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Abstract

Finding information related to a pandemic of
a novel disease raises new challenges for infor-
mation seeking and retrieval, as the new infor-
mation becomes available gradually. We inves-
tigate how to better rank information for pan-
demic information retrieval. We experiment
with different ranking algorithms and propose
a novel end-to-end method for neural retrieval,
and demonstrate its effectiveness on the TREC
COVID search.1 This work could lead to a
search system that aids scientists, clinicians,
policymakers and others in finding reliable an-
swers from the scientific literature.

1 Introduction

As COVID-19—an infectious disease caused by a
coronavirus—led the world to a pandemic, a large
number of scientific articles appeared in journals
and other venues. In a span of five months, PubMed
alone indexed over 60,000 articles matching coron-
avirus related search terms such as SARS-CoV-2
or COVID-19. This volume of published mate-
rial can be overwhelming. There is a need for
effective search algorithms and question answer-
ing systems to find relevant information and an-
swers. In response to this need, an international
challenge—TREC COVID Search (Roberts et al.,
2020; Voorhees et al., 2020)—was organised by
several institutions, such as NIST and Allen Insti-
tute for AI, where research groups and tech com-
panies developed systems that searched over scien-
tific literature on coronavirus. Through an iterative
setup organised in different rounds, participants
are presented with several topics. The evaluations
measure the effectiveness of these systems in find-
ing the relevant articles containing answers to the
questions in the topics.

We propose a method that improves the sys-
tems developed for the TREC-COVID challenge by

1We release our code for the neural index in GitHub:
https://git.io/JkZ7I

adopting a novel hybrid neural end-to-end approach
for ranking of search results. Our method combines
a traditional inverted index and word-matching re-
trieval with a neural indexing component based
on BERT architecture (Devlin et al., 2019). Our
neural indexer leverages the Siamese network train-
ing framework (Reimers and Gurevych, 2019) fine-
tuned on an auxiliary task (unrelated to literature re-
trieval) to produce universal sentence embeddings.
This means that neural indexing can be performed
offline for the entire document collection and does
not need to be retrained on additional queries. This
allows for incorporating the neural component for
the entire retrieval process, contrasting with the typ-
ical multi-stage neural re-ranking approaches (Li
et al., 2020; Zhang et al., 2020; Liu et al., 2017;
Wang et al., 2011).

Our method is competitive with the top systems
presented in TREC COVID 2. It improves as cor-
pus size increases despite not being trained on addi-
tional data which is a useful property in pandemic
information retrieval.

2 Related Work

The use of neural networks in search has mostly
been limited to reranking top results retrieved by
a ‘traditional’ ranking mechanism, such as Okapi
BM25 (Robertson et al., 1995). Only a portion
of top results is rescored with a neural architec-
ture (McDonald et al., 2018). Since the most suc-
cessful neural reranking models depend on joint
modelling of both documents and the query, rescor-
ing the entire collection becomes costly. More-
over, the effectiveness gains achieved with neural
reranking are debated (Yang et al., 2019) until re-
cently (Lin, 2019).

Since late 2018, large neural models pre-trained
on language modeling—specifically BERT (Devlin
et al., 2019) which uses bi-directional transformer

2https://git.io/JkZ7m Accessed: 10 Oct 2020
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architecture—achieve state-of-the-art for several
NLP tasks. The architecture is successfully ap-
plied to ad-hoc reranking (Nogueira and Cho, 2019;
Akkalyoncu Yilmaz et al., 2019; Dai and Callan,
2019).

The existing applications of BERT in search
share the limitation of being restricted to rerank-
ing because they rely on its next sentence predic-
tion mechanism for a regression score. However,
our approach builds on Reimers and Gurevych
(2019), where a BERT architecture is trained to
produce sentence embeddings. Leveraging these
embeddings allows for a cost-efficient application
of BERT to neural indexing.

Neural indexing is a less explored field. Whereas
Zamani et al. (2018) leverages sparse neural rep-
resentations for retrieval, Seo et al. (2019) uses
sparse and dense representations for learning to
rank. These methods rely on networks trained to
produce representations directly for ranking docu-
ments. For our proposed method, we use universal
embeddings3 generated from transformer encoders
trained on an auxiliary task of semantic similarity
scoring or Natural Language Inference4.

