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Abstract

Standard methods in deep learning for natural
language processing fail to capture the com-
positional structure of human language that
allows for systematic generalization outside
of the training distribution. However, human
learners readily generalize in this way, e.g. by
applying known grammatical rules to novel
words. Inspired by work in cognitive science
suggesting a functional distinction between
systems for syntactic and semantic process-
ing, we implement a modification to an exist-
ing approach in neural machine translation, im-
posing an analogous separation between align-
ment and translation. The resulting architec-
ture substantially outperforms standard recur-
rent networks on the SCAN dataset, a com-
positional generalization task, without any ad-
ditional supervision. Our work suggests that
learning to align and to translate in separate
modules may be a useful heuristic for captur-
ing compositional structure.

1 Introduction

A crucial property underlying the expressive power
of human language is its systematicity (Lake et al.,
2017; Fodor and Pylyshyn, 1988): syntactic or
grammatical rules allow arbitrary elements to be
combined in novel ways, making the number of
sentences possible in a language to be exponential
in the number of its basic elements. Recent work
has shown that standard deep learning methods
in natural language processing fail to capture this
important property: when tested on unseen combi-
nations of known elements, standard models fail
to generalize (Lake and Baroni, 2018; Loula et al.,
2018; Bastings et al., 2018). It has been suggested
that this failure represents a major deficiency of
current deep learning models, especially when they

are compared to human learners (Marcus, 2018;
Lake et al., 2017, 2019).

From a statistical-learning perspective, this fail-
ure is quite natural. The neural networks trained
on compositional generalization tasks fail to gen-
eralize because they have memorized biases that
do indeed exist in the training set. These tasks re-
quire networks to make an out-of-domain (o.o.d.)
extrapolation (Marcus, 2018), rather than merely
interpolate according to the assumption that train-
ing and testing data are independent and identically
distributed (i.i.d.). To the extent that humans can
perform well on certain kinds of o.o.d. tests, they
must be utilizing inductive biases that are lacking
in current deep learning models (Battaglia et al.,
2018).

It has long been suggested that the human capac-
ity for systematic generalization is linked to mech-
anisms for processing syntax, and their functional
separation from the meanings of individual words
(Chomsky, 1957; Fodor and Pylyshyn, 1988). In
this work, we take inspiration from this idea and
explore operationalizing it as an inductive bias in
an existing neural network architecture.

First, we notice a connection between syntactic
structure and the correct alignment of words in the
source sequence to meanings in the target. In our
model, alignment is accomplished with an attention
mechanism (Bahdanau et al., 2015) that determines
the relevance of each word in the source to the
translation of the next word in the target. This pro-
cess must take into account the syntactic structure
of both sequences (e.g. if a verb was just trans-
lated, it would be important to know whether there
is in the source sequence an adverb that modifies
it). We reasoned that if alignment was separated
from direct translation (analogous to a separation
of syntax and the meanings of individual words),
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Figure 1: Illustration of the transformation of an out-of-
domain (o.o.d.) generalization problem into two inde-
pendent, identically distributed (i.i.d.) problems.

Figure 2: Syntactic Attention architecture. Information
used for alignment (“syntax”, shown in blue) is kept
separate from information used for direct translation
(“semantics”, shown in red).

the difficult o.o.d. problem of composing known el-
ements into a novel combination would be reduced
to two easier i.i.d. problems, because the distribu-
tions of correct alignments and translations would
be similar in training and testing data (see Figure
1).

We implemented this intuition by modifying
an existing attention mechanism (Bahdanau et al.,
2015), and call the resultant architecture Syntactic
Attention to reflect the intuition that the attention
mechanism used for alignment should operate pri-
marily on syntactic information, which should be
separated from the information relevant to translat-
ing individual words. We show that this modifica-
tion achieves substantially improved compositional
generalization performance over the original archi-
tecture on the SCAN dataset.

2 Syntactic Attention

The Syntactic Attention model improves the com-
positional generalization capability of an existing
attention mechanism (Bahdanau et al., 2015) by
separating two streams of information processing
for alignment and translation (see Figure 2). We
describe the mechanisms of this separation and the
other details of the model below.

