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Abstract

Many recent Short Answer Scoring (SAS)
systems have employed Quadratic Weighted
Kappa (QWK) as the evaluation measure of
their systems. However, we hypothesize that
QWK is unsatisfactory for the evaluation of
the SAS systems when we consider measur-
ing their effectiveness in actual usage. We in-
troduce a new task formulation of SAS that
matches the actual usage. In our formulation,
the SAS systems should extract as many scor-
ing predictions that are not critical scoring er-
rors (CSEs). We conduct the experiments in
our new task formulation and demonstrate that
a typical SAS system can predict scores with
zero CSE for approximately 50% of test data at
maximum by filtering out low-reliablility pre-
dictions on the basis of a certain confidence
estimation. This result directly indicates the
possibility of reducing half the scoring cost of
human raters, which is more preferable for the
evaluation of SAS systems.

1 Introduction

The automated Short Answer Scoring (SAS) is a
task of estimating a score of a short-text answer
written as a response to a given prompt on the basis
of whether the answer satisfies the rubrics prepared
by a human in advance. SAS systems have mainly
been developed to markedly reduce the scoring cost
of human raters. Moreover, the SAS systems play a
central role in providing stable and sustainable scor-
ing in a repeated and large-scale examination and
(online) self-study learning support system (Attali
and Burstein, 2006; Shermis et al., 2010; Leacock
and Chodorow, 2003; Burrows et al., 2015).

The development of the SAS systems has a long
history (Page, 1994; Foltz et al., 1999). Many re-
cent previous studies, e.g., (Mizumoto et al., 2019;
Taghipour and Ng, 2016; Riordan et al., 2017;
Wang et al., 2019), utilize Quadratic Weighted

Kappa (QWK) (Cohen, 1968) as a measure for
the achievement and for the comparison of the per-
formances of the SAS systems. QWK is indeed
useful for measuring and comparing the overall
performance of each system and the daily develop-
ments of their scoring models. In our experiments,
however, we reveal that the SAS systems with high
QWK potentially incur serious scoring errors (see
experiments in Section 5.3). Such serious scoring
errors are rarely incurred by trained human raters,
therefore, we need to avoid containing this type of
errors to ensure the sufficient scoring quality, for
use in the scoring of commercial examinations, of
SAS systems. When we strictly focus on measur-
ing the effectiveness of the SAS systems in actual
usage, QWK seems unsatisfactory for the evalua-
tion of the SAS systems. Here, we assume that the
following procedure is a realistic configuration for
utilizing the SAS systems in actual usage: (1) apply
a SAS system to score each answer, (2) treat the
predicted score as the final decision if the predicted
score is highly reliable, proceed to the next step
otherwise, and (3) discard the unreliable predicted
score and reevaluate the answer by a human rater
as the final decision. Therefore, we aim to establish
an appropriate evaluation scheme for accurately es-
timating the effectiveness of the SAS systems in
actual usage instead of the current de facto standard
evaluation measure, QWK.

To do so, we first introduce a key concept criti-
cal scoring error (CSE), which reflects unaccept-
able prediction error. Specifically, CSE refers to the
observation that the gap between a predicted score
and the ground truth is larger than a predefined
threshold, which, for example, can be determined
by an average gap in human raters. Then, in our
task formulation, the goal of the automated SAS
is to obtain as many predictions without CSE as
possible, which directly reflects the effectiveness
of the SAS models in the actual usage. We also in-
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Explain what the author means by the phrase ‘this
| tension has caused several different philosophical
i viewpoints in Western culture”

Student Response
Conflicts of interest in Western culture are formed on the
basis of God vs. Human, ... Score: 4 points

Figure 1: Example of a prompt and a student’s short-
text response excerpted from the dataset proposed by
(Mizumoto et al., 2019). The allotment score of this
prompt is 16, and this response is assigned four points
by a human rater. Note that the prompt and the re-
sponse are translated from the original ones given in
Japanese.

troduce the critical scoring error rate (CSRate),
which is the CSE rate in a subset of the test data
selected on the basis of the confidence measure of
predictions, for evaluating the performance of the
SAS systems.

In our experiments, we select two methods, i.e.,
posterior probability and trust score (Jiang et al.,
2018), as case studies of estimating whether or not
each prediction is reliable. We use those two confi-
dence estimation methods to obtain a set of highly
reliable predictions. The experimental results show
that the SAS systems can predict scores with zero
CSE for approximately 50% of test data at maxi-
mum by filtering low-reliability predictions.

2 Short Answer Scoring

2.1 Task Description

As an example, in Figure 1, for a short answer ques-
tion, a student writes a short text as a response to a
given prompt. A human rater marks the response
on the basis of the rubrics for the prompt. Similarly,
given a student response x = {x1, x9, ..., z, } for
a prompt allotted IV points, our short answer scor-
ing task can be defined as predicting a score of
s € C ={0,..., N} for that response.

