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Abstract 

Neural machine translation (NMT) has 

achieved impressive performance recently 

by using large-scale parallel corpora. 

However, it struggles in the low-resource 

and morphologically-rich scenarios of 

agglutinative language translation task. 

Inspired by the finding that monolingual 

data can greatly improve the NMT 

performance, we propose a multi-task 

neural model that jointly learns to perform 

bi-directional translation and agglutinative 

language stemming. Our approach employs 

the shared encoder and decoder to train a 

single model without changing the standard 

NMT architecture but instead adding a 

token before each source-side sentence to 

specify the desired target outputs of the two 

different tasks. Experimental results on 

Turkish-English and Uyghur-Chinese 

show that our proposed approach can 

significantly improve the translation 

performance on agglutinative languages by 

using a small amount of monolingual data. 

1 Introduction 

Neural machine translation (NMT) has achieved 

impressive performance on many high-resource 

machine translation tasks (Bahdanau et al., 2015; 

Luong et al., 2015a; Vaswani et al., 2017). The 

standard NMT model uses the encoder to map the 

source sentence to a continuous representation 

vector, and then it feeds the resulting vector to the 

decoder to produce the target sentence. 

However, the NMT model still suffers from the 

low-resource and morphologically-rich scenarios 

of agglutinative language translation tasks, such as 

Turkish-English and Uyghur-Chinese. Both 

Turkish and Uyghur are agglutinative languages 

with complex morphology. The morpheme 

structure of the word can be denoted as: prefix1 

+ … + prefixN + stem + suffix1 + … + suffixN 

(Ablimit et al., 2010). Since the suffixes have 

many inflected and morphological variants, the 

vocabulary size of an agglutinative language is 

considerable even in small-scale training data. 

Moreover, many words have different morphemes 

and meanings in different context, which leads to 

inaccurate translation results. 

Recently, researchers show their great interest 

in utilizing monolingual data to further improve 

the NMT model performance (Cheng et al., 2016; 

Ramachandran et al., 2017; Currey et al., 2017). 

Sennrich et al. (2016) pair the target-side 

monolingual data with automatic back-translation 

as additional training data to train the NMT model. 

Zhang and Zong (2016) use the source-side 

monolingual data and employ the multi-task 

learning framework for translation and source 

sentence reordering. Domhan and Hieber (2017) 

modify the decoder to enable multi-task learning 

for translation and language modeling. However, 

the above works mainly focus on boosting the 

translation fluency, and lack the consideration of 

morphological and linguistic knowledge. 

Stemming is a morphological analysis method, 

which is widely used for information retrieval tasks 

(Kishida, 2005). By removing the suffixes in the 

word, stemming allows the variants of the same 

word to share representations and reduces data 

sparseness. We consider that stemming can lead to 

better generalization on agglutinative languages, 

which helps NMT to capture the in-depth semantic 

information. Thus we use stemming as an auxiliary 

task for agglutinative language translation. 

In this paper, we investigate a method to exploit 

the monolingual data of the agglutinative language 

to enhance the representation ability of the encoder. 

This is achieved by training a multi-task neural 

model to jointly perform bi-directional translation 

and agglutinative language stemming, which 

utilizes the shared encoder and decoder. We treat 

stemming as a sequence generation task. 
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Figure 1: The architecture of the multi-task neural model 

that jointly learns to perform bi-directional translation 

between Turkish and English, and stemming for Turkish 

sentence. 

2 Related Work 

Multi-task learning (MTL) aims to improve the 

generalization performance of a main task by using 

the other related tasks, which has been successfully 

applied to various research fields ranging from 

language (Liu et al., 2015; Luong et al., 2015a), 

vision (Yim et al., 2015; Misra et al., 2016), and 

speech (Chen and Mak, 2015; Kim et al., 2016). 

Many natural language processing (NLP) tasks 

have been chosen as auxiliary task to deal with the 

increasingly complex tasks. Luong et al. (2015b) 

employ a small amount of data of syntactic parsing 

and image caption for English-German translation. 

Hashimoto et al. (2017) present a joint MTL model 

to handle the tasks of part-of-speech (POS) tagging, 

dependency parsing, semantic relatedness, and 

textual entailment for English. Kiperwasser and 

Ballesteros (2018) utilize the POS tagging and 

dependency parsing for English-German machine 

translation. To the best of our knowledge, we are 

the first to incorporate stemming task into MTL 

framework to further improve the translation 

performance on agglutinative languages. 

Recently, several works have combined the 

MTL method with sequence-to-sequence NMT 

model for machine translation tasks. Dong et al. 