2.1 Factorizing alignment and translation
In the seq2seq problem, models must learn a map-
ping from arbitrary-length sequences of inputs x =
{x1, x2, ..., xTx} to arbitrary-length sequences of
outputs y = {y1, y2, ..., yTy}: p(y|x). The under-
lying assumption made by the Syntactic Attention
architecture is that the dependence of target words
on the input sequence can be separated into two
independent factors. One factor, p(yi|xj), models
the conditional distribution from individual words
in the input to individual words in the target. Note
that, unlike in the model of Bahdanau et al. (2015),
these xj do not contain any information about the
other words in the input sequence because they
are not processed with an RNN. The other factor,
p(j → i|x, y1:i−1), models the conditional proba-
bility that word j in the input is relevant to word i in
the target sequence, given the entire input sequence.
This alignment is accomplished from encodings of
the inputs produced by an RNN. The crucial ar-
chitectural assumption, then, is that any temporal
dependency between individual words in the input
that can be captured by an RNN should only be
relevant to their alignment to words in the target
sequence, and not to the translation of individual
words. This assumption will be made clearer in the
model description below.

2.2 Encoder
The encoder produces two separate vector repre-
sentations for each word in the input sequence.
Unlike the previous attention model (Bahdanau
et al., 2015)), we separately extract the information
that will be used for direct translation with a lin-
ear transformation: mj = Wmxj , where Wm is a
learned weight matrix that multiplies the one-hot
encodings {x1, ..., xTx}. Note that these represen-
tations do not contain any information about the
other words in the sentence. As in the previous
attention mechanism (Bahdanau et al., 2015), we
use a bidirectional RNN (biRNN) to extract the
information that will be used for alignment. The
biRNN produces a vector for each word on the
forward pass, (

−→
h1, ...,

−−→
hTx), and a vector for each

word on the backward pass, (
←−
h1, ...,

←−−
hTx). The rep-

resentation of each word xj is determined by the
two vectors

−−→
hj−1,

←−−
hj+1 corresponding to the words

surrounding it: hj = [
−−→
hj−1;

←−−
hj+1].

In all experiments, we used a bidirectional
LSTM for this purpose. Note that hj is encoding
the context of the surrounding words in the sen-
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tence. Our motivation for doing this was to force
the RNN in the encoder to rely on the “role” the
word is playing in the sentence. Note also that be-
cause there is no sequence information in the mj ,
all of the information required to align the input se-
quence correctly (e.g. phrase structure, modifying
relationships, etc.) must be encoded by the biRNN.

2.3 Decoder

The decoder models the conditional probability of
each target word given the input and the previous
targets: p(yi|y1, y2, ..., yi−1,x), where yi is a tar-
get and x is the whole input sequence. As in the
previous model, we use an RNN to determine an
attention distribution over the inputs at each time
step (i.e. to align words in the input to the current
target). However, our decoder diverges from this
model in that the mapping from inputs to outputs
is performed from a weighted average of the mj :

p(yi|y1:i−1,x) = f(di) di =

Tx∑
j=1

αijmj (1)

where f is parameterized by a linear function with
a softmax, and the αij are the weights determined
by the attention model. The attention weights are
computed by a function measuring how well the in-
put representations hj align with the current hidden
state of the decoder RNN, si:

αij =
exp(eij)∑Tx
k=1 exp(eik)

eij = a(si, hj) (2)

where eij can be thought of as measuring the impor-
tance of a given input word xj to the current target
word yi, and si is the current hidden state of the de-
coder RNN. Bahdanau et al. (2015) model the func-
tion a with a feedforward network, but we choose
to use a simple dot product: a(si, hj) = si · hj . Fi-
nally, the hidden state of the RNN is updated with
the same weighted combination of the hj :

si = g(si−1, ci) ci =

Tx∑
j=1

αijhj (3)

where g is the decoder RNN, si is the current hid-
den state, and ci can be thought of as the infor-
mation in the attended words that can be used to
determine what to attend to on the next time step.
Again, in all experiments an LSTM was used.

3 Experiments

3.1 SCAN dataset
The SCAN1 dataset was specifically designed to
test compositional generalization (details can be
found in the appendix, or in Lake and Baroni,
2018). It is composed of 20,910 sequences of com-
mands that must be mapped to sequences of ac-
tions, and is generated from a simple finite phrase-
structure grammar that includes things like adverbs
and conjunctions. The splits of the dataset include:
1) Simple split, where training and testing data are
split randomly, 2) Length split, where training in-
cludes only shorter sequences, and 3) Add primitive
split, where a primitive command (e.g. “turn left”
or “jump”) is held out of the training set, except in
its most basic form (e.g. “ jump”→ JUMP)

Here we focus on the most difficult problem
in the SCAN dataset, the add-jump split, where
“jump” is held out of the training set.