SAS models are often evaluated in terms of the
agreement between the scores of a model predic-
tion and human annotation with QWK. QWK is
calculated as:

> Wij0i;

Kk=1-— ,
> WijEi;

)

where O € RV*N is the confusion matrix of two
ratings and E € RV*Y is the outer product of
histogram vectors of the two ratings; O and E are
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normalized to have the same sum of their elements.
W, ; is calculated as:

(i —j)°

W, = ma

2
where ¢ and 7 are the score rated by a human and
the score predicted by a SAS system, respectively.
N is allotment score defined for a prompt.

2.2 Scoring Model

Following related works (Nguyen and O’Connor,
2015; Jiang et al., 2018; Hendrycks and Gimpel,
2017) on confidence calibration, we formalize our
SAS model as a classification model. Note that our
focus in this paper is more on evaluating the ef-
fectiveness of the confidential scores on SAS tasks
than on creating an accurate SAS model. Therefore,
we employ a standard Bidirectional Long Short
Term Memory (Bi-LSTM) based neural network
for our scoring model as a representative model for
typical SAS tasks.

Given an input student response X, the model
outputs a score s € S for the response as follows.
First, we convert tokens in x to word-embedding
vectors. These embeddings are fed into a Bi-LSTM
and D dimensional hidden vectors {hy, ho, ..., h,,}
are obtained as the sum of the hidden vectors from
forward and backward LSTMs. The response vec-
tor h is then computed by averaging these hidden

vectors.
~ 1
h=— > hy (3)
t=1

A probability distribution of the score is calculated
as:

p(s|x) = softmax(Wh + b), 4)

where W € R¥*P and b € RY are learnable pa-
rameters. Finally, we select the most likely output
score 5 € S for given input x as:

§ = argmax{p(s|x)}. ®)
s€S

3 Task Formulation

The goal in our new task formulation for applying
SAS to real-world educational measurements is to
obtain as many scoring predictions without CSEs
as possible. This is because we can trust such
predictions and markedly reduce the cost of the
human scoring effort. In this section, we describe
our new task formulation of the automated SAS.



Prompt 1

Prompt2 Prompt3 Prompt4 Prompt5 Prompt6

Length limit (char.) 70 50
Average score 7.40 4.43
Allotment score (= N) 16 12
Human agreement 96 (93) .94(.92)

60 70 70 60

5.73 5.78 4.81 5.70

12 15 15 14
J6(79)  .84(70) .82(.83) .90(.82)

Table 1: Statistics of the dataset used in this paper. “Length limit (char.)” is the maximum character length of

the response permitted for a prompt. “Allotment score” is the maximum score for a prompt. “Human agreement

th)

represents QWK and Cohen’s Kappa (shown in brackets) between the scores annotated by two human raters.

First, to evaluate the proportion of CSEs in
the predictions, we define a function on the gold
dataset D that returns whether or not the predicted
score § of an input x is categorized as a CSE:

1 if [s—5]>A-N
0 otherwise

CSE(x,s) = { , (6)
where A € [0, 1] is a given threshold, NV is the al-
lotment of a score for a prompt, s is the ground
truth score of input x, and § is obtained using Equa-
tion 5. Note that we can choose the value of A
depending on the situation. For example, for an
important examination such as an entrance exami-
nation, A\ should be smaller than that for daily tests
in schools.

Here, let D be a test data set. Moreover, let
D’ be a subset of D, that is, D’ C D. Then, our
objective is to maximize the size of the subset D’
on the condition that this subset does not contain
CSEs. For obtaining D’, we estimate a confidence
score C'(x,s) for each prediction on the basis of
a certain confidence measure, and then gather the
predictions with high confidence scores that exceed
a threshold, 7. Therefore, for the evaluation of the
performance of our task formulation, we propose a
critical scoring error rate (CSRate) defined as:

1
CSRate(D,T):| g > CSE(x,s), (1)
(x,8)€D’
D' ={(x,s) € D|C(x,3) > 7},

®)

where 5 is obtained using Equation 5. In real-world
tasks, the model is expected to select as large a
subset D’ as possible with very small or ideally
zero CSRate.

4 Filtering Out Low-Reliability
Estimation Using Confidence Score

As described in Equation 8, the quality of the con-
fidence measure is important for our task config-
uration. In this paper, we employ two methods

for computing the confidence score: (1) posterior
probability of the classification model and (2) trust
score (Jiang et al., 2018) as case studies.

4.1 Posterior Probability

The most straightforward method for computing
the confidence of the prediction in a classification
problem is to employ a probabilistic model and use
the output label probability:

Cprob(X, 5) = p(5]%). (©)]

Although a label probability is often used as a
confidence score for prediction, some authors are
skeptical of its utility (Guo et al., 2017; Kumar
et al., 2018). In our experiments, we evaluate the
effectiveness of this posterior probability in terms
of a confidence estimation method for SAS models.

