
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop, pages 230–236
July 5 - July 10, 2020. c©2020 Association for Computational Linguistics

230

Building a Japanese Typo Dataset from Wikipedia’s Revision History

Yu Tanaka Yugo Murawaki Daisuke Kawahara∗ Sadao Kurohashi
Graduate School of Informatics, Kyoto University

Yoshida-honmachi, Sakyo-ku, Kyoto, Japan
{ytanaka, murawaki, dk, kuro}@nlp.ist.i.kyoto-u.ac.jp

Abstract

User generated texts contain many typos for
which correction is necessary for NLP sys-
tems to work. Although a large number of
typo–correction pairs are needed to develop
a data-driven typo correction system, no such
dataset is available for Japanese. In this pa-
per, we extract over half a million Japanese
typo–correction pairs from Wikipedia’s revi-
sion history. Unlike other languages, Japanese
poses unique challenges: (1) Japanese texts
are unsegmented so that we cannot simply ap-
ply a spelling checker, and (2) the way peo-
ple inputting kanji logographs results in typos
with drastically different surface forms from
correct ones. We address them by combining
character-based extraction rules, morphologi-
cal analyzers to guess readings, and various
filtering methods. We evaluate the dataset us-
ing crowdsourcing and run a baseline seq2seq
model for typo correction.

1 Introduction

For over a decade, user generated content (UGC)
has been an important target of NLP technology.
It is characterized by phenomena not found in
standard texts, such as word lengthening (Brody
and Diakopoulos, 2011), dialectal variations (Saito
et al., 2017; Blodgett et al., 2016), unknown ono-
matopoeias (Sasano et al., 2013), grammatical er-
rors (Mizumoto et al., 2011; Lee et al., 2018),
and mother tongue interference in non-native writ-
ing (Goldin et al., 2018). Typographical errors (ty-
pos) also occur often in UGC.1 Typos prevent ma-
chines from analyzing texts properly (Belinkov and
Bisk, 2018). Typo correction systems are important
because applying them before analysis would re-
duce analysis errors and lead to improved accuracy
in various NLP tasks.

∗Current affiliation is Waseda University
1In the present study, typos may cover some grammatical

errors in addition to spelling errors.

Neural networks are a promising choice for
building a typo correction system because they
have demonstrated their success in a closely related
task, spelling correction (Sakaguchi et al., 2017).
Since neural networks are known to be data-hungry,
the first step to develop a neural typo correction
system is to prepare a large number of typos and
their corrections. However, to our best knowledge,
no such dataset is available for Japanese.2 This
motivated us to build a large Japanese typo dataset.

Typos are usually collected using data mining
techniques because thorough corpus annotation is
inefficient for infrequently occurring typos. Previ-
ous studies on building typo datasets have exploited
Wikipedia because it is large, and more importantly,
keeps track of all changes made to an article (Max
and Wisniewski, 2010; Zesch, 2012). In these stud-
ies, to collect typo–correction pairs, the first step
is to identify words changed in revisions and the
second step is to apply a spell checker to them or
calculate the edit distance between them.

While these methods work well on the target
languages of the previous studies, namely French
and English, they cannot be applied directly to lan-
guages such as Japanese and Chinese, where words
are not delimited by white space. This is because
a typo may cause a word segmentation error and
can be misinterpreted as a multiple-word change,
making it difficult to identify the word affected.
Although state-of-the-art word segmenters provide
reasonable accuracy for clean texts, word segmenta-
tion on texts with typos remains a challenging prob-
lem. In addition, languages with complex writing
systems such as Japanese and Chinese have typos
not found in French and English. These languages
use logographs, kanji in Japanese, and they are

2Although the publicly available multilingual GitHub Typo
Corpus (Hagiwara and Mita, 2020) covers Japanese, it con-
tains only about 1,000 instances and ignores erroneous kanji-
conversion, an important class of typos in Japanese.



231

typically entered using input methods, with which
people enter phonetic symbols, kana in the case
of Japanese, and then select a correct logograph
from a list of logographs matching the reading. Ty-
pos occurring during this process can be drastically
different from the correct words.