3.2 Implementation details
Experimental procedure is described in detail in
the appendix. Training and testing sets were kept
as they were in the original dataset, but following
(Bastings et al., 2018), we used early stopping by
validating on a 20% held out sample of the training
set. All reported results are from runs of 200,000
iterations with a batch size of 1. Unless stated oth-
erwise, each architecture was trained 5 times with
different random seeds for initialization, to measure
variability in results. All experiments were imple-
mented in PyTorch. Details of the hyperparameter
search are given in the appendix. Our best model
used LSTMs, with 2 layers and 200 hidden units
in the encoder, and 1 layer and 400 hidden units in
the decoder, and 120-dimensional vectors for the
mj . The model included a dropout rate of 0.5, and
was optimized using an Adam optimizer (Kingma
and Ba, 2015) with a learning rate of 0.001.

3.3 Compositional generalization results
The Syntactic Attention model achieves high com-
positional generalization performance on the stan-
dard seq2seq SCAN dataset (see table 1). The table
shows results (mean test accuracy (%) ± standard
deviation) on the test splits of the dataset. Syn-
tactic Attention is compared to the previous mod-
els, which were a CNN (Dessı̀ and Baroni, 2019),
GRUs augmented with an attention mechanism (“+

1The SCAN dataset can be downloaded at https://
github.com/brendenlake/SCAN

https://github.com/brendenlake/SCAN
https://github.com/brendenlake/SCAN
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attn”), which either included or did not include a
dependency (“- dep”) in the decoder on the previ-
ous action (Bastings et al., 2018), and the recent
model of Li et al. (2019).

Lake (2019) showed that a meta-learning archi-
tecture using an external memory achieves 99.95%
accuracy on a meta-seq2seq version of the SCAN
task. In this version, models are trained to learn
how to generalize compositionally across a number
of variants of a compositional seq2seq problem.
Here, we focus on the standard seq2seq version,
which limits the model to one training episode.

The best model from the hyperparameter search
showed strong compositional generalization perfor-
mance, attaining a mean accuracy of 91.1% (me-
dian = 98.5%) on the test set of the add-jump split.
However, as in Dessı̀ and Baroni (2019), we found
that our model showed variance across initializa-
tion seeds (see appendix for details). For this rea-
son, we ran the best model 25 times on the add-
jump split to get a more accurate assessment of per-
formance. These results were highly skewed, with
a mean accuracy of 78.4% but a median of 91.0%
(see appendix for detailed results). Overall, this
represents an improvement in the compositional
generalization performance compared to the orig-
inal attention mechanism (Bahdanau et al., 2015;
Bastings et al., 2018), and rivals the recent results
from Li et al. (2019).

3.4 Additional SCAN experiments

We hypothesized that a key feature of our architec-
ture was that an RNN was used to encode the infor-
mation in the input sequence relevant to alignment,
while one was not used to encode the information
relevant to translation. To test this hypothesis, we
conducted two more experiments:

1. RNN for translation-encoding. An additional
biLSTM was used to process the input se-
quence: mj = [−→mj ;

←−mj ], where −→mj and ←−mj

are the vectors produced for the source word
xj by a biLSTM on the forward and backward
passes, respectively. These mj replace those
generated by the simple linear layer in the
Syntactic Attention model.

2. ci used for translation. Sequential infor-
mation from the encoder RNN (i.e. the
ci) was allowed to directly influence the
output at each time step in the decoder:
p(yi|y1, y2, ..., yi−1,x) = f([di; ci]), where

again f is parameterized with a linear func-
tion and a softmax output nonlinearity.

The results of the additional experiments (mean
test accuracy (%)± standard deviations) are shown
in table 2. These results partially confirmed our
hypothesis: performance on the jump-split test set
was worse when encodings from an RNN were
directly used for translation. However, when se-
quential information from the biLSTM encoder
was used an additional input in the final production
of actions, the model maintained good composi-
tional generalization performance. We hypothesize
that this was because in this setup, it was easier
for the model to learn to use the mj to directly
translate actions, so it largely ignored the sequen-
tial information. This experiment suggests that
the factorization between alignment and translation
does not have to be perfectly strict, as long as non-
sequential representations are available for direct
translation.