4.2 Trust Score

Trust score (Jiang et al., 2018) is an indicator of
the reliability of prediction based on the distance
between a target data point and its nearest data
points in training data. The intuition behind this
score is that the reliability of a prediction is higher
when the target data point is closer to the nearest
training data point with the same label and farther
away from the nearest training data point with a
different label.

In this paper, trust score is calculated
as follows. Given a training data value
{(x1,51), .-y (Xm, Sm) }», a target data point x for
prediction, and its predicted label 5, we first obtain
a vector representation for each data point. In our
model, the representation for each data point is the
sentence vector of the student response described
in Section 2.2. Let X = {hy, ..., h,,} be a set of
vector representations for the training data points
and let hy be a vector for the target data point x.
Then we collect the representations in the training
data that have the same label as the predicted label
s

He={h, € H | s, =3} (10)
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The trust score Ciys for x is then calculated as
the ratio of the euclidean distance d(-, -) between
the target representation hy and two data-point
representations hy, and h, in the training data:

d(hy, h,)

Cuust(X, 5, H) = —=——= A
st ) d(hy, hy) + d(hy, he)

(In

where, flp is the representation of the nearest train-
ing data point having the same label as the pre-
dicted label s, and EC is the nearest training data
point with a different label:

h, = argmin d(hy, h), (12)
ﬁE'Hé
h. = argmin d(hy, h). (13)
he(H\H;)

S Experiments

5.1 Dataset

We use the Japanese short answer scoring dataset!
introduced by Mizumoto et al. (2019). The dataset
consists of six prompts. Each prompt has its
rubric, student responses, and scores. The prompts,
rubrics, and student responses in the dataset were
collected from the examinations conducted by a
Japanese education company, Takamiya Gakuen
Yoyogi Seminar. Each response was manually
scored using the multiple analytic criteria for the
prompt, and the subscore for each criterion was
rated individually on the basis of the correspond-
ing rubric. In the experiments, we use the sum of
these analytic scores as a ground truth score of each
response.’

Table 1 shows the statistics of the dataset. In the
dataset, the randomly sampled 100 responses per
prompt are annotated by two human raters. There-
fore, we can calculate QWKs and their Kappa val-
ues (Cohen, 1960) between the two human raters
to confirm the degree of human agreement. The
Kappa values on this dataset are comparable to or
higher than those on other datasets for the SAS
task (Leacock and Chodorow, 2003; Mohler and
Mihalcea, 2009; Mohler et al., 2011; Basu et al.,
2013).

As additional statistics, we calculated the num-
ber of CSEs and CSRate in various settings of \ in
"https://aip-nlu.gitlab.io/resources/

sas—japanese

2We ignored the globally subtracted points (e.g., subtrac-

tion for spelling errors and omissions) that are originally an-
notated in the dataset.

A | #CSEs | CSRate[ %]
0.05| 171 28.5
0.10| 93 15.5
0.15| 50 8.33
0.20| 38 6.33
025 23 3.83
0.30 7 1.17

Table 2: Changes in the number of CSEs and CSRate
of two human raters with A. 100 responses per prompt
are graded by two human raters, and the number of
CSEs represents the sum of the number of CSEs of each
prompt.

Equation 6 over the annotated scores of two human
raters. Table 2 shows the result. The number of
CSEs in Table 2 represents sum of the number of
CSE:s for all prompts.

5.2 Settings

We split the dataset into training data (1, 600), val-
idation data (200), and test data (200). We used
pretrained BERT (Devlin et al., 2019) as the em-
bedding layer of the model.> We adopted the same
optimization algorithm, learning rate, batch size,
and output dimension of the recurrent layer as
in Taghipour and Ng (2016). We trained the SAS
models for 50 epochs and selected the parameters
in the epoch in which the best QWK was achieved
for the development set. We trained five models
with different random seeds and reported the aver-
age of the results.

Choosing a reasonable A that defines CSE is cru-
cial for our formulation. In our experiments, we
employed 0.2 as A for CSE. There is no theoreti-
cal and statistical evidence that 0.2 is the optimal
value for our formulation. However, as shown in
Table 2, 0.2 is assumed to be strict considering
that even for human raters make CSEs in about 6%
of responses. Therefore, this selection can offer
meaningful evaluations for our formulation.

5.3 Result

Can confidence scores filter out CSEs? Figure
2 shows CSRates on test data when we choose a
certain proportion of the predicted instances in de-
scending order of the confidence scores. The figure
illustrates that the CSRate in each prompt increases

3We adopted pretrained character-based BERT which is
known to be suitable for processing Japanese texts. This
is available at https://github.com/cl-tohoku/
bert-japanese.
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Figure 2: CSRate for test data subsets with the highest confidence scores. Proportion of data represents the ratio of
|D’| to |D|. The lines represent average CSRates of the trained five models and the band represents the maximum

and minimum CSRates.

