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Abstract
We present a simple and effective dependency
parser for Telugu, a morphologically rich, free
word order language. We propose to replace
the rich linguistic feature templates used in
the past approaches with a minimal feature
function using contextual vector representa-
tions. We train a BERT model on the Telugu
Wikipedia data and use vector representations
from this model to train the parser. Each sen-
tence token is associated with a vector repre-
senting the token in the context of that sen-
tence and the feature vectors are constructed
by concatenating two token representations
from the stack and one from the buffer. We
put the feature representations through a feed
forward network and train with a greedy transi-
tion based approach. The resulting parser has
a very simple architecture with minimal fea-
ture engineering and achieves state-of-the-art
results for Telugu.

1 Introduction

Dependency parsing is extremely useful for many
downstream tasks. However, robust dependency
parsers are not available for several Indian lan-
guages. One reason is the unavailability of an-
notated treebanks. Another reason is that most
of the existing dependency parsers for Indian lan-
guages use hand-crafted features using linguistic
information like part-of-speech and morphology
(Kosaraju et al., 2010; Bharati et al., 2008; Jain
et al., 2012) which are very expensive to annotate.
Telugu is a low resource language and there hasn’t
been much recent work done on parsing. Most of
the previous work on Telugu dependency parsing
has been focused on rule based systems or data-
driven transition based systems. This paper focuses
on improving feature representations for a low re-
source, agglutinative language like Telugu using
the latest developments in the field of NLP such as
contextual vector representations.

Contextual word representations (Howard and
Ruder, 2018; Peters et al., 2018; Devlin et al., 2019)
are derived from a language model and each word
can be uniquely represented based on its context.
One such model is BERT (Devlin et al., 2019).
BERT vectors are deep bidirectional representa-
tions pre-trained by jointly conditioning on both
left and right context of a word and have been
shown to perform better on variety of NLP tasks.

In this paper, we use BERT representations for
parsing Telugu. We replace the rich hand-crafted
linguistic features with a minimal feature function
using a small number of contextual word represen-
tations. We show that for a morphologically rich,
agglutinative language like Telugu, just three word
features with good quality vector representations
can effectively capture the information required for
parsing. We put the feature representations through
a feed forward network and train using a greedy
transition based parser (Nivre, 2004, 2008).

Past work on Telugu dependency parsing has
only been focused on predicting inter-chunk de-
pendency relations (Kosaraju et al., 2010; Kesidi
et al., 2011; Kanneganti et al., 2016, 2017; Tandon
and Sharma, 2017). In this paper, we also report
parser accuracies on intra-chunk annotated Telugu
treebank for the first time.

2 Related Work

Extensive work has been done on dependency pars-
ing in the last decade, especially due to the CoNLL
shared tasks on dependency parsing. Creation of
Universal Dependencies (Nivre et al., 2016) led
to an increased focus on common approaches to
parsing several different languages. There were
new transition based approaches making use of
more robust input representations (Chen and Man-
ning, 2014; Kiperwasser and Goldberg, 2016) and
improved network architectures (Ma et al., 2018).
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Graph based approaches to dependency parsing
have also become more common over the last few
years (Kiperwasser and Goldberg, 2016; Dozat and
Manning, 2017, inter alia).

However, there hasn’t been much recent work on
parsing Indian languages and much less on Telugu.
Most of the previous work on Telugu dependency
parsing has been focused on rule based systems
(Kesidi et al., 2011) or data-driven transition based
systems (Kanneganti et al., 2016) using Malt parser
(Nivre et al., 2006). The Malt parser uses a clas-
sifier to predict the transition operations taking a
feature template as input. The feature templates
used in Telugu parsers commonly consist of sev-
eral hand-crafted features like words, their part-
of-speech tags, gender, number and other morpho-
logical features (Kosaraju et al., 2010; Kanneganti
et al., 2016). There has been some work done on
representing these linguistic features using dense
vector representations in a neural network based
parser (Tandon and Sharma, 2017).