Additional results, including on other SCAN
splits and analyses of the attention distributions,
can be found in the appendix.

3.5 Machine translation experiments
Although the purpose of this work was to study
the inductive biases that might encourage compo-
sitional generalization, we also validated our ar-
chitecture on a small machine translation dataset
to obtain a basic measure of its efficacy in a more
naturalistic setting. The dataset (Lake and Baroni,
2018; Bastings et al., 2018) is composed of 10,000
English/French sentence pairs in the training set
and 1,190 pairs in the test set. We trained and tested
our existing model without making any changes,
except for adjusting the learning rate. We also
ran the same experiment with the architecture de-
scribed above that used ci for translation, as this
architecture also showed strong compositional gen-
eralization performance on SCAN. BLEU scores
on the test set for the best learning rate (0.00015
for both models) are shown in the table below, with
comparison to previously reported results using ba-
sic recurrent architectures. Our model performs
comparably in neural MT, validating it in a more
naturalistic setting.

4 Related work

The principle of compositionality has recently re-
gained the attention of deep learning researchers
(Bahdanau et al., 2019b,a; Lake et al., 2017; Lake
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Model Simple Length Add turn left Add jump
GRU + attn (Bastings et al., 2018) 100.0 ± 0.0 18.1 ± 1.1 59.1 ± 16.8 12.5 ± 6.6
GRU + attn - dep (Bastings et al., 2018) 100.0 ± 0.0 17.8 ± 1.7 90.8 ± 3.6 0.7 ± 0.4
CNN (Dessı̀ and Baroni, 2019) 100.0 ± 0.0 - - 69.2 ± 8.2
Li et al. (2019) 99.9 ± 0.0 20.3 ± 1.1 99.7 ± 0.4 98.8 ± 1.4
Syntactic Attention (ours) 100.0 ± 0.0 15.2 ± 0.7 99.9 ± 0.16 91.0* ± 27.4

Table 1: Compositional generalization results. The Syntactic Attention model achieves an improvement on the
compositional generalization tasks of the SCAN dataset in the standard seq2seq setting, compared to the standard
recurrent models (Bastings et al., 2018; Dessı̀ and Baroni, 2019). Star* indicates median of 25 runs.

Model Simple Length Add turn left Add jump
RNN for translation-encoding 99.3 ± 0.7 13.1 ± 2.5 99.4 ± 1.1 42.3 ± 32.7
ci used for translation 99.3 ± 0.85 15.2 ± 1.9 98.2 ± 2.2 88.7 ± 14.2
Syntactic Attention 100.0± 0.0 15.2 ± 0.7 99.9 ± 0.16 91.0* ± 27.4

Table 2: Results of additional experiments. Star* indicates median of 25 runs.

Model En-Fr Fr-En
LSTM + attn 28.6 -
GRU + attn 32.1 37.5
Syntactic Attention 36.8 35.2
ci used for translation 35.1 33.8

Table 3: Results on small MT dataset (Lake and Baroni,
2018; Bastings et al., 2018).

and Baroni, 2018; Battaglia et al., 2018; Johnson
et al., 2017; Keysers et al., 2020) . In particular,
the issue has been explored in the visual-question
answering (VQA) setting (Andreas et al., 2016;
Hudson and Manning, 2018; Johnson et al., 2017;
Perez et al., 2018; Hu et al., 2017). Many of the
successful models in this setting learn hand-coded
operations (Andreas et al., 2016; Hu et al., 2017),
use highly specialized components (Hudson and
Manning, 2018), or use additional supervision (Hu
et al., 2017). In contrast, our model uses standard
recurrent networks and simply imposes the addi-
tional constraint that mechanisms for alignment
and translation are separated. In the Compositional
Attention Network, built for VQA, the represen-
tations used to encode images and questions are
restricted to interact only through attention distri-
butions (Hudson and Manning, 2018). Our model
utilizes a similar restriction, reinforcing the idea
that compositionality is enhanced when informa-
tion from different modules are only allowed to
interact through discrete probability distributions.

Li et al. (2019) recently showed good perfor-
mance on the SCAN tasks using a very similar ap-

proach. Our results lend additional support to the
idea that separating alignment and translation can
facilitate compositional generalization. The results
from the meta-seq2seq version of the SCAN task
(Lake, 2019) suggest that meta-learning may also
be a viable approach to inducing compositionality
in neural networks.