Prompt Trust Score Posteior 10% 30% 50% 100%
Prop[%] #CSEs 7 [Prop[%]#CSEs 1 TS. Pos.|TS. Pos.|TS. Pos. | (Base)
Prpt. 1| 47.8 0.0 0.56, 58.5 1.4 0.86 Prpt. 1{1.0 99 |99 98 .99 98| .95
Prpt. 2| 52.0 0.4 0.60 62.2 04 0.97 Prpt. 2{1.0 1.0|{1.0 1.0].99 .98 | .93
Prpt. 3| 144 02 054 274 2.6 0.87 Prpt. 31.93 84 | .83 .78 |.77 .74 | .67
Prpt. 4] 32.5 0.8 0.54| 17.0 0.6 0.93 Prpt. 4{1.0 1.0|.98 96 |.93 92| .86
Prpt. 5| 27.6 0.0 0.60, 1.5 0.0 1.00 Prpt. 5|10 10|10 .94 |.91 .88 | .82
Prpt. 6] 27.1 1.2 0.55| 21.6 0.6 0.95 Prpt. 6{.94 92|95 95|93 92| .88

Table 3: Proportion of data (Prop[%]) and the number
of CSEs (#CSEs) when using the trust score or the pos-
terior probability to filter out unreliable predictions in
test data with a certain threshold 7 determined by the
development set.

almost monotonically for both confidence metrics.
We can also observe that the CSRate values on four
out of six prompts are suppressed to 0% with a cer-
tain amount of high confidence predictions (20%
to 60% of the test data). This is an important ob-
servation for our objective; the result demonstrates
that the proposed procedure using confidence scor-
ing possibly obtains a reasonable size of highly
reliable predictions. When comparing the two con-
fidence estimation methods, the trust score is more
effective for suppressing CSEs than the posterior
probability on Prompt 1, 3, 4, 5, and 6.

Filtering CSE using the threshold In a practi-
cal situation, it is necessary to determine a certain
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Table 4: QWK for highly confident predictions. 10%,
30%, and 50% represent the proportion of data with the
highest trust score (TS.) or posterior (Pos.). The base
represents our model performance on a whole test data.

threshold 7 in the development set and use it for
filtering low- reliability predictions of unknown
samples. Assuming this situation, we evaluate how
much CSEs in the test set can be reduced by us-
ing the threshold 7 determined by the procedure
described in Section 3.

Table 3 shows the proportions of the remaining
test data and the number of CSEs after filtering out
low-reliability predictions using the thresholds in
each prompt. The results for both confidence esti-
mation methods indicate that we can successfully
filter out the unreliable predictions and achieve a
sufficiently low CSRate by the proposed approach.

QWK in highly reliable predictions Addition-
ally, we also show QWK of the top 10, 30, and 50%



confident predictions to illustrate the model perfor-
mance with the de facto standard metric in Table 4.
We show QWK of our model predictions on all test
data as Base. The table shows that the proposed
approach of selecting high-confidence predictions
on the basis of confidence scores increases QWK
markedly compared with using the whole test data.
Moreover, we can achieve a QWK score of 1.0 in
some prompts with the top 30% confident predic-
tions, meaning that the model predictions perfectly
agree with the ground truth scores.

Note that a higher QWK value does not always
mean that the predictions do not contain CSEs. For
example, in Table 4, the QWK values for prompts
1 and 2 are higher than 0.9. However, as shown in
Figure 2, even with such high QWK values, these
predictions include 1.5 to 2.0% of CSEs. This
observation justifies the concept of CSE. QWK
possibly conceals serious mispredictions, which
are important to filter out in actual usage.

6 Conclusion and Future Work

In this paper, we introduced a new formulation
of the SAS task to evaluate the effectiveness of
the SAS systems in actual usage. We defined the
concept of a critical scoring error (CSE), which
represents unacceptable prediction errors. Then,
we formulate the objective of the task to obtain as
many predictions without CSE as possible. The
experimental results show that by using our pro-
posed procedure of selecting reliable predictions,
SAS systems can predict scores with zero CSE for
approximately 50% of test data at maximum. This
result directly indicates the possibility of reducing
half scoring cost of human raters, which, we be-
lieve, is highly preferable for the evaluation of SAS
systems.

Our study revealed some potential for a better
task formulation of SAS that links to actual us-
age. However, some issues remain, for example,
how to determine the effective threshold 7 that can
strictly guarantee zero CSE is still unknown. This
is one major challenge regarding our formulation.
Moreover, we must develop a method for more ac-
curately estimating the confidence scores, which is
our primary focus in the next step.
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