representations
based on LXMERT provided extensive way to flow
the information from text and image to each other
and yields the best results.

4 Discussion and Analysis

We did qualitative analysis using some examples
and their results to better understand the behaviour
of the proposed model. Our model is almost able to
detect all matched candidates with the instructions
(in case that there exist multiple matches) but fails
to choose the one that completes the sequence of
the question items. This indicates the shortage
of procedural hints inside our architecture while
the latent alignment is proven to be practical. By
analysing the results, we found interesting cases

"https://github.com/HLR/LatentAlignmentProcedural
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Instructions
Step 5: Heat up ...
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LXMERT

[

Tokensv @ Images
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LSTM LSTM
Last layer Last layer
Pooling Pooling

I——>Cat<——‘
v

Step 5

Representation

Figure 4: Using LXMERT for integrating multimodal
information on steps

where either multimodal or unimodal architectures
could yield more accurate predictions.
Multimodal - , Unimodal +:
e Images contain misleading information (see
example in Figure 5).
e Image quality is low.
e Images are not showing the steps correctly.
e Text contains direct mentions of candidate an-
SWers.

Questions
?

Materials Needed Sprinkling Microwave
Candidate answers:

A)Cutting

B.Halloween Baked Apples
D.Pile It Up

B: -0.688 C: -0.607 D: -0.625
-0.088

C.Turn Apple Slices
A: -0.520
Multi-modal Scores ~ A: -0.129  B: -0.249 D: -0.153

Figure 5: The image is misleading the multimodal set-
ting to choose apple slices rather than cutting option

Uni-modal scores
C:

Multimodal + , Unimodal -:
o The sequence of the images provide detailed
steps and good quality.
o The entities in candidates answers are shown
in the pictures but not in the text.
e The recipes instructions are very short and the
images provide more information.



Models Accuracy p@2
Human 73.6 -
Hasty Student 26.89 -
Impatient Reader 28.03 -
Impatient Reader (multimodal) 29.07 -
Model-Obj 1 46.35 78.7
Model-Obj 2 43.36 -
Model-Obj 1 (multimodal) 45.41
Model-Obj 1 (multimodal) + LXMERT 47.5 77.5
Model-Obj 1 (multimodal) + LXMERT - ConstrainedMaxPooling 46.9 76.3

Table 1: Evaluation on the test set

In some cases, the multimodal information can fix
the errors resulted from not considering the order of
events in the proposed architecture. Our intuition is
that, although, the textual model does not contain
information from previous steps, the images carry
useful information on what has been already done.
An example of this is shown in Figure 6, where
co-reference resolution is required to answer the
question correctly.

Step 4: Push the bread down with a
spatula to get it toasty.

Step 5: Once it has started to siz-
zle flip it. The new top side should
be a golden brown.

B Questions
&"W/ 1.Add Butter.
. g 3. ?

2.Press the Bread.
4.Cut the Sandwich.

Candidate answers: A.Grilled Cheese Experiment B.Grilled Cheese
C.Flip the Sandwich D)Flip the Bread!

A: -0.743 B: -0.760 |C: -0.522| D: -0.591

A: -0.298 B: -0.287 C: -0.122

Uni-modal scores

Multi-modal Scores

Figure 6: The images lead the model to understand that
”it” refers to bread rather than sandwich

Furthermore, we have tested our multimodal ar-
chitecture with representations of ResNet101 and
the results dropped. We confirmed this experiment
by re-implementing Hasty Student approach on vi-
sual coherence task (that has 68% accuracy with
ResNet50) and obtained 35% lower than ResNet50.
This can be due to the lack of quality of images
resulting in extra noise when using a more com-
plicated network. Thus, ResNet50 achieves better
accuracy by producing more abstract representa-
tions of the images.

5 Conclusion and Future Work

We proposed a model for RecipeQA textual cloze
task which exploits the latent alignment of question
items with instructions. Moreover, we investigated
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the benefit of using multimodal information in this
task by comparing three different architectures and
provided qualitative analysis on some examples to
justify the results. Our model exceeded the base-
lines and improved the SOTA by over 19%. As a
future direction, we will investigate the usage of
the latent alignment in other tasks. We will apply
more complex methods on textual abstractions and
attention mechanisms to link the candidate answers
with the recipe instructions. Investigating how to
incorporate the question order in the architecture is
another direction.
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