We were inspired by work in cognitive science
emphasizing the relationship between systematicity
and syntax (Chomsky, 1957; Fodor and Pylyshyn,
1988). Others have explored similar ideas in dif-
ferent natural language tasks (Bastings et al., 2017,
2019; Chen et al., 2018; Havrylov et al., 2019;
Strubell et al., 2018). This work supports the sug-
gestion that intuitions from cognitive science can
aid architecture design in deep learning.

5 Conclusion

In this work we attempt to operationalize an intu-
ition from cognitive science, implementing it as in-
ductive bias in the form of a factorization between
alignment and translation in the seq2seq setting.
We showed that this can improve compositional
generalization performance on the SCAN task, and
that it doesn’t degrade performance on a small MT
task. We believe this factorization prevents the
model from memorizing spurious correlations in
the data, and note that similar ideas may be useful
in other natural language tasks.
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A SCAN dataset details

The SCAN dataset (Lake and Baroni, 2018) is com-
posed of sequences of instructions that must be
mapped to sequences of actions (see Figure 3).

The instruction sequences are generated using
the pharase-structure grammar described in Figure
4. This simple grammar is not recursive, and so can
generate a finite number of command sequences
(20,910 total).

These commands are interpreted according to
the rules shown in Figure 5. Although the grammar
used to generate and interpret the commands is sim-
ple compared to any natural language, it captures
the basic properties that are important for testing
compositionality (e.g. modifying relationships, dis-
crete grammatical roles, etc.). The add-primitive
splits (described in main text) are meant to be anal-
ogous to the capacity of humans to generalize the
usage of a novel verb (e.g. “dax”) to many con-
structions (Lake and Baroni, 2018).

B Experimental procedure details

The cluster used for all experiments consists of
3 nodes, with 68 cores in total (48 times Intel(R)
Xeon(R) CPU E5-2650 v4 at 2.20GHz, 20 times In-
tel(R) Xeon(R) CPU E5-2650 v3 at 2.30GHz), with
128GB of ram each, connected through a 56Gbit
infiniband network. It has 8 pascal Titan X GPUs
and runs Ubuntu 16.04.

All experiments were conducted with the SCAN
dataset as it was originally published (Lake and
Baroni, 2018). No data were excluded, and no pre-
processing was done except to encode words in the
input and action sequences into one-hot vectors,
and to add special tokens for start-of-sequence and
end-of-sequence tokens. Train and test sets were
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Figure 3: Examples from the SCAN dataset. Figure reproduced from (Lake and Baroni, 2018).

Figure 4: Phrase-structure grammar used to generate SCAN dataset. Figure reproduced from (Lake and Baroni,
2018).

kept as they were in the original dataset, but follow-
ing (Bastings et al., 2018), we used early stopping
by validating on a 20% held out sample of the
training set. All reported results are from runs of
200,000 iterations with a batch size of 1. Except
for the additional batch of 25 runs for the add-jump
split, each architecture was trained 5 times with
different random seeds for initialization, to mea-
sure variability in results. All experiments were
implemented in PyTorch.

Initial experimentation included different imple-
mentations of the assumption that syntactic infor-
mation be separated from semantic information.
After the architecture described in the main text
showed promising results, a hyperparameter search
was conducted to determine optimization (stochas-
tic gradient descent vs. Adam), RNN-type (GRU
vs. LSTM), regularizers (dropout, weight decay),
and number of layers (1 vs. 2 layers for encoder
and decoder RNNs). We found that the Adam opti-
mizer (Kingma and Ba, 2015) with a learning rate
of 0.001, two layers in the encoder RNN and 1
layer in the decoder RNN, and dropout worked the
best, so all further experiments used these specifi-
cations. Then, a grid-search was conducted to find
the number of hidden units and dropout rate. We
tried hidden dimensions ranging from 50 to 400,
and dropout rates ranging from 0.0 to 0.5.

The best model used an LSTM with 2 layers and
200 hidden units in the encoder, and an LSTM with

1 layer and 400 hidden units in the decoder, and
used 120-dimensional mj vectors, and a dropout
rate of 0.5. The results for this model are reported
in the main text. All additional experiments were
done with models derived from this one, with the
same hyperparameter settings.