(2015) follow a one-to-many setting that utilizes a 

shared encoder for all the source languages with 

respective attention mechanisms and multiple 

decoders for the different target languages. Luong 

et al. (2015b) follow a many-to-many setting that 

uses multiple encoders and decoders with two 

separate unsupervised objective functions. Zoph 

and Knight (2016) follow a many-to-one setting 

that employs multiple encoders for all the source 

languages and one decoder for the desired target 

language. Johnson et al. (2017) propose a more 

simple method in one-to-one setting, which trains 

a single NMT model with the shared encoder and 

decoder in order to enable multilingual translation. 

The method requires no changes to the standard 

NMT architecture but instead requires adding a 

token at the beginning of each source sentence to 

specify the desired target sentence. Inspired by 

their work, we employ the standard NMT model 

with one encoder and one decoder for parameter 

sharing and model generalization. In addition, we 

build a joint vocabulary on the concatenation of the 

source-side and target-side words. 

Several works on morphologically-rich NMT 

have focused on using morphological analysis to 

pre-process the training data (Luong et al., 2016; 

Huck et al., 2017; Tawfik et al., 2019). Gulcehre et 

al. (2015) segment each Turkish sentence into a 

sequence of morpheme units and remove any non-

surface morphemes for Turkish-English translation. 

Ataman et al. (2017) propose a vocabulary 

reduction method that considers the morphological 

properties of the agglutinative language, which is 

based on the unsupervised morphology learning. 

This work takes inspiration from our previously 

proposed segmentation method (Pan et al., 2020) 

that segments the word into a sequence of sub-

word units with morpheme structure, which can 

effectively reduce language complexity. 

3 Multi-Task Neural Model 

3.1 Overview 

We propose a multi-task neural model for machine 

translation from and into a low-resource and 

morphologically-rich agglutinative language. We 

train the model to jointly learn to perform both the 

bi-directional translation task and the stemming 

task on an agglutinative language by using the 

standard NMT framework. Moreover, we add an 

artificial token before each source sentence to 

specify the desired target outputs for different tasks. 

The architecture of the proposed model is shown in 

Figure 1. We take the Turkish-English translation 

task as example. The “<MT>” token denotes the 

bilingual translation task and the “<ST>” token 

denotes the stemming task on Turkish sentence. 

3.2 Neural Machine Translation (NMT) 

Our proposed multi-task neural model on using the 

source-side monolingual data for agglutinative 

language translation task can be applied in any 

NMT structures with encoder-decoder framework. 

In this work, we follow the NMT model proposed 

by Vaswani et al. (2017), which is implemented as 

Transformer. We will briefly summarize it here. 
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Task Data # Sent # Src # Trg 

Tr-En train 355,251 6,356,767 8,021,161 

valid 2,455 37,153 52,125 

test 4,962 69,006 96,291 

Uy-

Ch 

train 333,097 6,026,953 5,748,298 

valid 700 17,821 17,085 

test 1,000 20,580 18,179 

Table 1:  The statistics of the training, validation, and 

test datasets on Turkish-English and Uyghur-Chinese 

machine translation tasks. The “# Src” denotes the 

number of the source tokens, and the “# Trg” denotes 

the numbers of the target tokens. 

bir dilin son hecelerini kendisiyle birlikte mezara

Morpheme Segmentation

hece+ler+i+ni

hece+lerini

he@@+ce@@+lerini

Apply BPE on Stem

Stem+Combined Suffix

 

Figure 2: The example of morphological segmentation 

method for the word in Turkish. 

Firstly, the Transformer model maps the source 

sequence 𝒙 = (𝑥1, … , 𝑥𝑚) and the target sentence 

𝒚 = (𝑦1, … , 𝑦𝑛)  into a word embedding matrix, 

respectively. Secondly, in order to make use of the 

word order in the sequence, the above word 

embedding matrices sum with their positional 

encoding matrices to generate the source-side and 

target-side positional embedding matrices. The 

encoder is composed of a stack of N identical 

layers. Each layer has two sub-layers consisting of 

the multi-head self-attention and the fully 

connected feed-forward network, which maps the 

source-side positional embedding matrix into a 

representation vector. 

The decoder is also composed of a stack of N 

identical layers. Each layer has three sub-layers: 

the multi-head self-attention, the multi-head 

attention, and the fully connected feed-forward 

network. The multi-head attention attends to the 

outputs of the encoder and decoder to generate a 

context vector. The feed-forward network followed 

by a linear layer maps the context vector into a 

vector with the original space dimension. Finally, 

the softmax function is applied on the vector to 

predict the target word sequence. 

