
Unknown Intent Detection Using Gaussian Mixture Model
with an Application to Zero-shot Intent Classification

Lu Fan1∗ Guangfeng Yan1∗ Qimai Li1∗
Han Liu1 Xiaotong Zhang1 Albert Y.S. Lam2 Xiao-Ming Wu1†

Department of Computing, The Hong Kong Polytechnic University, Hong Kong S.A.R.1

Fano Labs, Hong Kong S.A.R.2

{csgfyan, cslfan, csqmli}@comp.polyu.edu.hk
{cshliu, csxtzhang, csxmwu}@comp.polyu.edu.hk, albert@fano.ai

Abstract

User intent classification plays a vital role
in dialogue systems. Since user intent may
frequently change over time in many realis-
tic scenarios, unknown (new) intent detection
has become an essential problem, where the
study has just begun. This paper proposes a
semantic-enhanced Gaussian mixture model
(SEG) for unknown intent detection. In par-
ticular, we model utterance embeddings with
a Gaussian mixture distribution and inject dy-
namic class semantic information into Gaus-
sian means, which enables learning more class-
concentrated embeddings that help to facilitate
downstream outlier detection. Coupled with a
density-based outlier detection algorithm, SEG
achieves competitive results on three real task-
oriented dialogue datasets in two languages for
unknown intent detection. On top of that, we
propose to integrate SEG as an unknown intent
identifier into existing generalized zero-shot
intent classification models to improve their
performance. A case study on a state-of-the-art
method, ReCapsNet, shows that SEG can push
the classification performance to a significantly
higher level.

1 Introduction

Understanding user intent is crucial for developing
conversational and dialogue systems. It is essential
to accurately identify the intent behind a user ut-
terance to better guide downstream decisions and
policies. With the advent of conversational AI, dia-
logue systems are becoming central tools in many
applications such as mobile apps, companion bots,
virtual assistants and so on. Since user interests
may change frequently over time, the AI agents
may continuously see unknown (new) user intents.
Manual annotation can hardly catch up with such
rapid development, which motivates the problem

∗Equal contribution.
† Corresponding author.

of unknown intent detection that has recently at-
tracted increasing interest from both academia and
industry.

While there have been some pioneering works
studying the open-world classification problem in
natural language processing (Fei and Liu, 2016;
Shu et al., 2017), very few methods are designed
for unknown intent detection. To our knowledge,
the first work is by Lin and Xu (2019), in which
the authors use large margin cosine loss (LMCL)
to learn deep discriminative features and then feed
them to a density-based outlier detection algorithm
to identify unknown intents. Although this method
performs well on some benchmark datasets, it has
two limitations. (1) In training, LMCL ignores
the prior knowledge of class labels, while it has
been shown that label correlations captured in the
embedding space can improve prediction perfor-
mance, especially in the zero-shot learning scenar-
ios (Palatucci et al., 2009; Ma et al., 2016). (2)
LMCL computes the cosine distance between em-
beddings in the feature space and trains with a
softmax cross-entropy loss, making the embedding
distribution of each class long and narrow (Wan
et al., 2018), which may be less suitable for apply-
ing density-based anomaly detection algorithms to
detect unknown intents.

In this paper, we aim to address these limitations
and propose a novel semantic-enhanced Gaussian
mixture model (SEG) for unknown intent detec-
tion. In contrast to the softmax function, the Gaus-
sian mixture model enforces embeddings to form
ball-like dense clusters in the feature space, which
may be more desirable for outlier detection, es-
pecially when using density-based outlier detec-
tion algorithms. Furthermore, we propose to inject
the semantic information of class labels into the
Gaussian mixture distribution by assigning the em-
beddings of class labels or descriptions to be the
means of the Gaussians. This enables SEG to learn



more class-concentrated embeddings that can ben-
efit downstream outlier detection. We further use a
large margin loss to make SEG learn more discrim-
inative features and employ a density-based outlier
detection algorithm LOF (Breunig et al., 2000) to
detect unknown intents.