3 Dataset

Documents CORD-19 (The Covid-19 Open Re-
search Dataset) (Wang et al., 2020) is a dataset
of research articles on coronaviruses (COVID-
19, SARS and MERS). It is compiled from three
sources: PubMed Central (PMC), the WHO arti-
cles, and bioRxiv and medRxiv. Evaluations in
subsequent stages (referred to as rounds) of TREC
COVID Search task are performed on growing
snapshots of CORD-19 dataset (Table 1). The col-
lection grew to over 68,000 articles by mid-June
2020. The growth of CORD-19 continues with
weekly updates (Roberts et al., 2020).

Topics As part of the TREC COVID search chal-
lenge, NIST provides a set of important COVID-
related topics. Over five rounds, the topic set is
augmented. Round 1 has 30 topics, with five new
topics added per subsequent round. Each topic con-
sists of three parts: query, question, and narrative

3The main property we are interested in for universal em-
beddings, is that pairs of embeddings can be compared directly
via cosine similarity rather than indirectly comparing them
through a task-specific network which requires additional train-
ing

4We do not directly use embeddings as a ranker as they are
not trained for retrieval; instead, we use them in combination
with a traditional inverted index.

Round No. Documents No. Judgments No. Topics

1 51103 8691 30
2 59851 12037 35
3 128492 12993 40
4 157817 13312 45
5 191175 23373 50

Table 1: Statistics for each TREC-COVID round.

Topic 3
Query : c o r o n a v i r u s immunity
Q u e s t i o n : w i l l SARS−CoV2 i n f e c t e d

p e o p l e d e v e l o p immunity ?
I s c r o s s p r o t e c t i o n p o s s i b l e ?

N a r r a t i v e : s e e k i n g s t u d i e s o f immunity
d e v e l o p e d due t o i n f e c t i o n wi th
SARS−CoV2 or c r o s s p r o t e c t i o n
g a i n e d due t o i n f e c t i o n wi th
o t h e r c o r o n a v i r u s t y p e s

Figure 1: A sample topic from the TREC COVID.

(see Figure 1).

Relevance Judgements and Evaluation TREC
organises manual judgements per each round of the
shared task, using a pooling method over a sample
of the submitted runs (Voorhees et al., 2020). Given
a topic, a document is judged as: irrelevant (0), par-
tially relevant (1), and relevant (2). As judgements
are manually annotated by biomedical experts, only
a subset of runs submitted to the track are judged.

The evaluation procedure in each of the sub-
sequent rounds discards (topic, document) pairs
included judged in previous rounds. We use this
procedure (referred to as residual scoring) when
comparing against the top-performing runs in the
competitive.

In additional experiments, we use cumulative
scoring, which means evaluating topics for round 2
using human judgments for rounds 1 and 2. Topics
of round 3 are evaluated using judgments of rounds
1–3, and so on. Using cumulative scoring allows us
to use a larger proportion of judged documents for
the topic sets corresponding to subsequent rounds.

Metrics Four precision focused metrics are used
to evaluate the rankings: NDCG (Järvelin and
Kekäläinen, 2002) at rank 10 (NDCG@10), preci-
sion at rank 10 (P@10), mean average precision
(MAP) and recall-precision (R-prec). BPref takes
into account the noisy and incomplete judgements.



4 Methods

Neural Index Retrieval (NIR) We built a hy-
brid neural index by appending neural representa-
tion vectors to document representations of a tra-
ditional inverted index. The neural representations
are created using an average over individual rep-
resentations of sentences (bag-of-sentences) from
a BERT-based universal sentence encoder for the
title, abstract and full-text facets. Sentence rep-
resentations are created by averaging token-level
representations produced by the encoder (average
pooling strategy outlined in Reimers and Gurevych
(2019)). We investigate a selection of models de-
rived from applying the training of the Sentence
Transformer (Reimers and Gurevych, 2019), a
Siamese network built to enable cosine comparabil-
ity between transformer sentence embeddings, and
the biomedically-themed BERT-based pre-trained
models, such as BioBERT (Lee et al., 2019). To ob-
tain individual sentences, we use a neural sentence
segmentation model, ScispaCy (Neumann et al.,
2019).

For retrieval, we propose a hybrid approach. We
score (topic, document) pairs by combining: (1)
Okapi BM25 scores for all pairs of topic fields
and document facets; and, (2) cosine similarities
calculated for neural representations of all pairs
of topic fields (calculated ad hoc) and document
facets stored in the index5. The final score adds a
log-normalised sum of BM25 scores to the sum of
neural scores. Formally, the relevance score ψ for
ith topic Ti and document d ∈ D is

ψ(Ti, d) = logz(

t∈Ti∑ f∈d∑
BM25(t, f))

