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1 Introduction

Commonsense knowledge, such as knowing that
“bumping into people annoys them” or “rain
makes the road slippery”, helps humans navigate
everyday situations seamlessly (Apperly, 2010).
Yet, endowing machines with such human-like
commonsense reasoning capabilities has remained
an elusive goal of artificial intelligence research
for decades (Gunning, 2018).

Commonsense knowledge and reasoning have
received renewed attention from the natural lan-
guage processing (NLP) community in recent
years, yielding multiple exploratory research di-
rections into automated commonsense under-
standing. Recent efforts to acquire and repre-
sent common knowledge resulted in large knowl-
edge graphs, acquired through extractive methods
(Speer et al., 2017) or crowdsourcing (Sap et al.,
2019a). Simultaneously, a large body of work in
integrating reasoning capabilities into downstream
tasks has emerged, allowing the development of
smarter dialogue (Zhou et al., 2018) and question
answering agents (Xiong et al., 2019).

Recent advances in large pretrained language
models (e.g., Devlin et al., 2019; Liu et al., 2019b),
however, have pushed machines closer to human-
like understanding capabilities, calling into ques-
tion whether machines should directly model com-
monsense through symbolic integrations. But de-
spite these impressive performance improvements
in a variety of NLP tasks, it remains unclear
whether these models are performing complex rea-
soning, or if they are merely learning complex
surface correlation patterns (Davis and Marcus,
2015; Marcus, 2018). This difficulty in measur-
ing the progress in commonsense reasoning us-
ing downstream tasks has yielded increased ef-
forts at developing robust benchmarks for directly
measuring commonsense capabilities in multiple
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settings, such as social interactions (Sap et al.,
2019b; Rashkin et al., 2018a) and physical situ-
ations (Zellers et al., 2019; Talmor et al., 2019).

We hope that in the future, machines develop
the kind of intelligence required to, for exam-
ple, properly assist humans in everyday situations
(e.g., a chatbot that anticipates the needs of an el-
derly person; Pollack, 2005). Current methods,
however, are still not powerful or robust enough to
be deployed in open-domain production settings,
despite the clear improvements provided by large-
scale pretrained language models. This shortcom-
ing is partially due to inadequacy in acquiring,
understanding and reasoning about commonsense
knowledge, topics which remain understudied by
the larger NLP, Al, and Vision communities rela-
tive to its importance in building Al agents. We
organize this tutorial to provide researchers with
information about the critical foundations and re-
cent advances in commonsense, in the hopes of
casting a brighter light on this promising area of
future research.

In our tutorial, we will (1) outline the vari-
ous types of commonsense (e.g., physical, social),
and (2) discuss techniques to gather and represent
commonsense knowledge, while highlighting the
challenges specific to this type of knowledge (e.g.,
reporting bias). We will also (3) discuss the types
of commonsense knowledge captured by modern
NLP systems (e.g., large pretrained language mod-
els), (4) review ways to incorporate commonsense
knowledge into downstream task models, and (5)
present various benchmarks used to measure sys-
tems’ commonsense reasoning abilities.

2 Description

What is commonsense? The tutorial will start
with a brief overview of what commonsense is,
how it is defined in the literature, and how hu-
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mans acquire it (Moore, 2013; Baron-Cohen et al.,
1985). We will discuss notions of social common-
sense (Burke, 1969; Goldman, 2015) and phys-
ical commonsense (Hayes, 1978; McRae et al.,
2005). We will cover the differences between
taxonomic and inferential knowledge (Davis and
Marcus, 2015; Pearl and Mackenzie, 2018), and
differentiate commonsense knowledge from re-
lated concepts (e.g., script learning; Schank and
Abelson, 1975; Chambers and Jurafsky, 2008).

How to represent commonsense? We will re-
view existing methods for representing common-
sense, most of which focus solely on English. At
first, symbolic logic approaches were the main
representation type (Forbus, 1989; Lenat, 1995).
While still in use today (Davis, 2017; Gordon
and Hobbs, 2017), computational advances have
allowed for more data-driven knowledge collec-
tion and representation (e.g., automatic extraction;
Etzioni et al., 2008; Zhang et al., 2016; Elazar
et al., 2019). We will cover recent approaches that
use natural language to represent commonsense
(Speer et al., 2017; Sap et al., 2019a), and while
noting the challenges that come with using data-
driven methods (Gordon and Van Durme, 2013;
Jastrzebski et al., 2018).