Identifying unknown intents is not enough for
some application scenarios where it is important
to know what exactly the new intents are, e.g.,
zero-shot intent classification. Current generalized
zero-shot intent classification methods (Chen et al.,
2016; Kumar et al., 2017; Xia et al., 2018; Liu et al.,
2019) attempt to classify test instances directly by
making predictions in the pool of all the seen and
unseen intents. However, their prediction perfor-
mances are quite low, and they are still far from
practical use. In this work, we propose to integrate
SEG as an unknown intent identifier into the gener-
alized zero-shot intent classification pipeline. The
basic idea is that correctly identifying if the intent
of an utterance is known or unknown will make
the subsequent intent classification task much eas-
ier. We conduct a case study on a state-of-the-art
zero-shot intent classification method ReCapsNet
(Liu et al., 2019). The results show that incorpo-
rating SEG successfully improves the performance
of ReCapsNet by a large margin. It even pushes
the performance to a practical level on the SNIPS
dataset (Coucke et al., 2018).

The main contributions of this paper are summa-
rized as follows.

• We propose a semantic-enhanced Gaussian
mixture model (SEG) for unknown intent de-
tection by incorporating class semantic infor-
mation into a Gaussian mixture distribution.

• We explore to improve existing generalized
zero-shot intent classification systems with an
unknown intent identifier. To the best of our
knowledge, this is the first attempt to apply
unknown intent detection in this task.

• We conduct extensive experiments on three
real-world datasets to validate the effective-
ness of the proposed SEG model for unknown
intent detection and its application in general-
ized zero-shot intent classification.

The rest of the paper is organized as follows. In
Section 2, we review related works on intent classi-
fication and open-world classification. In Section
3, we discuss the proposed SEG model in details.

In Section 4, we present experimental results on
unknown intent detection. In Section 5, we apply
SEG to improve generalized zero-shot intent classi-
fication and conduct a case study. Finally, Section
6 concludes the paper.

2 Related Work

2.1 Intent Classification

User intent classification is an important compo-
nent of dialogue systems. Great effort has been
made to understand user intent across various do-
mains, ranging from search engine questions (Hu
et al., 2009) to medical queries (Zhang et al., 2016).
Deep learning models including convolutional neu-
ral networks (CNN) (Xu and Sarikaya, 2013) and
attention-based recurrent neural networks (RNN)
(Ravuri and Stolcke, 2015; Liu and Lane, 2016)
are commonly used for intent classification. CNN
based methods build sentence embeddings by ag-
gregating embeddings of adjacent words, while
RNN based methods extract sentence embeddings
via encoding word embeddings sequentially. Both
types of methods have shown promising results in
practice (Yin et al., 2017).

Traditional intent classification methods require
considerable amount of labeled data for each class
to train a discriminative classifier, while zero-shot
intent classification (Sappadla et al., 2016; Zhang
et al., 2019) addresses the problem that not all in-
tent categories are seen during the training phase,
which is an important task in natural language
understanding as novel intents may continuously
emerge in dialogue systems (Liu and Lane, 2016;
Nam et al., 2016; Xu and Sarikaya, 2013). Zero-
shot intent classification aims to generalize knowl-
edge and concepts learned from seen intents to
recognize unseen intents. Early methods (Ferreira
et al., 2015a,b; Yazdani and Henderson, 2015) ex-
plore the relationship between seen and unseen
intents by introducing external resources such as
manually defined attributes or label ontologies, but
they are usually expensive to obtain. To deal with
this, some methods (Chen et al., 2016; Kumar et al.,
2017) map the utterances and intent labels to an
embedding space and then model their relations in
the space. Recently, IntentCapsNet-ZS (Xia et al.,
2018) extends capsule networks (Sabour et al.,
2017) for zero-shot intent classification by trans-
ferring the prediction vectors from seen classes
to unseen classes. ReCapsNet (Liu et al., 2019)
shows that IntentCapsNet-ZS hardly recognizes



Figure 1: Illustration of the proposed framework for unknown intent classification. The backbone network is
a self-attention Bi-LSTM encoder, which is trained by the proposed semantic-enhanced large margin Gaussian
mixture loss (SEG classifier). In the testing phase, LOF is employed to detect outliers. The predicted outliers will
be considered as unseen intent class instances, while the inliers will be classified by the SEG classifier.

utterances from unseen intents in the generalized
zero-shot classification scenario, and proposes to
solve this issue by transferring the transformation
matrices from seen intents to unseen intents. In this
paper, we use ReCapsNet as an example to show
that incorporating an unknown intent identifier in
the generalized zero-shot classification pipeline can
significantly improve the prediction performance
on unseen intents and the overall performance.

2.2 Open-world Classification

Most of existing classification methods make the
closed-world assumption, that is, no new classes
can appear in testing. However, the real world
is open and dynamic, and in many applications,
the AI agent cannot expect it sees everything in
training, which makes open-world learning or clas-
sification an important problem.