+

t∈Ti∑ f∈d∑
cos(v(t), v(f)),

(1)

where z is a hyper-parameter, t ∈ Ti represents
fields of the topic (i.e., query, narrative and ques-
tion), f ∈ d represents facets of the document (i.e.,
abstract, title, body), BM25 denotes the BM25 scor-
ing function, v(t) is the neural representation of the
topic field, v(f) denotes the neural representation
of the document facet, and cos is cosine similarity.
The hyper-parameter z is solved for each topic with
the formula:

z = Rcos
√
max(BM25(t, f)) (2)

5We emphasise that our model is not a re-ranking model
but a ranker model as it scores the entire collection during
retrieval, rather than re-ranking a retrieved list.

where Rcos is the upper range of the summed co-
sine function:

Rcos = max(

t∈Ti∑ f∈d∑
cos(v(t), v(t))) (3)

The z hyper-parameter normalizes the BM25
score such that its range will be the same as the
range of the summed cosine similarity score, Rcos.
This is to ensure both components, neural and
BM25, have equal contribution to the final score.

We also filter by date. The documents cre-
ated before December 31st 2019 (the first reported
COVID-19 case) are removed.

Sentence Embedding Models We compare four
different embedding models. We choose our mod-
els based on differences in pre-training corpora
(PubMed vs. different COVID-specific corpora)
and Siamese fine-tuning task (NLI, Natural Lan-
guage Inference), and STS (Semantic Textual Sim-
ilarity). We evaluate BioBERT-NLI and BioBERT-
STS (pre-trained on PubMed corpus, before
COVID), CovidBERT-NLI (pre-trained on a small
subset of CORD corpus), and ClinicalCovidBERT-
NLI (pre-trained on a larger subset of the CORD
corpus)6.

As a baseline, we use our method with a
BioBERT model fine-tuned on an ad hoc retrieval
task on MS Marco dataset (Nguyen et al., 2016).
BioBERT-msmarco is not a universal sentence en-
coder, and its inclusion is to provide perspective on
the significance of using the Siamese fine-tuning
in our neural indexing approach. Additionally, we
include BM25 as a baseline.

BM25 and top-run baselines For each evalua-
tion round, we report an unmodified BM25 (no neu-
ral index) baseline together with a top automatic
run (per official leaderboard) from the TREC eval-
uations. Note that the best run baseline does not
refer to one specific system, but the best performing
run for each round of the evaluation.

5 Experimental Results

We present: (1) a comparison of retrieval effec-
tiveness of our method with different embedding
models using cumulative scoring on rounds 1–3
(Table 2); (2) a comparison of our most effective
system to the BM25 baseline and best runs from
the official shared task evaluations using residual

6A directory to the models: https://git.io/JTfz2
Accessed: 10 Oct 2020
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Model Round 1 Round 2 Round 3

NDCG@10 P@10 bpref MAP R-prec NDCG@10 P@10 bpref MAP R-prec NDCG@10 P@10 bpref MAP R-prec

BM25 (baseline) 0.624 0.650 0.409 0.258 0.316 0.666 0.694 0.380 0.240 0.304 0.717 0.762 0.412 0.235 0.313
BioBERT-NLI 0.614 0.597 0.384 0.219 0.279 0.608 0.671 0.374 0.219 0.291 0.726† 0.772 0.410 0.237 0.311
Covid-NLI 0.582 0.597 0.409 0.249 0.309 0.522 0.597 0.347 0.193 0.274 0.736 0.780 0.413 0.239 0.316
ClinicalCovid-NLI 0.641† 0.663 0.408 0.258 0.315 0.650 0.710 0.397 0.264 0.320 0.739 0.780 0.420‡ 0.252† 0.327
BioBERT 1.1 STS 0.612 0.633 0.408 0.246 0.302 0.613 0.663 0.396 0.251 0.314 0.722 0.762 0.398 0.228 0.302
BioBERT msmarco 0.528 0.530 0.366 0.197 0.255 0.593 0.666 0.372 0.232 0.303 0.691 0.743 0.389 0.218 0.296

Table 2: Results for our runs for Round 1–3. Best run is as reported by organisers per that round. † denotes
statistical significance at 95% and ‡ at 99% over the baseline.