Recent developments in the field of NLP led to
the arrival of contextual word vectors (Howard and
Ruder, 2018; Peters et al., 2018; Devlin et al., 2019)
and their extensive use in downstream NLP tasks,
from POS tagging (Peters et al., 2018) to more
complex tasks like Question Answering and Natu-
ral Language Inference tasks (Devlin et al., 2019).
Contextual vectors have also been applied to de-
pendency parsing systems. The top-ranked system
in CoNLL-2018 shared task on Dependency Pars-
ing(Che et al., 2018) used ELMo representations
along with conventional word vectors in a graph
based parser. Kulmizev et al. (2019); Kondratyuk
and Straka (2019) use contextual vector representa-
tions for multilingual dependency parsing.

In this paper, we train a BERT-baseline model
(Devlin et al., 2019) on Telugu Wikipedia data and
use these vector representations to improve Telugu
dependency parsing.

3 Telugu Dependency Treebank

We use the Telugu treebank made available for
ICON 2010 tools contest. We extend this treebank
by another 900 sentences from the HCU Telugu
treebank. The size of the combined treebank is
around 2400 sentences. The treebank is annotated
using Computational Paninian grammar (Bharati
et al., 1995; Begum et al., 2008) proposed for In-
dian languages. The treebank is annotated at inter-
chunk level (Bharati et al., 2009) in SSF (Bharati

et al., 2007) format. Only chunk heads in a sen-
tence are annotated with dependency labels.

Figure 1: Inter-chunk dependency tree. B ∗ denotes
the beginning of a new chunk.

We automatically annotate the intra-chunk de-
pendencies (Bhat, 2017) using a Shift-Reduce
parser based on Context Free Grammar rules within
a chunk, written for Telugu1. Annotating the intra-
chunk dependencies provides a complete parse tree
for each sentence.

Figure 2: Intra-chunk dependency tree

The treebank is converted from SSF to CoNLL-
X format (Buchholz and Marsi, 2006)2.

4 Our Approach

We propose to replace the rich hand-crafted feature
templates used in Malt parser systems with a mini-
mally defined feature set which uses automatically
learned word representations from BERT. We do
not make use of any additional pipeline features
like POS or morphological information assuming
this information is captured within the vectors. We
train a BERT baseline model (Devlin et al., 2019)
on the Telugu wikipedia data, which comprises
71289 articles. We use the ILMT tokenizer in-
cluded in the Telugu shallow parser 3 to segment
the data into sentences. The sentence segmented
data consists of approximately 2.6M sentences. We
convert all of the data from UTF to WX4 notation
for faster processing. We use byte-pair encoding
(Sennrich et al., 2016) to tokenize the data and gen-
erate a vocabulary file. We pass this vocabulary

1https://github.com/ltrc/
Shift-Reduce-Chunk-Expander

2https://github.com/ltrc/
SSF-to-CONLL-Convertor

3https://ltrc.iiit.ac.in/showfile.php?
filename=downloads/shallow_parser.php

4https://en.wikipedia.org/wiki/WX_
notation

https://github.com/ltrc/Shift-Reduce-Chunk-Expander
https://github.com/ltrc/Shift-Reduce-Chunk-Expander
https://github.com/ltrc/SSF-to-CONLL-Convertor
https://github.com/ltrc/SSF-to-CONLL-Convertor
https://ltrc.iiit.ac.in/showfile.php?filename=downloads/shallow_parser.php
https://ltrc.iiit.ac.in/showfile.php?filename=downloads/shallow_parser.php
https://en.wikipedia.org/wiki/WX_notation
https://en.wikipedia.org/wiki/WX_notation
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file to BERT 5 for pre-training. After pre-training,
we extract contextual token representations for all
the sentences in the treebank from the pre-trained
BERT model. In case a single word is split into
multiple tokens, we treat these tokens as continuous
bag of words and add the representations of all the
tokens in a word to obtain the word representation.
We find that this approach works better than con-
sidering only the first word-piece vector (Kulmizev
et al., 2019; Kondratyuk and Straka, 2019). We use
these word representations as input features to the
parser. Our feature function is a concatenation of a
small number of BERT vectors and we integrate it
into a transition based parser. The specific details
are mentioned in Section 4.2