In this paper, we build a Japanese Wikipedia
typo dataset (JWTD) from Japanese Wikipedia’s
revision history. To address problems mentioned
above, we treat adjacent changed words as one
block and obtain the readings of kanji using a mor-
phological analyzer. This dataset contains over half
a million typo–correction sentence pairs. We eval-
uate JWTD by using crowdsourcing and use it to
train a baseline seq2seq model for typo correction.
JWTD is publicly available at http://nlp.ist.i.
kyoto-u.ac.jp/EN/edit.php?JWTD. To the best
of our knowledge, this is the first freely available
large Japanese typo dataset.

2 Japanese Typos

We classify Japanese typos into four categories:
erroneous substitution (hereafter substitution), er-
roneous deletion (hereafter deletion), erroneous
insertion (hereafter insertion), and erroneous kanji-
conversion (hereafter kanji-conversion).3 An ex-
ample and its correction for each category are
shown in Table 1. Substitution is the replacement
of a character with an erroneous one, deletion is
the omission of a necessary character, insertion is
the addition of an unnecessary character, and kanji-
conversion is misconverting kanji, which needs
some explanation.

To enter kanji, you first enter hiragana syllabary,
either by converting roman-letter inputs or directly
using a hiragana keyboard. The hiragana sequence
indicates the reading, and accordingly, the input
method shows a list of candidate kanji that match
the reading, allowing you to choose the correct one.
Errors in kanji-conversion typically occur at the
last step. A typo of this category shares the reading
with the correct one but in most cases, does not
contain the same characters at all. For example, the
typo–correction pair, “貼り付け (harituke)→磔
(harituke)”, which mean paste and crucifixion re-
spectively, shares no character at all so that a simple
edit distance-based method does not work. This is
why kanji-conversion requires a special treatment.

3We do not collect erroneous transposition (Baba and
Suzuki, 2012) because we observe that it occurs only infre-
quently in Japanese.

3 Data Construction

We construct JWTD in two steps. We first extract
candidates of typo–correction sentence pairs from
Wikipedia’s revision history and then filter out pairs
that do not seem to be typo corrections.

3.1 Mining Typos from Wikipedia
We extract candidates of typo–correction sentence
pairs from Wikipedia’s revision history according
to the following procedure.4

1. For each revision of each article page, we extract
a plain text from an XML dump5 and split it into
a list of sentences.6

2. For each article, we compare each revision
with the revision immediately preceding it in a
sentence-by-sentence manner using the Python3
difflib library.7 We extract only sentence pairs
that have differences. We remove pairs that have
a sentence with 10 or fewer characters, or 200
or more characters. Too short sentences lack the
context for us to determine whether the changes
are typo corrections while too long sentences
may arise from preprocessing errors. We also
remove pairs with the edit distance of 6 or more
because we assume that a revision having a large
edit distance is not typo correction.

3. For each sentence pair, we split each sentence
into a word sequence using MeCab (Kudo et al.,
2004),8 compare them using difflib, and iden-
tify diff blocks. Note that difflib outputs the
replacement of multiple words as a single block.
Therefore, typos causing a change of multiple
words are also obtained.

4. We extract sentence pairs with a diff block that
falls into one of the following categories:
Substitution
• the edit distance is 1,9

4Due to space limitations, we do not explain in detail
additional measures to clean up the data: removing reverted
revisions, removing looping revisions (for example, A→B
and B→A), and replacing transitive revisions (for example,
replace A→B and B→C to A→C).

5To strip wiki markup, we use WikiExtractor (https:
//github.com/attardi/wikiextractor)

6We use an in-house sentence splitter: https://
github.com/ku-nlp/textformatting.

7https://docs.python.org/3/library/
difflib.html

8https://taku910.github.io/mecab/
9We limit the edit distance to one because our preliminary

investigation suggests that changes with the edit distance of
two or more are increasingly likely to be content revisions
rather than typos. The coverage problem needs to be addressed
in the future.

http://nlp.ist.i.kyoto-u.ac.jp/EN/edit.php?JWTD
http://nlp.ist.i.kyoto-u.ac.jp/EN/edit.php?JWTD
https://github.com/attardi/wikiextractor
https://github.com/attardi/wikiextractor
https://github.com/ku-nlp/textformatting
https://github.com/ku-nlp/textformatting
https://docs.python.org/3/library/difflib.html
https://docs.python.org/3/library/difflib.html
https://taku910.github.io/mecab/


232

Substitution 兄の部隊【の (no) →に (ni)】所属していた兵士でもあり、 ...
(He was also a soldier belonging【of → to】his brother’s unit, and ...)