All evaluation runs are reported in the main text:
for each evaluation except for the add-jump split,
models were trained 5 times with different ran-
dom seeds, and performance was measured with
means and standard deviations of accuracy. For
the add-jump split, we included 25 runs to get a
more accurate assessment of performance. This
revealed a strong skew in the distribution of results,
so we included the median as the main measure
of performance. Occasionally, the model did not
train at all due to an unknown error (possibly very
poor random initialization, high learning rate or
numerical error). For this reason, we excluded runs
in which training accuracy did not get above 10%.
No other runs were excluded.

C Skew of add-jump results

As mentioned in the results section of the main text,
we found that test accuracy on the add-jump split
was variable and highly skewed. Figure 6 shows a
histogram of these results (proportion correct). The
model performs near-perfectly most of the time,
but is also prone to catastrophic failures. This may
be because, at least for our model, the add-jump
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Figure 5: Rules for interpreting command sequences to generate actions in SCAN dataset. Figure reproduced from
(Lake and Baroni, 2018).

split represents a highly nonlinear problem in the
sense that slight differences in the way the primitive
verb “jump” is encoded during training can have
huge differences for how the model performs on
more complicated constructions. We recommend
that future experiments with this kind of composi-
tional generalization problem take note of this phe-
nomenon, and conduct especially comprehensive
analyses of variability in results. Future research
will also be needed to better understand the fac-
tors that determine this variability, and whether it
can be overcome with other priors or regularization
techniques.

D Supplementary experiments

D.1 Testing nonlinear translation
Our main hypothesis is that the separation between
sequential information used for alignment and in-
formation about the meanings of individual words
encourages systematicity. The results reported in
the main text are largely consistent with this hypoth-
esis, as shown by the performance of the Syntactic
Attention model on the compositional generaliza-
tion tests of the SCAN dataset. However, it is also
possible that the simplicity of the translation stream
in the model is also important for improving com-
positional generalization. To test this, we replaced
the linear layer in this stream with a nonlinear neu-
ral network. From the model description in the
main text:

p(yi|y1, y2, ..., yi−1,x) = f(di), (4)

In the original model, f was parameterized with
a simple linear layer, but here we use a two-layer
feedforward network with a ReLU nonlinearity, be-
fore a softmax is applied to generate a distribution
over the possible actions. We tested this model on
the add-primitive splits of the SCAN dataset. The

results (mean (%) with standard deviations) are
shown in Table 4, with comparison to the baseline
Syntactic Attention model.

The results show that this modification did not
substantially degrade compositional generalization
performance, suggesting that the success of the
Syntactic Attention model does not depend on the
parameterization of the translation stream with a
simple linear function.

D.2 Add-jump split with additional examples
The original SCAN dataset was published with
compositional generalization splits that have more
than one example of the held-out primitive verb
(Lake and Baroni, 2018). The training sets in these
splits of the dataset include 1, 2, 4, 8, 16, or 32
random samples of command sequences with the
“jump” command, allowing for a more fine-grained
measurement of the ability to generalize the usage
of a primitive verb from few examples. For each
number of “jump” commands included in the train-
ing set, five different random samples were taken to
capture any variance in results due to the selection
of particular commands to train on.

Lake and Baroni (2018) found that their best
model (an LSTM without an attention mechansim)
did not generalize well (below 39%), even when it
was trained on 8 random examples that included the
“jump” command, but that the addition of further
examples to the training set improved performance.
Subsequent work showed better performance at
lower numbers of “jump” examples, with GRU’s
augmented with an attention mechanism (“+ attn”),
and either with or without a dependence in the de-
coder on the previous target (“- dep”) (Bastings
et al., 2018). Here, we compare the Syntactic At-
tention model to these results.

The Syntactic Attention model shows a substan-
tial improvement over these previous approaches
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Figure 6: Histogram of test accuracies across all 25 runs of add-jump split.

Table 4: Results of nonlinear translation experiment. Star* indicates median of 25 runs.

Model Add turn left Add jump
Nonlinear translation 99.0 ± 1.7 84.4 ± 14.1
Syntactic Attention 99.9 ± 0.16 91.0* ± 27.4

at the lowest numbers of “jump” examples used for
training (see Figure 7 and Table 5). Compositional
generalization performance is already quite high
at 1 example, and at 2 examples is almost perfect
(99.997% correct).