4.1 Transition based Dependency Parsing

Transition based parsers process a sentence sequen-
tially and treat parsing as a sequence of actions that
produce a parse tree. They predict a sequence of
transition operations starting from an initial config-
uration to a terminal configuration, and construct
a dependency parse tree in the process. A configu-
ration consists of a stack, an input buffer of words,
and a set of relations representing a dependency
tree. They make use of a classifier to predict the
next transition operation based on a set of features
derived from the current configuration. A couple
of widely used transition systems are Arc-standard
(Nivre, 2004) and Arc-eager (Nivre, 2008). We
make use of the Arc-standard transition system in
our parser and briefly describe it here.

4.1.1 Arc-standard Transition System

In the arc-standard system, a configuration con-
sists of a stack, a buffer, and a set of depen-
dency arcs. The initial configuration for a sentence
s = w1, ..., wn consists of stack = [ROOT ], buffer
= [w1, ..., wn] and dependencies = []. In the termi-
nal configuration, buffer = [] and stack = [ROOT ],
and the parse tree is given by dependencies. The
root node of the parse tree is attached as the child
of ROOT .
The arc-standard system defines three types of tran-
sitions that operate on the top two elements of the
stack and first element of the buffer:

• LEFT-ARC: Adds a head-dependent relation
between the word at the top of stack and the

5 https://github.com/google-research/
bert

word below it and removes the lower word
from the stack.

• RIGHT-ARC: Adds a head-dependent relation
between the second word on the stack and the
top word and removes the top word from the
stack.

• SHIFT: Moves the word from the front of the
buffer onto the stack.

In the labeled version of parsing, there are a to-
tal of 2`+ 1 transitions, where ` is the number of
different dependency labels. There is a left-arc and
a right-arc transition corresponding to each label.
The label left-arc vmod adds a head-dependent rela-
tion between the top two words of the stack (s0, s1)
with label vmod, dependencies=[(s0, s1, vmod),...]

4.2 Feature Function

We use a minimally defined feature set consisting
solely of word representations obtained from BERT.
We do not incorporate any part-of-speech or mor-
phological information separately. The intuition
is that such information is already captured within
the BERT representations. Our feature set consists
of word representations of the top two elements of
the stack (s0, s1) and the first element of the buffer
(b0). We compute a feature vector,

F = vs0 ◦ vs1 ◦ vb0

by concatenating (◦) the vector representations of
all the words in the feature set, where vi is the
vector representation of the word i,

4.3 Classifier

We use a fully connected Feed Forward Network
with one hidden layer with ReLU activation to
score all the possible parser transitions. The next
transition is predicted based on the features ex-
tracted from the current configuration. We compute
the scores of all transitions,

transition scores(f) = W 2·relu(W 1·f+b1)+b2

where f is the feature vector obtained from the cur-
rent configuration. A softmax layer is applied over
the transition scores to get the probability distribu-
tion. We pick a valid transition with the highest
probability. We use a dropout layer with probability
0.2 for regularization.

https://github.com/google-research/bert
https://github.com/google-research/bert
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Intra-chunk UAS LS LAS

Max 95.43 83.05 81.81
Min 85.04 67.09 64.17
Average 90.92 71.95 70.49

Table 1: Parser 10-fold cross-validation results on
intra-chunk annotated treebank.

Inter-chunk UAS LS LAS

Max 94.50 78.90 77.20
Min 78.16 56.14 52.14
Average 90.37 67.57 65.74

Table 2: Parser 10-fold cross-validation results on
inter-chunk annotated treebank.

5 Experiments and Results

The Telugu dependency treebank is quite small in
size consisting of only 2400 sentences. We also
observe that the sentence length and quality of an-
notation in the treebank is not uniform and has a
high amount of variation. We therefore evaluate
our parser on the treebank using ten-fold cross-
validation. We report the cross-validation accura-
cies on both inter-chunk (Table 2) and intra-chunk
(Table 1) annotated treebanks. Parser accuracies on
intra-chunk annotated Telugu treebank are reported
for the first time in this paper. The overall parser
accuracies improve on the intra-chunk annotated
treebank.