Deletion ...民間レスキュー組織をもっていること【+で (de)】知られる。
(... is known【+ for】having a civilian rescue organization.)

Insertion 特に免疫力の差などがそう【-う (u)】である。
(In particular, differences in immunity is like that【- t】.)

Kanji-conversion まだ、全学全てが大学院に【以降 (ikou) →移行 (ikou)】していないため、 ...
(Because all of the universities have not yet made a【after → transition】to graduate school, ...)

Table 1: Examples of Japanese typos and their corrections. +, -, and→ indicate insertion, deletion, and substitution
from the left hand side to the right hand side, respectively.

• the two sentences are the same in length,
and
• both of the characters changed before and

after the revision are hiragana, katakana, or
alphabet.10

Deletion
• the edit distance is 1,
• the change in sentence length is +1, and
• the added character is hiragana, katakana,

or alphabet.

Insertion
• the edit distance is 1,
• the change in sentence length is −1, and
• the deleted character is hiragana, katakana,

or alphabet.

Kanji-conversion
• the two sentences have the same reading,11

and
• both of the diff blocks before and after the

revision contain kanji.

Mining typos separately for each category is a rea-
sonable decision because each category has its own
characteristics. However, this mining strategy pre-
vents us from obtaining a balanced dataset. We
leave it for future work.

3.2 Filtering

Sentence pairs obtained according to the above
procedure contain pairs that do not seem to be typo
corrections. We use the following three methods to
remove them.

10We use the Python3 regex library (https://pypi.
org/project/regex/) to determine character types, hi-
ragana, katakana, kanji, or alphabet.

11We use the morphological analyzers Juman++ (Tol-
machev et al., 2018) (http://nlp.ist.i.kyoto-u.
ac.jp/index.php?JUMAN++) and MeCab to get read-
ings of kanji. If at least one of the analyses of reading matches,
we regard the pairs as having the same reading.

Part of speech and morphological analysis
This filters out sentence pairs in which the changes
concern acceptable variants, rather than typos.
Based on the morphological analysis by Juman++,
we remove sentence pairs that have edits related to
name, number, tense, etc.

Redirect data This filters out sentence pairs that
have a different spelling but the same meaning such
as “ケニヤ (keniya)” and “ケニア (kenia)”, both
of which mean Kenya. For such close variants,
Wikipedia provides special redirect pages that auto-
matically send visitors to article pages. A page and
its redirect can be treated as a pair of acceptable
spelling variants. We obtain a list of redirects from
an XML dump and remove a sentence pair if the
diff block is found in the list.

Language model By using a character-level
LSTM language model, we filter out sentence pairs
in two ways. We trained the model by using all
the latest pages of Japanese Wikipedia generated in
September 2019, which contains 19.6M sentences.

The first filter measures how much the loss (neg-
ative log-likelihood) decreases by a revision. This
filters out sentence pairs that seem to be spam or
both sentences seem to be natural. Let losspre and
losspost be the total language model loss of the
pre-revision sentence and that of the post-revision
sentence, respectively. We filter out sentence pairs
that satisfy the following:

losspost − losspre
the number of characters changed in the pairs

> α,

where α is determined heuristically. It is set to −4
for substitution, −5 for deletion, and −6 for inser-
tion. We do not apply this filter to kanji-conversion.
We found that a change from high-frequency kanji
to low-frequency kanji often yielded a large value
even if the change was correct.

The second filter focused on the loss of the post-
revision sentence. This filters out sentence pairs

https://pypi.org/project/regex/
https://pypi.org/project/regex/
http://nlp.ist.i.kyoto-u.ac.jp/index.php?JUMAN++
http://nlp.ist.i.kyoto-u.ac.jp/index.php?JUMAN++


233

in which the post-revision sentence seems to be
unnatural. We filter out sentence pairs that satisfy
the following:

losspost
the number of characters of the post-revision sentence

> β,

where β is set to 5 heuristically.

4 Dataset Analysis

We built JWTD by applying the method explained
in Section 3 to Japanese Wikipedia’s revision his-
tory generated in June 2019. The number of
typo–correction pairs obtained for each category
is shown in Table 2. Because the first of the two
language model filters was not applied to kanji-
conversion, the effect of filtering was less drastic
for kanji-conversion.