There are two major approaches to tackle open-
world classification. One is to use the classifier
to output an additional confidence score to mea-
sure the probability that a test sample is seen or
unseen. cbsSVM (Fei and Liu, 2016) proposes a
center-based similarity (CBS) learning strategy and
employs SVM to build 1-vs-rest CBS classifiers.
MSP (Hendrycks and Gimpel, 2017) proposes to
use the maximum softmax probability as the confi-
dence score. Instead of using Softmax as the final
output layer, DOC (Shu et al., 2017) builds a multi-
class classifier with a 1-vs-rest final layer which
contains a sigmoid function for each seen class to
reduce the open space risk.

The other approach is to treat the open-world
classification as an outlier detection problem by ex-

ploiting anomaly detection methods such as robust
covariance estimators (Rousseeuw and Driessen,
1999), one-class SVM (Schölkopf et al., 2001),
isolation forest (Liu et al., 2008) and local outlier
factor (Breunig et al., 2000). Robust covariance
estimators assume data follows a Gaussian mixture
distribution. Based on this, it tries to fit an ellip-
tic envelope, and outliers can be defined as points
standing far enough from the fit shape. One-class
SVM finds a hyperplane that circles the positive
samples as the decision boundary. Isolation forest
uses a binary search tree (isolated tree) to isolate
samples. Due to the small number of outliers and
their alienation from most samples, outliers will
be isolated earlier and be closer to the root node
of the isolated tree. Local outlier factor (LOF)
is a density-based algorithm, which compares the
density of a point and its neighbors to determine
whether it is an abnormal point. Lower density
means it is more likely to be identified as an ab-
normal point. In addition, to facilitate anomaly
detection, some methods (Lin and Xu, 2019; Wan
et al., 2018) use large margin loss functions to learn
more discriminative feature representations.

3 Our Approach

3.1 Feature Extraction

Given an utterance x = {w1,w2, . . . ,wT } with
T words, where wt ∈ Rdw is the embedding of the
t-th word. Each word can be further encoded se-
quentially using a bidirectional LSTM (BiLSTM),



i.e.,

−→
h t = LSTMfw(wt,

−→
h t−1),

←−
h t = LSTMbw(wt,

←−
h t+1),

(1)

where
−→
h t,
←−
h t ∈ Rdh are the hidden states of

the word wt by forward LSTMfw and backward
LSTMbw respectively. The word wt is encoded
as the entire hidden state, which is represented by
concatenating

−→
h t and

←−
h t, i.e. ht = [

−→
h t;
←−
h t],

and the hidden state matrix of the utterance can be
represented as H = [h1,h2, . . . ,hT ] ∈ R2dh×T .
Furthermore, we use the self-attention mechanism
to obtain the sentence embedding. Specifically,

a = softmax (Ws2tanh(Ws1H)) ,

z = WHa,
(2)

where a ∈ RT is the self-attention weight vector,
Ws1 ∈ Rda×2dh and Ws2 ∈ R1×Da are trainable
parameters, W ∈ Rdz×2dh is also trainable feed-
forward weight parameter, and z ∈ Rdz is the final
representation of the utterance x.

3.2 Semantic-Enhanced Large Margin
Gaussian Mixture Loss

The softmax cross-entropy loss is widely used in
many machine learning problems. However, the
embedding distribution of each class learned by the
softmax cross-entropy loss tends to be long, nar-
row, and radiating from the center, with different
classes distributed next to each other closely (Wan
et al., 2018). Such embedding distribution may not
be ideal for detecting new intent classes, as there
might not be much space for new classes. Never-
theless, the Gaussian mixture loss can enforce each
class to gather into a dense and small cluster, which
may be more desirable for detecting new intents.
Here, we design a semantic-enhanced large margin
Gaussian mixture loss for embedding learning.