We compare these results with a baseline us-
ing only word2vec word representations and sub-
sequently adding Part-of-speech (POS) and suffix
representations described in (Tandon and Sharma,
2017). We also try to reproduce Tandon and
Sharma (2017) experiments on both inter-chunk
and intra-chunk annotated treebanks. Tandon and
Sharma (2017) report their best results for Telugu
on the inter-chunk annotated treebank using word,
POS and suffix representations. Their results are
reported on a test set and since their exact dataset
is not available, we report average 10-fold cross
validation accuracies. The reproduced results are
listed in Table 3. As can be seen from the table the
average cross-validation accuracies are lower. The
discrepancy between rows 3 and 4 is because of a
larger feature set and a different optimizer. Tandon
and Sharma (2017) use 13 features from the parse
configuration instead of our three features which

introduce unnecessary noise, when the average sen-
tence length is as small as five. We also find that
Adam optimizer performs better than the Adagard
optimizer used in their setup.

Implementation details: The parser comprises
of simple feed forward neural network with one
hidden layer consisting of 1024 hidden units and
a relu activation function and a dropout layer with
dropout probability of 0.2. We use xavier uniform
initialization (Glorot and Bengio, 2010) to initial-
ize the network parameters and Adam optimizer
(Diederik P. Kingma, 2015) with default momen-
tum and learning rates provided by PyTorch. We
use BERT baseline model for pre-training and each
BERT token representation is of dimension 768.

Arc-standard vs Arc-eager: We experiment
with both Arc-standard (Nivre, 2004) and Arc-
Eager (Nivre, 2008) transition systems and find
that Arc-standard works better in our case (Table 4).
We use Arc-standard transition system in all further
experiments.

Feature Function: We experiment with different
feature sets and find that using just three features,
the top two elements of the stack and the top-most
element of the buffer result in the highest accura-
cies. Extending the feature set to include more
elements from the stack or buffer causes the ac-
curacies to fall. Parser accuracies using different
feature sets are reported in Table 5.

Peters et al. (2018) and Che et al. (2018) suggest
that concatenating conventional word vectors with
contextual word vectors could result in a boost in
accuracies. We try out the same by concatenating
word2vec vectors with BERT vectors and observe
some improvement in label scores. The results are
mentioned in Table 6.

BERT layers: We also experiment with vector
representations from different layers of BERT. The
results are mentioned in Table 7. We find that the
4th layer from the top of our BERT baseline model
results in the highest accuracy for the parser. This
finding is consistent with the work of Tenney et al.
(2019) which suggests that dependencies are better
captured between layers 6 and 9. We use the vector
representations from 4th layer from the top in all
our experiments.

BPE vs Inverse-BPE: Byte-pair encoding (Sen-
nrich et al., 2016) segments words from left to
right. In Telugu, most grammatical information



147

System Annotation Method UAS LS LAS

Baseline Intra-chunk MLP with word 84.56 65.87 63.39
Baseline + POS Intra-chunk MLP with word, POS 88.90 68.99 67.46
Baseline + POS + suffix Intra-chunk MLP with word, POS, suffix 89.93 71.97 70.38
Tandon et al, 2017 re-impl Intra-chunk MLP with word, POS, suffix 88.67 67.27 65.29
This work Intra-chunk MLP using BERT 90.92 71.95 70.49

Tandon et al, 2017 Inter-chunk MLP with word, POS, suffix 94.11† 74.32† 73.14†

Tandon et al, 2017 re-impl Inter-chunk MLP with word, POS, suffix 88.13 61.48 59.54
This work Inter-chunk MLP using BERT 90.37 67.57 65.74

Table 3: Parsing results on Telugu treebank. The results with † are reported test-set accuracies and the rest are
10-fold cross-validation accuracies.