The top 10 most frequent typo–correction pairs
are listed in Table 3. The unit of corrections is
the morpheme-level edits obtained by using Ju-
man++ and difflib. For deletion, there were typo–
correction pairs associated with colloquialism, such
as “る (ru) → いる (iru)” and “た (ta) → いた
(ita)” (i-omission), and “れる (reru) → られる
(rareru)” (ra-omission). Both i- and ra-omissions
are considered inappropriate for formal writing.
For kanji-conversion, there were typo–correction
pairs with similar meanings. For example, the
media and entertainment industry distinguishes
the homonymous pair “製作 (seisaku) → 制作
(seisaku)”. The latter refers to production in a nar-
row sense while the former covers production man-
agement. However, people outside of the industry
usually are not aware of the distinction. Perhaps
for difficulty in differentiating them, we noticed
that some typo–correction pairs did not seem to
be genuine typo corrections but were acceptable
variants. Further work is needed to remove them.

The top 5 most frequent typo–correction pairs
in terms of parts-of-speech are shown in Table 4.
There were many typo–correction pairs related to
particles in substitution, deletion, and insertion
while there were many typo–correction pairs re-
lated to nouns in kanji-conversion. The special
part-of-speech “Undefined” in the substitution cate-
gory were mostly related to katakana proper nouns.

5 Evaluation through Crowdsourcing

By using crowdsourcing, we evaluated the dataset.
We randomly sampled 2,996 article pages and eval-
uated sentence pairs extracted from them. They

Typo Before filtering After filtering
Substitution 680,097 86,742

Deletion 490,673 89,428
Insertion 407,413 110,305

Kanji-conversion 296,757 240,219
Total 1,874,940 526,694

Table 2: Number of typo–correction pairs before and
after filtering.

consisted of 1,861 substitutions, 2,147 deletions,
2,395 insertions, and 4,388 kanji-conversions. To
prevent data bias, we sampled only 3 sentence pairs
and discarded the others if an article page contains
the same corrections more than 3 times.

5.1 Task
For each sentence pair, we presented the pre- and
post-revision sentences and asked whether these
are natural or unnatural in written-style texts. Note
that we added the phrase “in written-style text” be-
cause, as we have seen above, Wikipedia tends to
remove colloquialism. We randomly swapped pre-
and post-revision sentences and presented them
simply as sentences A and B so that crowdworkers
were unable to figure out which is the pre-revision
sentence. We asked crowdworkers to choose one
from the five choices: “A is natural in written-style
text, but B is unnatural”, “B is natural in written-
style text, but A is unnatural”, “Both are natural in
written-style texts”, “Both are unnatural in written-
style text”, and “Not sure”. Each sentence pair was
shown to 10 crowdworkers.

5.2 Results
After aggregating crowdworkers’ answers, we clas-
sified pairs with single majority votes as follows:
“Correct revision” if the pre-revision sentence was
unnatural and the post-revision sentence was natu-
ral, “Bad revision” if the pre-revision sentence was
natural and the post-revision sentence was unnat-
ural, “Both natural” if the choice was “Both are
natural in written-style text”, “Both unnatural” if
the choice was “Both are unnatural in written-style
text”, and “Not sure” if the choice was “Not sure”.
We classified pairs into “Other” if no choice got
more than 5 votes.

The classification results are listed in Table 5.
83.0% of substitution, 77.6% of deletion, 88.8%
of insertion, and 69.8% of kanji-conversion were
classified as “Correct revision”. “Both natural”
was more frequent in the deletion category than in
the other categories, and 41% of this typo group



234

Substitution Deletion Insertion Kanji-conversion
の (no) →を (wo) 4.0% る (ru) →いる (iru) 13.3% -の (no) 14.2% 製作→制作 (seisaku) 2.8%
の (no) →に (ni) 3.5% +に (ni) 10.9% -を (wo) 11.3% 始めて→初めて (hazimete) 1.4%