                                                           
1 https://wit3.fbk.eu/archive/2018-01/additional_TED_xml/ 
2 http://data.statmt.org/wmt18/translation-task/ 
3 http://uy.ts.cn/ 

4 Experiment 

4.1 Dataset 

The statistics of the training, validation, and test 

datasets on Turkish-English and Uyghur-Chinese 

machine translation tasks are shown in Table 1. 

For the Turkish-English machine translation, 

following (Sennrich et al., 2015a), we use the WIT 

corpus (Cettolo et al., 2012) and the SETimes 

corpus (Tyers and Alperen, 2010) as the training 

dataset, merge the dev2010 and tst2010 as the 

validation dataset, and use tst2011, tst2012, tst2013, 

tst2014 from the IWSLT as the test datasets. We 

also use the talks data from the IWSLT evaluation 

campaign1 in 2018 and the news data from News 

Crawl corpora2  in 2017 as external monolingual 

data for the stemming task on Turkish sentences. 

For the Uyghur-Chinese machine translation, we 

use the news data from the China Workshop on 

Machine Translation in 2017 (CWMT2017) as the 

training dataset and validation dataset, use the 

news data from CWMT2015 as the test dataset. 

Each Uyghur sentence has four Chinese reference 

sentences. Moreover, we use the news data from 

the Tianshan website3 as external monolingual data 

for the stemming task on Uyghur sentences. 

4.2 Data Preprocessing 

We normalize and tokenize the experimental data. 

We utilize the jieba toolkit4 to segment the Chinese 

sentences, we utilize the Zemberek toolkit5  with 

morphological disambiguation (Sak et al., 2007) 

and the morphological analysis tool (Tursun et al., 

2016) to annotate the morpheme structure of the 

words in Turkish and Uyghur, respectively. 

We use our previously proposed morphological 

segmentation method (Pan et al., 2020), which 

segments the word into smaller subword units with 

morpheme structure. Since Turkish and Uyghur 

only have a few prefixes, we combine the prefixes 

with stem into the stem unit. As shown in Figure 2, 

the morpheme structure of the Turkish word 

“hecelerini” (syllables) is: hece + lerini. Then the 

byte pair encoding (BPE) technique (Sennrich et 

al., 2015b) is applied on the stem unit “hece” to 

segment it into “he@@” and “ce@@”. Thus the 

Turkish word is segmented into a sequence of sub-

word units: he@@ + ce@@ + lerini. 

4 https://github.com/fxsjy/jieba 
5 https://github.com/ahmetaa/zemberek-nlp 
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Task Training Sentence Samples 

En-Tr 

Translation 

<MT> We go through initiation 

rit@@ es. 

Başla@@ ma ritüel@@ lerini 

yaş@@ ıyoruz. 

Tr-En 

Translation 

<MT> Başla@@ ma ritüel@@ 

lerini yaş@@ ıyoruz. 

We go through initiation rit@@ es. 

Turkish 

Stemming 

<ST> Başla@@ ma ritüel@@ lerini 

yaş@@ ıyoruz. 

Başla@@ ritüel@@ yaş@@ 

Table 2:  The training sentence samples for multi-task 

neural model on Turkish-English machine translation 

task. We add “<MT>” and “<ST>” before each source 

sentence to specify the desired target outputs for 

different tasks. 

Lang Method # Merge Vocab Avg.Len 

Tr Morph 15K 36,468 28 

Tr BPE 36K 36,040 22 

En BPE 32K 31,306 25 

Uy Morph 10K 38,164 28 

Uy BPE 38K 38,292 21 

Ch BPE 32K 40,835 19 

Table 3:  The detailed statistics of using different word 

segmentation methods on Turkish, English, Uyghur, 

and Chinese. 

In this paper, we utilize the above morphological 

segmentation method for our experiments by 

applying BPE on the stem units with 15K merge 

operations for the Turkish words and 10K merge 

operations for the Uyghur words. The standard 

NMT model trained on this experimental data is 

denoted as “baseline NMT model”. Moreover, we 

employ BPE to segment the words in English and 

Chinese by learning separate vocabulary with 32K 

merge operations. Table 2 shows the training 

sentence samples for multi-task neural model on 

Turkish-English machine translation task. 

In addition, to certify the effectiveness of the 

morphological segmentation method, we employ 

the pure BPE to segment the words in Turkish and 

Uyghur by learning a separate vocabulary with 

36K and 38K merge operations, respectively. The 

standard NMT model trained on this experimental 

data is denoted as “general NMT model”. Table 3 

shows the detailed statistics of using different word 

segmentation methods on Turkish, English, 

Uyghur, and Chinese. The “Vocab” token denotes 

the vocabulary size after data preprocessing. The 

“Avg.Len” token denotes the average sentence 

length. 