Model Round 1 Round 2 Round 3 Round 4 Round 5
NDCG@10 P@10 bpref MAP R-prec NDCG@10 P@10 bpref MAP R-prec NDCG@10 P@10 bpref MAP R-prec NDCG@10 P@10 bpref MAP R-prec NDCG@10 P@10 bpref MAP R-prec

BM25 0.614 0.633 0.407 0.257 0.314 0.607 0.634 0.398 0.222 0.278 0.569 0.618 0.361 0.174 0.243 0.666 0.724 0.461 0.247 0.300 0.632 0.672 0.378 0.190 0.267
ClinicalCovid-NLI 0.661 0.663 0.422 0.258 0.322 0.626 0.646 0.410 0.228 0.289 0.600 0.647 0.384† 0.193† 0.262 0.685 0.716 0.492‡ 0.262 0.314 0.709‡ 0.770‡ 0.428 0.230‡ 0.298‡
Best Automatic Run 0.608 0.700 0.483 0.313 0.355 0.625 0.657 0.457 0.284 0.325 0.671 0.748 0.560 0.305 0.347 0.791 0.818 0.557 0.311 0.342 0.727 0.782 0.550 0.320 0.378

Table 3: Our proposed method with comparison to a BM25 baseline and the top automatic run for that round. All
evaluation is performed with residual document scoring

scoring on rounds 1–5 (Table 3); and, (3) an abla-
tion test of our most effective system on round 5
topics using cumulative scoring (Table 4).

Choice of the embedding model Table 2 pro-
vides insights into the selection of the sentence
embedder: (1) the importance of domain-adaptive
pre-training for neural re-ranking, that is using a
model pre-trained on a task-specific corpus. We
believe it is especially important in our setup, as
there is no other task-specific training involved at
any stage. Unsurprisingly, using a larger domain-
specific corpus in pre-training yields better results;
(2) there is no apparent difference between NLI
and STS fine-tuning. Notably, BioBERT-msmarco
performs worse than other evaluated models and
the baseline, showing the importance of adapting
BERT to act as a universal sentence encoder at the
fine-tuning stage.

Ablations Table 4 confirms that the combination
of BM25 with the neural indexing yields best over-
all results as removing either component leads to a
significant loss in performance. Removal of facets
makes no significant differences. Removal of the
date filter significantly degrades NDCG@10.

Comparisons with best runs Aside from
rounds 3 and 4, our models remain competi-
tive with the top run. Our model scored higher
NDCG@10 for rounds 1 and 2 over the baseline
automatic runs. Most of the top runs used neural
re-rankers which have been specifically trained on
related tasks such as med-marco (MacAvaney et al.,
2020).

Where does the model succeed or fail? Our
model consistently outperforms the BM25 base-
line (Table 3).

Model P@10 NDCG@10

NIR 0.852 0.796
no neural 0.744† 0.808†
no BM25 0.668‡ 0.706‡

no title 0.848 0.784
no abstract 0.848 0.785
no fulltext 0.856 0.799
no date filter 0.834 0.775†

Table 4: Ablation studies for our proposed method
where document facets, query facets and other aspects
of the model are removed.

The model can retrieve documents undiscovered
by the BM25 component or a pipeline model which
uses word-overlap scoring in its initial retrieval.
It computes scores over the entire collection as a
hybrid inverted index which leads to an average
increase of in 6% R-prec values (Table 3) over the
BM25 baseline. The improvement in early recall
is also a desirable feature if we were to pair our
model with a task-specific neural re-ranker.

We expect that the top ranked documents are
scored highly by both components, however, we
found that our model placed an irrelevant docu-
ment at the rank one for Topic 3. This document
was scored highly by BM25 but much lower in the
neural/cosine component. It saturated the scoring
function as it repeated many of the keywords in the
query, however, the semantic content of the text
was irrelevant to the query itself as it discussed
“coronavirus crossing continents” rather than “coro-
navirus cross protection”.

On the other hand, for topic 1, “coronavirus ori-
gins”, we found that the neural index overcame
semantic mismatches of the BM25 scoring. In
the dataset, most documents are related to coron-



avirus, the word “origin” contributes more to the
final score and BM25 retrieved an irrelevant doc-
ument at rank three which is a document that dis-
cusses origins of a different virus. However, when
using the neural scorer, this document is placed at
rank 42.

From Table 2 and 3, although our model is not
trained on any additional data, it improves in rank-
ing as the corpus size increases. This is a useful
property in pandemic information retrieval as the
model does not need to be continually retrained,
and each document is embedded once.

6 Conclusions

We propose a novel neural ranking approach (NIR)
for pandemic information retrieval. Experimenting
with the TREC COVID search challenge, we show
that our method is competitive compared to other
automatic systems. We show that a neural scoring
is beneficial in alleviating some of the shortcom-
ings of the keyword-based retrieval. Empirically,
our model shows improvements with time in a pan-
demic scenario without additional training data. A
balanced scoring function combines the strengths
of the inverted and neural indices. A neural index
explicitly trained for ranking would be a suitable
avenue for future research.
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