づつ (dutu) →ずつ (zutu) 3.1% +を (wo) 10.4% -に (ni) 10.5% 制作→製作 (seisaku) 1.0%
を (wo) →の (no) 2.7% +と (to) 5.1% -は (ha) 6.6% 運行→運航 (unkou) 1.0%
の (no) →が (ga) 1.9% た (ta) →いた (ita) 4.5% -が (ga) 6.5% 後→跡 (ato) 0.9%
に (ni)→の (no) 1.8% +が (ga) 4.3% -と (to) 4.7% 作詩→作詞 (sakusi) 0.9%
を (wo)→が (ga) 1.8% +の (no) 3.8% -で (de) 4.4% 勤めた→務めた (tutometa) 0.8%
が (ga)→を (wo) 1.3% れ (re)→れて (rete) 2.6% -い (i) 1.7% 勤める→務める (tutomeru) 0.7%
か (ka)→が (ga) 1.1% +い (i) 2.2% -た (ta) 1.5% 開放→解放 (kaihou) 0.5%
と (to)→を (wo) 1.0% れる (reru)→られる (rareru) 1.3% -し (si) 1.5% 付属→附属 (fuzoku) 0.5%

Table 3: Top 10 most frequent typo–correction pairs in JWTD. In kanji-conversion, the both hand sides are the
same reading.

Substitution Deletion Insertion Kanji-conversion
Particle → Particle 28.5% +Particle 36.8% -Particle 57.5% Noun → Noun 57.3%
Undefined → Noun 6.9% Suffix → Suffix 29.6% -Suffix 6.5% Verb → Verb 17.0%

Noun → Noun 6.5% Verb → Verb 5.5% -Noun 4.4% Noun/Noun → Noun 1.7%
Verb → Verb 5.9% Noun → Noun 2.9% Verb/Suffix → Verb 2.5% Suffix → Suffix 1.6%

Noun → Suffix 3.4% +Suffix 2.5% -Verb 2.3% Noun → Suffix 1.4%

Table 4: Top 5 most frequent typo–correction pairs in terms of parts-of-speech in JWTD.

Typo Correct Bad Both Both Not Otherrevision revision natural unnatural sure
Subst. 83.0 0.3 6.8 0.1 0.2 9.6

Deletion 77.6 0.1 13.1 0.0 0.0 9.3
Insertion 88.8 0.4 7.1 0.0 0.0 3.6

Kanji-conv. 69.8 7.5 3.1 0.0 0.1 19.5

Table 5: Results of crowdsourcing.

concerned i-omission. In our view, they should
have been classified as “Correct revision” because
i-omission is considered inappropriate in formal
writing, but crowdworkers turned out to be toler-
ant of colloquialism. “Other” of kanji-conversion
was more frequent than those of other categories.
This means that the answers of crowdworkers were
diverse. We conjecture that judging whether kanji
is correct or not needs higher-level knowledge of
kanji. Some pairs that should have been classified
as “Correct revision” were classified as “Other” or
“Bad revision”. These imply that the quality of
deletion and kanji-conversion was better than the
scores indicate.

6 A Typo Correction System using
JWTD

We built a baseline typo correction system using
JWTD.

6.1 Settings

We used OpenNMT (Klein et al., 2017)12, a Python
toolkit of encoder-decoder-based machine transla-
tion, as a typo correction system. We trained the
model separately for each category of typos. For
training and validation, we used sentence pairs
not used in the crowdsourced evaluation. The
training set contained 79,714 substitutions, 82,227
deletions, 102,897 insertions, and 230,490 kanji-
conversions and the validation set contained 5,000
sentence pairs of each category. The test set
contained 1,689 substitutions13, 1,665 deletion,
2,127 insertion, and 3,061 kanji-conversion sen-
tence pairs classified as “Correct revision” as the
result of crowdsourcing. The training and valida-
tion sets were constrained to be distinct from the
test set at the level of article pages because of the
sampling method used in the crowdsourced evalua-
tion. We compared morpheme-level and character-
level representations of inputs and outputs. For
the OpenNMT settings, we set the train step as
200,000, and learning rate as 0.5. We used the
default settings for the others: the encoder and de-
coder were 2-layer RNNs and the embedding size

12https://github.com/OpenNMT/OpenNMT-py
13In the article pages sampled for the crowdsourcing, 144

sentence pairs of substitution were almost indistinguishable to
the human eye, such as revisions related to “へ (he)” (hiragana)
and “ヘ (he)” (katakana). We removed these sentence pairs
from crowdsourcing-based evaluation, but not from the test
set for the typo correction evaluation. We manually evaluated
these and confirmed that all of them are correct.