4.3 Training and Evaluation Details 

We employ the Transformer model implemented in 

the Sockeye toolkit (Hieber et al., 2017). The 

number of layer in both the encoder and decoder is 

set to N=6, the number of head is set to 8, and the 

number of hidden unit in the feed-forward network 

is set to 1024. We use an embedding size of both 

the source and target words of 512 dimension, and 

use a batch size of 128 sentences. The maximum 

sentence length is set to 100 tokens with 0.1 label 

smoothing. We apply layer normalization and add 

dropout to the embedding and transformer layers 

with 0.1 probability. Moreover, we use the Adam 

optimizer (Kingma and Ba, 2015) with an initial 

learning rate of 0.0002, and save the checkpoint 

every 1500 updates. 

Model training process stops after 8 checkpoints 

without improvements on the validation perplexity. 

Following Niu et al. (2018a), we select the 4 best 

checkpoint based on the validation perplexity 

values and combine them in a linear ensemble for 

decoding. Decoding is performed by using beam 

search with a beam size of 5. We evaluate the 

machine translation performance by using the 

case-sensitive BLEU score (Papineni et al., 2002) 

with standard tokenization. 

4.4 Neural Translation Models 

In this paper, we select 4 neural translation models 

for comparison. More details about the models are 

shown below: 

General NMT Model: The standard NMT model 

trained on the experimental data segmented by 

BPE. 

Baseline NMT Model: The standard NMT model 

trained on the experimental data segmented by 

morphological segmentation. The following 

models also use this word segmentation method. 

Bi-Directional NMT Model: Following Niu et al. 

(2018b), we train a single NMT model to perform 

bi-directional machine translation. We concatenate 

the bilingual parallel sentences in both directions. 

Since the source and target sentences come from 

the same language pairs, we share the source and 

target vocabulary, and tie their word embedding 

during model training. 

Multi-Task Neural Model: We simply use the 

monolingual data of the agglutinative language 

from the bilingual parallel sentences. We use a joint 

vocabulary, tie the word embedding as well as the 

output layer’s weight matrix. 
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Task Model tst11 tst12 tst13 tst14 

Tr-

En 

general 25.92 26.55 27.34 26.35 

baseline 26.48 27.02 27.91 26.33 

En-

Tr 

general 13.73 14.68 13.84 14.65 

baseline 14.85 15.93 15.45 15.93 

Table 4:  The BLEU scores of the general NMT model 

and baseline NMT model on the machine translation 

task between Turkish and English. 

Task Model tst11 tst12 tst13 tst14 

Tr-

En 

baseline 26.48 27.02 27.91 26.33 

bi-

directional 

26.21 27.17 28.68 26.90 

multi-task 26.82 27.96 29.16 27.98 

En-

Tr 

baseline 14.85 15.93 15.45 15.93 

bi-

directional 

15.08 16.20 16.25 16.56 

multi-task 15.65 17.10 16.35 16.41 

Table 5:  The BLEU scores of the baseline NMT model, 

bi-directional NMT model, and multi-task neural 

model on the machine translation task between Turkish 

and English. 

5 Results and Discussion 

Table 4 shows the BLEU scores of the general 

NMT model and baseline NMT model on machine 

translation task. We can observe that the baseline 

NMT model is comparable to the general NMT 

model, and it achieves the highest BLEU scores on 

almost all the test datasets in both directions, which 

indicates that the NMT baseline based on our 

proposed segmentation method is competitive. 

5.1 Using Original Monolingual Data 

Table 5 shows the BLEU scores of the baseline 

NMT model, bi-directional NMT model, and 

multi-task neural model on the machine translation 

task between Turkish and English. The table shows 

that the multi-task neural model outperforms both 

the baseline NMT model and bi-directional NMT 

model, and it achieves the highest BLEU scores on 

almost all the test datasets in both directions, which 

suggests that the multi-task neural model is capable 

of improving the bi-directional translation quality 

on agglutinative languages. The main reason is that 

compared with the bi-directional NMT model, our 

proposed multi-task neural model additionally 

employs the stemming task for the agglutinative 

language, which is effective for the NMT model to 

learn both the source-side semantic information 

and the target-side language modeling. 

 

Figure 3: The function of epochs (x-axis) and perplexity 

(y-axis) values on the validation dataset in different 

neural translation models for the translation task. 

Translation Examples 

source üniversite hayatı taklit ediyordu. 

reference College was imitating life. 

baseline It was emulating a university life. 

bi-

directional 

The university was emulating its 

lives. 

multi-task The university was imitating life. 