Transition System UAS LS LAS

Arc-Standard 90.92 71.95 70.49
Arc-Eager 89.91 71.15 69.52

Table 4: Cross-validation results for arc-standard and
arc-eager transition systems using features (s0, s1, b0)

Feature set UAS LS LAS

(s0, s1, b0) 90.92 71.95 70.49
(s0, s1, b0,
lc1s0, rc1s0)

90.85 71.57 70.08

(s0, s1, s2, b0,
lc1s0, rc1s0)

90.91 71.50 70.13

(s0, s1, s2, b0,
lc1s0, rc1s0,
lc1s1, rc1s1)

90.76 71.25 69.86

Table 5: Parser cross-validation results using different
feature sets. (lc1, rc1) refer to the left-most and right-
most children.

Vector representa-
tion

UAS LS LAS

BERTvector 90.92 71.95 70.49
BERTvector◦
wordvector

90.89 72.11 70.60

Table 6: Parser cross-validation results with and with-
out concatenating word vectors with BERT vectors for
the feature set (s0, s1, b0)

BERT Layers UAS LS LAS

Layer -1 90.21 71.22 69.59
Layer -2 90.58 71.63 69.99
Layer -3 90.19 71.20 69.65
Layer -4 90.92 71.95 70.49
Layer -5 90.31 71.52 69.99
Layer -6 90.22 71.70 70.20

Table 7: Parser cross-validation results using represen-
tations from different layers of BERT. Layer −n repre-
sents the nth layer from the top.

Tokenization UAS LS LAS

BPE 90.92 71.95 70.49
Inverse-BPE 91.06 71.71 70.22

Table 8: Parser cross-validation results on BERT mod-
els trained with BPE and Inverse-BPE.

is encoded in the suffixes. Intuitively, segmenting
the words from right to left (inverse-BPE) could
lead to linguistically better word segments. We
test out this assumption (Table 8). We use 60k
merge operations in both cases. Inverse-BPE leads
to slightly better unlabeled attachment scores but
causes a slight drop in label scores.

6 Error Analysis

In this section we look at some of the most common
errors made by this parser and try to understand
why those errors might be occurring. We evaluate
the parser on a test-set of 240 sentences. The most
frequently occurring errors are k1(agent/subject)
and k2(object/patient) mismatch, k1 is labeled
as k2 and vice versa. k1 and k2 are the most fre-
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quently occurring labels after ROOT . 78% sen-
tences in the test-set contain k1 dependency and
50% sentences contain k2 dependency. k1 is la-
beled as k2 15% of the time and k2 is labeled as
k1 18% of the time. These errors are usually seen
when the words occur without case-markers. In
these cases, k1 and k2 can be distinguished by
looking at the verb agreement. Fixing these two
errors would greatly improve the parser.

Other frequently occurring errors are confu-
sion between k2 and k4(recipient) since they
sometimes take the same case-markers, nmod and
nmod adj, vmod and adv , sent adv labels. The
label vmod is ambiguous in general and can be
easily confused with adverbs.

7 Conclusion and Future Work

We present a simple yet effective dependency
parser for Telugu using contextual word represen-
tations. We demonstrate that even with vectors
trained on a small corpus of 2.6M sentences, we
can reduce the need for explicit linguistic features
in deep learning based models. We show based on
the results of the parser that BERT vectors effec-
tively capture much of the linguistic information
required for parsing. We also show that with good
vector representations, a small feature set is more
effective for a morphologically rich, agglutinative
language like Telugu.

Future work could include finding a way to incor-
porate other linguistic features like case-markers,
gender, number, person, tense, aspect and verb
agreement information into the parser.
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torož, Slovenia. European Language Resources As-
sociation (ELRA).

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
2227–2237, New Orleans, Louisiana. Association
for Computational Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725, Berlin, Germany. Association for Computa-
tional Linguistics.

Juhi Tandon and Dipti Misra Sharma. 2017. Unity in
diversity: A unified parsing strategy for major in-
dian languages. In Proceedings of the Fourth In-
ternational Conference on Dependency Linguistics
(Depling 2017), September 18-20, 2017, Università
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