https://github.com/OpenNMT/OpenNMT-py


235

Model Typo P R F0.5 Match SARI

Morph

Subst. 11.9 39.8 13.8 31.6 61.2
Deletion 23.2 69.9 26.7 60.9 80.2
Insertion 16.8 79.7 19.9 69.3 83.8

Kanji-conv. 30.8 57.0 33.9 48.7 71.0

Char

Subst 4.5 37.2 5.5 25.2 54.2
Deletion 6.5 59.4 8.0 44.7 69.6
Insertion 6.2 76.0 7.6 51.8 72.5

Kanji-conv 10.0 43.5 11.8 33.7 60.9

Table 6: Results of the typo correction experiment.

and the hidden size were 500.

6.2 Evaluation metrics

Our evaluation metrics were precision, recall and
F0.5 score in typo correction, the percentage of
exact matches between system outputs and refer-
ences, and SARI (Xu et al., 2016). We defined pre-
cision and recall as follows. For each sentence, we
calculate the character-level minimum edits from
the input to the gold G, the character-level min-
imum edits from the input to the system output
O, and G ∩ O. Let NG, NO, and NG∩O be the
sums of |G|, |O|, and |G ∩O| in all sentences, re-
spectively. We calculated Precision = NG∩O/NO

and Recall = NG∩O/NG. We used the Python3
python-Levenshtein library14 for calculating mini-
mum edits. SARI is a metric for text editing. This
calculates the averaged F1 scores of the added, kept,
and deleted n-grams. We used character-level 4-
gram.15

6.3 Results

The results of the experiment are presented in Table
6. The morpheme-level model outperformed the
character-level model in all categories with large
margins. It is interesting that for morpheme-level
insertion, the precision scores were low while the
exact match scores were high. In some sentences,
text generation did not go well and the same token
was generated repeatedly, greatly lowering preci-
sion. The SARI scores indicate improvement for
all categories, given that the output identical to the
input yields a score of about 30.

14https://pypi.org/project/
python-Levenshtein/

15We used the implementation available at https:
//github.com/tensorflow/tensor2tensor/
blob/master/tensor2tensor/utils/sari_
hook.py, setting β-deletion = 1 (Geva et al., 2019).

7 Conclusion

In this paper, we built a Japanese Wikipedia
typo dataset (JWTD) which contains over half a
million typo–correction sentence pairs obtained
from Wikipedia’s revision history. We classified
Japanese typos into four categories and presented
mining procedures for each of them. We evaluated
JWTD using crowdsourcing and built a baseline
typo correction system on top of it. To the best of
our knowledge, JWTD is the first freely available
large Japanese typo dataset.

While the focus of this paper was on data con-
struction, developing a higher-quality typo correc-
tion system is the future direction to pursue. It is
also interesting to apply our methods to other lan-
guages requiring word segmentation, most notably,
Chinese.

References
Yukino Baba and Hisami Suzuki. 2012. How are

spelling errors generated and corrected?: a study
of corrected and uncorrected spelling errors using
keystroke logs. In Proceedings of the 50th Annual
Meeting of the Association for Computational Lin-
guistics: Short Papers-Volume 2, pages 373–377.
Association for Computational Linguistics.

Yonatan Belinkov and Yonatan Bisk. 2018. Synthetic
and natural noise both break neural machine transla-
tion. In International Conference on Learning Rep-
resentations.

Su Lin Blodgett, Lisa Green, and Brendan O’Connor.
2016. Demographic dialectal variation in social me-
dia: A case study of african-american english. arXiv
preprint arXiv:1608.08868.

Samuel Brody and Nicholas Diakopoulos. 2011.
Cooooooooooooooollllllllllllll!!!!!!!!!!!!!!: using
word lengthening to detect sentiment in microblogs.
In Proceedings of the conference on empirical meth-
ods in natural language processing, pages 562–570.
Association for Computational Linguistics.

Mor Geva, Eric Malmi, Idan Szpektor, and Jonathan
Berant. 2019. Discofuse: A large-scale dataset for
discourse-based sentence fusion. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long
and Short Papers), pages 3443–3455.