D.3 Template splits

The compositional generalization splits of the
SCAN dataset were originally designed to test for
the ability to generalize known primitive verbs to
valid unseen constructions (Lake and Baroni, 2018).
Further work with SCAN augmented this set of
tests to include compositional generalization based
not on known verbs but on known templates (Loula
et al., 2018). These template splits included the
following (see Figure 8 for examples):

• Jump around right: All command sequences
with the phrase “jump around right” are held
out of the training set and subsequently tested.

• Primitive right: All command sequences con-
taining primitive verbs modified by “right” are
held out of the training set and subsequently
tested.

• Primitive opposite right: All command se-

quences containing primitive verbs modified
by “opposite right” are held out of the training
set and subsequently tested.

• Primitive around right: All command se-
quences containing primitive verbs modified
by “around right” are held out of the training
set and subsequently tested.

Results of the Syntactic Attention model on
these template splits are compared to those origi-
nally published (Loula et al., 2018) in Table 6. The
model, like the one reported in (Loula et al., 2018),
performs well on the jump around right split, con-
sistent with the idea that this task does not present
a problem for neural networks. The rest of the re-
sults are mixed: Syntactic Attention shows good
compositional generalization performance on the
Primitive right split, but fails on the Primitive op-
posite right and Primitive around right splits. All
of the template tasks require models to generalize
based on the symmetry between “left” and “right”
in the dataset. However, in the opposite right and
around right splits, this symmetry is substantially
violated, as one of the two prepositional phrases in
which they can occur is never seen with “right.”
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Figure 7: Compositional generalization performance on add-jump split with additional examples. Syntactic At-
tention model is compared to previously reported models (Bastings et al., 2018) on test accuracy as command
sequences with “jump” are added to the training set. Mean accuracy (proportion correct) was computed with 5
different random samples of “jump” commands. Error bars represent standard deviations.

Table 5: Results of Syntactic Attention compared to models of Bastings et al. (2018) on jump-split with additional
examples. Mean accuracy (% - rounded to tenths) is shown with standard deviations. Same data as depicted in
Figure 7.

Number of jump commands in training set

Model 1 2 4 8 16 32

GRU + attn 58.2±12.0 67.8±3.4 80.3±7.0 88.0±6.0 98.3±1.8 99.6±0.2

GRU + attn - dep 70.9±11.5 61.3±13.5 83.5±6.1 99.0±0.4 99.7±0.2 100.0±0.0

Syntactic Attention 84.4±28.5 100.0±0.01 100.0±0.02 99.9±0.2 100.0±0.01 99.9±0.2

E Visualizing attention

Here, we visualize the attention distributions over
the words in the command sequence at each step
during the decoding process. In the following fig-
ures (Figures 9 to 14), the attention weights on each
command (in the columns of the image) is shown
for each of the model’s outputs (in the rows of
the image) for some illustrative examples. Darker
blue indicates a higher weight. The examples are
shown in pairs for a model trained and tested on
the add-jump split, with one example drawn from
the training set and a corresponding example drawn
from the test set. Examples are shown in increasing
complexity, with a failure mode depicted in Figure
14.

In general, it can be seen that although the at-
tention distributions on the test examples are not
exactly the same as those from the corresponding
training examples, they are usually good enough for
the model to produce the correct action sequence.
This shows the model’s ability to apply the same
syntactic rules it learned on the other verbs to the

novel verb “jump.” In the example shown in Figure
14, the model fails to attend to the correct sequence
of commands, resulting in an error.
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Figure 8: Table of example command sequences for each template split. Reproduced from (Loula et al., 2018)
.

Table 6: Results of Syntactic Attention compared to models of Loula et al. (2018) on template splits of SCAN
dataset. Mean accuracy (%) is shown with standard deviations. P = Primitive

Template split

Model jump around right P right P opposite right P around right

LSTM (Loula et al. (2018)) 98.43±0.54 23.49±8.09 47.62±17.72 2.46±2.68
Syntactic Attention 98.9±2.3 99.1±1.8 10.5±8.8 28.9±34.8

Figure 9: Attention distributions: correct example

Figure 10: Attention distributions: correct example
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Figure 11: Attention distributions: correct example

Figure 12: Attention distributions: correct example
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Figure 13: Attention distributions: correct example
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Figure 14: Attention distributions: incorrect example