Large-Margin Cross-Entropy Loss Given a K-
way classification task, we assume the extracted
feature vector (embedding) z of the training sam-
ples follows a Gaussian mixture distribution, where
µk and Σk are the mean and covariance of class k
in the embedding space respectively and p(k) is the
prior probability of class k. The probability density
function of z is given by

p(z) =
∑
k

N (z;µk,Σk)p(k), (3)

where N (z;µk,Σk) is the Gaussian distribution.
For the embedding zi of any training sample xi,

the posterior probability that zi belongs to its class
yi can be expressed as

p(yi|zi) =
N (zi;µyi ,Σyi)p(yi)∑
kN (zi;µk,Σk)p(k)

. (4)

The cross-entropy loss of zi between the true
class label yi and the inference p(yi|zi) can then
be computed as:

Lce,i = − log p(yi|zi), (5)

and the total loss of N training samples is

Lce =
1

N

N∑
i=1

Lce,i. (6)

Let dk be the Mahalanobis distance between zi
and µk, i.e.,

dk = (zi − µk)
⊤Σ−1

k (zi − µk)/2. (7)

Then Lce,i can be expressed as

Lce,i = − log
p(yi)|Σyi |−

1
2 e−dyi∑

k p(k)|Σk|−
1
2 e−dk

. (8)

Consider a simplified case where p(k) and Σk

are identical for all classes. In this case, the model
will give a correct prediction of zi if the distance
of zi to its class mean µyi is less than or equal to
its distance to any other class mean.

In general, large margin loss helps to improve
classification performance. Here, we also introduce
a classification margin m ∈ [1,+∞) into the cross-
entropy loss, which then becomes:

Lmce =
1

N

N∑
i=1

Lmce,i,

Lmce,i = − log
p(yi)|Σyi |−

1
2 e−mdyi∑

k p(k)|Σk|−
1
2 e−dk

.

(9)

With the large margin loss, zi is correctly classified
only when its distance to class mean µyi is signifi-
cantly less than (no more than 1

m of) its distance to
any other class mean.

Semantic Enhancement via Class Description
This is one of the key features of our proposed
method. We inject the semantic information of each
class into the Gaussian mixture model by assigning



the embedding learned from the text description
dk of class k to be the class centroid µk. The text
description dk can either be a single-word class
name or a sentence or paragraph that describes the
class. That is,

µk = feature extract(dk), (10)

where feature extract(·) indicates the feature ex-
traction module in Section 3.1.

Generation Loss In addition to the cross-entropy
loss, we want to maximize the observed likelihood
of the embeddings with the Gaussian mixture dis-
tribution. Specifically, we minimize the following
negative logarithm likelihood,

Lg =−
N∑
i=1

logN (zi;µyi ,Σyi)

=
1

2

N∑
i=1

(zi − µyi)
⊤Σ−1

yi (zi − µyi)

+ const,

(11)

where const means a constant number. As shown
in Eq. (11), the generation loss Lg encourages the
embedding zi to be close to its class centroid µyi ,
which facilitaes learning a more class-concentrated
embedding distribution that may benefit the down-
stream outlier detection task.

By combining the cross-entropy loss and the
generation loss, the total objective function is:

L = Lmce + λLg, (12)

where λ is a trade-off parameter.

3.3 Outlier Detection
By the above feature learning procedure, each utter-
ance x can be encoded as an embedding z. Then,
the embedding z is fed to a well-known outlier
detection algorithm LOF (Breunig et al., 2000) to
detect new or unknown intents (outliers). LOF is
an unsupervised density-based anomaly detection
method based on the following intuition. By com-
paring the local density of an object to those of its
neighbors, it can identify regions of similar density.
The objects with substantially lower density than
their neighbors’ are considered to be outliers.

LOF defines the local outlier factor of an object
z as

LOFk(z) =
1

|Nk(z)|
∑

o∈Nk(z)

lrdk(o)
lrdk(z)

, (13)

Dataset SNIPS ATIS SMP-2018

Vocab Size 11642 938 3189
Avg. Length 9.05 11.37 4.87
# of Samples 13802 6371 2460
# of Classes 7 18 30

Table 1: Dataset statistics.

where Nk(z) denotes the set of k-nearest neigh-
bors of z, and “lrd” denotes the local reachability
density which measures the local density around
an object. The local reachability density is defined
as the inverse of the average reachability distance
between z and its neighbors, i.e.,

lrdk(z) =
|Nk(z)|∑

o∈Nk(z)
reach-distk(z,o)

. (14)

Here, the reachability distance reach-distk(z,o) is
defined as

reach-distk(z,o) = max {k-dist(o), d(z,o)} ,
(15)

where k-dist(o) denotes the distance of the object
o to its k-th nearest neighbor, and d(z,o) is the
distance between z and o.

If the LOF factor of an utterance is much larger
than 1, it has substantially lower local density than
its neighbors’, which means the utterance embed-
ding is relatively distant from its neighbors. Hence,
it can be inferred the utterance is likely to belong
to an unknown intent class.