Gili Goldin, Ella Rabinovich, and Shuly Wintner. 2018.
Native language identification with user generated
content. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 3591–3601.

https://pypi.org/project/python-Levenshtein/
https://pypi.org/project/python-Levenshtein/
https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py
https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py
https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py
https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py
https://openreview.net/forum?id=BJ8vJebC-
https://openreview.net/forum?id=BJ8vJebC-
https://openreview.net/forum?id=BJ8vJebC-


236

Masato Hagiwara and Masato Mita. 2020. Github typo
corpus: A large-scale multilingual dataset of mis-
spellings and grammatical errors. In Proceedings
of the 12th International Conference on Language
Resources and Evaluation (LREC 2020). To appear.

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senel-
lart, and Alexander M. Rush. 2017. OpenNMT:
Open-source toolkit for neural machine translation.
In Proc. ACL.

Taku Kudo, Kaoru Yamamoto, and Yuji Matsumoto.
2004. Applying conditional random fields to
Japanese morphological analysis. In Proceedings of
the 2004 conference on empirical methods in natural
language processing, pages 230–237.

Lung-Hao Lee, Yuen-Hsien Tseng, and Li-Ping Chang.
2018. Building a TOCFL learner corpus for Chinese
grammatical error diagnosis. In Proceedings of the
Eleventh International Conference on Language Re-
sources and Evaluation (LREC 2018).

Aurélien Max and Guillaume Wisniewski. 2010. Min-
ing naturally-occurring corrections and paraphrases
from Wikipedia’ s revision history. In Proceed-
ings of the Seventh conference on International Lan-
guage Resources and Evaluation (LREC’10).

Tomoya Mizumoto, Mamoru Komachi, Masaaki Na-
gata, and Yuji Matsumoto. 2011. Mining revi-
sion log of language learning SNS for automated
Japanese error correction of second language learn-
ers. In Proceedings of 5th International Joint Con-
ference on Natural Language Processing, pages
147–155, Chiang Mai, Thailand. Asian Federation
of Natural Language Processing.

Itsumi Saito, Jun Suzuki, Kyosuke Nishida, Kugatsu
Sadamitsu, Satoshi Kobashikawa, Ryo Masumura,
Yuji Matsumoto, and Junji Tomita. 2017. Improving
neural text normalization with data augmentation at
character-and morphological levels. In Proceedings
of the Eighth International Joint Conference on Nat-
ural Language Processing (Volume 2: Short Papers),
pages 257–262.

Keisuke Sakaguchi, Kevin Duh, Matt Post, and Ben-
jamin Van Durme. 2017. Robsut wrod reocgini-
ton via semi-character recurrent neural network. In
Thirty-First AAAI Conference on Artificial Intelli-
gence.

Ryohei Sasano, Sadao Kurohashi, and Manabu Oku-
mura. 2013. A simple approach to unknown word
processing in Japanese morphological analysis. In
Proceedings of the Sixth International Joint Confer-
ence on Natural Language Processing, pages 162–
170.

Arseny Tolmachev, Daisuke Kawahara, and Sadao
Kurohashi. 2018. Juman++: A morphological anal-
ysis toolkit for scriptio continua. In Proceedings
of the 2018 Conference on Empirical Methods in

Natural Language Processing: System Demonstra-
tions, pages 54–59, Brussels, Belgium. Association
for Computational Linguistics.

Wei Xu, Courtney Napoles, Ellie Pavlick, Quanze
Chen, and Chris Callison-Burch. 2016. Optimizing
statistical machine translation for text simplification.
Transactions of the Association for Computational
Linguistics, 4:401–415.

Torsten Zesch. 2012. Measuring contextual fitness us-
ing error contexts extracted from the Wikipedia revi-
sion history. In Proceedings of the 13th Conference
of the European Chapter of the Association for Com-
putational Linguistics, pages 529–538. Association
for Computational Linguistics.

https://doi.org/10.18653/v1/P17-4012
https://doi.org/10.18653/v1/P17-4012
https://www.aclweb.org/anthology/I11-1017
https://www.aclweb.org/anthology/I11-1017
https://www.aclweb.org/anthology/I11-1017
https://www.aclweb.org/anthology/I11-1017
https://doi.org/10.18653/v1/D18-2010
https://doi.org/10.18653/v1/D18-2010