Table 6:  A translation example for the different NMT 

models on Turkish-English. 

The function of epochs and perplexity values on 

the validation dataset in different neural translation 

models are shown in Figure 3. We can see that the 

perplexity values are consistently lower on the 

multi-task neural model, and it converges rapidly. 

Table 6 shows a translation example for the 

different models on Turkish-English. We can see 

that the translation result of the multi-task neural 

model is more accurate. The Turkish word “taklit” 

means “imitate” in English, both the baseline NMT 

and bi-directional NMT translate it into a synonym 

“emulate”. However, they are not able to express 

the meaning of the sentence correctly. The main 

reason is that the auxiliary task of stemming forces 

the proposed model to focus more strongly on the 

core meaning of each word (or stem), therefore 

helping the model make the correct lexical choices 

and capture the in-depth semantic information. 

5.2 Using External Monolingual Data 

Moreover, we evaluate the multi-task neural model 

on using external monolingual data for Turkish 

stemming task. We employ the parallel sentences 

and the monolingual data in a 1-1 ratio, and shuffle 

them randomly before each training epoch. More 

details about the data are shown below: 
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Task Data tst11 tst12 tst13 tst14 

Tr-En original 26.82 27.96 29.16 27.98 

talks 26.55 27.94 29.13 28.02 

news 26.47 28.18 28.89 27.40 

mixed 26.60 27.93 29.58 27.32 

En-Tr original 15.65 17.10 16.35 16.41 

talks 15.57 16.97 16.22 16.91 

news 15.67 17.19 16.26 16.69 

mixed 15.96 17.35 16.55 16.89 

Table 7:  The BLEU scores of the multi-task neural 

model on using external monolingual data of talks data, 

news data, and mixed data. 

Task Model BLEU 

Uy-Ch general NMT model 35.12 

baseline NMT model 35.46 

multi-task neural model with 

external monolingual data 

36.47 

Ch-Uy general NMT model 21.00 

baseline NMT model 21.57 

multi-task neural model with 

external monolingual data 

23.02 

Table 8:  The BLEU scores of the general NMT model, 

baseline NMT model, and the multi-task neural model 

with external monolingual data on Uyghur-Chinese 

and Chinese-Uyghur machine translation tasks. 

Original Data: The monolingual data comes from 

the original bilingual parallel sentences. 

Talks Data: The monolingual data contains talks. 

News Data: The monolingual data contains news. 

Talks and News Mixed Data: The monolingual 

data contains talks and news in a 3:4 ratio as the 

same with the original bilingual parallel sentences. 

Table 7 shows the BLEU scores of the proposed 

multi-task neural model on using different external 

monolingual data. We can see that there is no 

obvious difference on Turkish-English translation 

performance by using different monolingual data, 

whether the data is in-domain or out-of-domain to 

the test dataset. However, for the English-Turkish 

machine translation task, which can be seen as 

agglutinative language generation task, using the 

mixed data of talks and news achieves further 

improvements of the BLEU scores on almost all 

the test datasets. The main reason is that the 

proposed multi-task neural model incorporates 

many morphological and linguistic information of 

Turkish rather than that of English, which mainly 

pays attention to the source-side representation 

ability on agglutinative languages rather than the 

target-side language modeling. 

We also evaluate the translation performance of 

the general NMT model, baseline NMT model, and 

multi-task neural model with external news data on 

the machine translation task between Uyghur and 

Chinese. The experimental results are shown in 

Table 8. The results indicate that the multi-task 

neural model achieves the highest BLEU scores on 

the test dataset by utilizing external monolingual 

data for the stemming task on Uyghur sentences. 

6 Conclusions 

In this paper, we propose a multi-task neural model 

for translation task from and into a low-resource 

and morphologically-rich agglutinative language. 

The model jointly learns to perform bi-directional 

translation and agglutinative language stemming 

by utilizing the shared encoder and decoder under 

standard NMT framework. Extensive experimental 

results show that the proposed model is beneficial 

for the agglutinative language machine translation, 

and only a small amount of the agglutinative data 

can improve the translation performance in both 

directions. Moreover, the proposed approach with 

external monolingual data is more useful for 

translating into the agglutinative language, which 

achieves an improvement of +1.42 BLEU points 

for translation from English into Turkish and +1.45 

BLEU points from Chinese into Uyghur. 

In future work, we plan to utilize other word 

segmentation methods for model training. We also 

plan to combine the proposed multi-task neural 

model with back-translation method to enhance the 

ability of the NMT model on target-side language 

modeling. 
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