What do machines know? Pretrained language
models (LMs) have recently been described as
“rediscovering the NLP pipeline” (Tenney et al.,
2019a), i.e. replacing previous dedicated compo-
nents of the traditional NLP pipeline, starting from
low- and mid-level syntactic and semantic tasks
(POS tagging, parsing, verb agreement, e.g., Pe-
ters et al., 2018; Jawahar et al., 2019; Shwartz and
Dagan, 2019, inter alia), to high-level semantic
tasks such as named entity recognition, corefer-
ence resolution and semantic role labeling (Tenney
et al., 2019b; Liu et al., 2019a). We will discuss
recent investigations into pretrained LMs’ ability
to capture world knowledge (Petroni et al., 2019;
Logan et al., 2019) and learn or reason about com-
monsense (Feldman et al., 2019).

How to incorporate commonsense knowledge
into downstream models? Given that large
number of NLP applications are designed to re-
quire commonsense reasoning, we will review ef-
forts to integrate such knowledge into NLP tasks.
Various works have looked at directly encoding
commonsense knowledge from structured KBs as
additional inputs to a neural network in generation
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(Guan et al., 2018), dialogue (Zhou et al., 2018),
QA (Mihaylov and Frank, 2018; Bauer et al.,
2018; Lin et al., 2019; Weissenborn et al., 2017;
Musa et al., 2019), and classification (Chen et al.,
2018; Paul and Frank, 2019; Wang et al., 2018)
tasks. For applications without available struc-
tured knowledge bases, researchers have relied on
commonsense aggregated from corpus statistics
pulled from unstructured text (Tandon et al., 2018;
Lin et al., 2017; Li et al., 2018; Banerjee et al.,
2019). More recently, rather than providing rele-
vant commonsense as an additional input to neu-
ral networks, researchers have looked into indi-
rectly encoding commonsense knowledge into the
parameters of neural networks through pretraining
on commonsense knowledge bases (Zhong et al.,
2018) or explanations (Rajani et al., 2019), or by
using multi-task objectives with commonsense re-
lation prediction (Xia et al., 2019).

How to measure machines’ ability of common-
sense reasoning? We will explain that, despite
their design, many natural language understand-
ing (NLU) tasks hardly require machines to rea-
son about commonsense (Lo Bue and Yates, 2011;
Schwartz et al., 2017). This prompted efforts in
creating benchmarks carefully designed to be im-
possible to solve without commonsense knowl-
edge (Roemmele et al., 2011; Levesque, 2011).

In response, recent work has focused on using
crowdsourcing and automatic filtering to design
large-scale benchmarks while maintaining nega-
tive examples that are adversarial to machines
(Zellers et al., 2018). We will review recent bench-
marks that have emerged to assess whether ma-
chines have acquired physical (e.g., Talmor et al.,
2019; Zellers et al., 2019), social (e.g., Sap et al.,
2019b), or temporal commonsense reasoning ca-
pabilities (e.g., Zhou et al., 2019), as well as
benchmarks that combine commonsense abilities
with other tasks (e.g., reading comprehension; Os-
termann et al., 2018; Zhang et al., 2018; Huang
et al., 2019).

3 Outline
3.1 Schedule

Talk 1 (15min.) will introduce and motivate this
tutorial and discuss long term vision for NLP com-
monsense research.

Talk 2 (20 min.) will focus on the question
“Do pre-trained language models capture com-



monsense knowledge?” and review recent work
that studies what such models already capture due
to their pre-training, what they can be fine-tuned
to capture, and what types of knowledge are not
captured.

Talk 3 (20 min.) will discuss ways of defining
and representing commonsense, covering estab-
lished symbolic methods and recent efforts for nat-
ural language representations.

Talk 4 (20 min.) will discuss neural and sym-
bolic models of commonsense reasoning, focusing
on models based on external knowledge integra-
tion for downstream tasks.

If time permits, we will end the first half with
an interactive session and a preview to the second
half.

Break (30 min.)

Talk 5 (20 min.) will continue the discussion
on neural and symbolic models of commonsense
knowledge representation, focusing on COMET
(Bosselut et al., 2019), a language model trained
on commonsense knowledge graphs. We will
present its utility in a zero-shot model for a down-
stream commonsense question answering task.

Talk 6 (25 min.) will focus on temporal com-
monsense: how to represent it, how to incorporate
it into downstream models, and how to test it.

Talk 7 (20 min.) will discuss ways to assess ma-
chine commonsense abilities, and challenges in
developing benchmarks for such evaluations.

Concluding discussion (10 min.) will summa-
rize the remaining challenges of commonsense re-
search, and wrap up the tutorial.

3.2 Breadth

Due to the research interests and output of the
presenters, we estimate that approximately 30%
of the tutorial will center around work done by
the presenters (Rashkin et al., 2018b; Sap et al.,
2019a; Bosselut et al., 2019; Rashkin et al., 2018a;
Sap et al., 2019b; Zellers et al., 2018, 2019; Sak-
aguchi et al., 2019; Bosselut and Choi, 2019;
Shwartz et al., 2020).

4 Prerequisites

We will not expect attendees to be familiar
with previous research on commonsense knowl-
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edge representation and reasoning, but partici-
pants should be familiar with:

Knowledge of machine learning and deep learn-
ing — recent neural network architectures (e.g.,
RNN, CNN, Transformers), as well as large pre-
trained language models models (e.g., BERT,
GPT, GPT2).

Familiarity with natural language processing
tasks — understanding the basic problem to solve
in tasks such as question answering (QA), nat-
ural language generation (NLG), textual entail-
ment/natural language inference (NLI), etc.

5 Reading List

Storks et al. (2019) — a survey on commonsense

Levesque (2011) — The Winograd Schema chal-
lenge, considered an ideal benchmark for eval-
uating commonsense reasoning

Speer et al. (2017) — A description of a proto-
typical commonsense knowledge base, its struc-
ture, and its curation

Gordon and Van Durme (2013) — Overview of
issues surrounding reporting bias, making auto-
matic commonsense acquisition difficult

Mostafazadeh et al. (2016) — A dataset that ap-
pears often in recent commonsense research

Talmor et al. (2019) — One approach for leverag-
ing crowdsourcing to construct a commonsense
evaluation benchmark

6 Instructor information

Maarten Sap is a PhD student in the Paul G.
Allen School of Computer Science & Engineer-
ing at the University of Washington. His re-
search focuses primarily on social applications of
NLP, specifically on endowing machines with so-
cial intelligence, social commonsense, or theory
of mind.

Vered Shwartz is a postdoctoral researcher at
the Allen Institute for Artificial Intelligence (AI2)
and the Paul G. Allen School of Computer Sci-
ence & Engineering at the University of Washing-
ton, working on lexical semantics, multiword ex-
pressions, and commonsense reasoning. She co-
organized the ACL 2018 Student Research Work-
shop, the SemEval 2018 shared task on hyper-
nymy discovery, and the AAAI 2020 Workshop
on Reasoning for Complex Question Answering,
Special Edition on Commonsense Reasoning.



Antoine Bosselut is a PhD student in the Paul
G. Allen School of Computer Science & Engineer-
ing at the University of Washington and a student
researcher at the Allen Institute for Artificial In-
telligence (AI2). His research interests are in in-
tegrating commonsense knowledge and reasoning
into downstream applications for text generation,
summarization, and conversational dialogue. He
organized the West Coast NLP (WeCNLP) in 2018
and 2019 and the NeuralGen workshop at NAACL
2019.

Yejin Choi is an associate professor at the Paul
G. Allen School of Computer Science & Engi-
neering at the University of Washington and also
a senior research manager at AI2 overseeing the
project Mosaic. Her research interests include
language grounding with vision, physical and so-
cial commonsense knowledge, language genera-
tion with long-term coherence, conversational Al,
and Al for social good. She was a recipient of
Borg Early Career Award (BECA) in 2018, among
the IEEEs AI Top 10 to Watch in 2015, a co-
recipient of the Marr Prize at ICCV 2013, and a
faculty advisor for the Sounding Board team that
won the inaugural Alexa Prize Challenge in 2017.
She was on the steering committee of the Neural-
Gen workshop at NAACL 2019.

Dan Roth is the Eduardo D. Glandt Distin-
guished Professor at the Department of Computer
and Information Science, University of Pennsylva-
nia, and a Fellow of the AAAS, the ACM, AAAI,
and the ACL. In 2017 Roth was awarded the John
McCarthy Award, the highest award the Al com-
munity gives to mid-career Al researchers. He was
the Editor-in-Chief of the Journal of Artificial In-
telligence Research (JAIR) and a program co-chair
of AAAI, ACL and CoNLL. Dan has presented
several tutorials in conferences including at ACL,
on entity linking, temporal reasoning, transferable
representation learning, and more.
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