3.4 Overall Procedures
Figure 1 illustrates the overall training and test-
ing procedures of the proposed framework for un-
known intent detection. The backbone network is
a self-attention Bi-LSTM encoder. In the training
phase, the encoder is trained by minimizing the
semantic-enhanced large margin Gaussian mixture
loss (SEG classifier) as in Eq. (12) on the train-
ing samples (seen intent class instances). In the
testing phase, user utterances may come from both
seen and unseen intent classes. Given an utterance,
we first obtain its feature representation z with
the trained encoder, then we use LOF to decide
whether z is an outlier or not. If z is an outlier,
we take it as an instance of some new intent class.
Otherwise, we classify z to one of the seen intent
classes using the SEG classifier.

4 Experiments

In this section, we present experimental results on
unknown intent detection. Formally, we train an



Dataset SNIPS ATIS SMP-2018

% of known intents 25% 50% 75% 25% 50% 75% 25% 50% 75%

MSP 0.5543 0.8060 0.8585 0.6848 0.5158 0.3853 0.6132 0.7089 0.7716
DOC 0.5462 0.7962 0.8564 0.7007 0.5073 0.3659 0.6095 0.7197 0.7642
Softmax 0.5508 0.8036 0.8393 0.6597 0.6310 0.5732 0.5818 0.6860 0.7351
LMCL 0.5489 0.8041 0.8458 0.6763 0.6778 0.6110 0.6059 0.7094 0.7580

SEG/o 0.5440 0.8067 0.8474 0.6768 0.6699 0.5918 0.6734 0.7676 0.8128
SEG 0.5599 0.8193 0.8612 0.6410 0.6700 0.6466 0.6966 0.7895 0.8205

Table 2: Macro F1-score of unknown intent detection with different proportion of seen classes. The top 2 results for
each metric are marked in bold.

unknown intent detection system with training data
Dtr = (Xtr, Y tr), where Y tr ∈ {l1, · · · , lK} =
Cseen (the set of seen intent classes). For test utter-
ances of seen intents, the unknown intent detection
system aims to assign correct intent labels to them.
For test utterances of unseen intents, the system is
expected to identify them as outliers.

4.1 Datasets and Baselines
We evaluate our method SEG for unknown intent
detection on 3 real task-oriented dialogue datasets:
SNIPS (Coucke et al., 2018), ATIS (Hemphill
et al., 1990) and SMP-2018 (Zhang et al., 2017).
SNIPS is an open-source single-turn English cor-
pus, which contains 7 types of user intents across
different domains. ATIS is also an English dataset,
which contains 18 types of user intent in the airline
travel domain. SMP-2018 is a Chinese dialogue
corpus for user intent recognition, which contains
30 different types of user intents. The statistics of
the datasets are summarized in Table 1.

We compare SEG with the following unknown
intent detection methods.

• Maximum Softmax Probability (MSP)
(Hendrycks and Gimpel, 2017) considers the
maximum softmax probability of a sample as
the confidence score to measure the probability
that it belongs to a seen intent. The smaller the
confidence score is, the more likely it belongs to
an unknown intent.

• DOC (Shu et al., 2017) builds m 1-vs-rest sig-
moid classifiers for m seen classes respectively.
The maximum probability is considered as the
confidence of whether the sample belongs to the
seen intent.

• Softmax. It can be considered as an ablation
study of our method SEG, which uses softmax

instead of Gaussian mixture distribution to learn
discriminative features.

• LMCL (Lin and Xu, 2019) uses large margin
cosine loss instead of Gaussian mixture distribu-
tion to learn discriminative embeddings.

• SEG/o. A variant of our method SEG. It does
not inject the class semantic information into the
Gaussian mixture model.

4.2 Experimental Setup
We follow the setting in LCML (Lin and Xu, 2019)
for unknown intent detection. Considering that
some datasets may be unbalanced, we randomly
select seen intents by a weighted random sampling
over the entire intent set. The rest of the intents
are regarded as unknown. We randomly select 30%
samples of each intent to form the test set. The
rest of each seen intent is added to the training set.
We also follow LMCL to use macro f1-score as the
evaluation metric, which makes sense because the
ATIS dataset is extremely unbalanced.

For SNIPS, ATIS and SMP-2018, we use 300-
dim embeddings pre-trained on Fasttext, Glove,
and Chinese-Word-Vectors respectively. For BiL-
STM, we set the number of layers as 2 and the
output dimension as 128. In the self-attention layer,
we set the attention dimension da=10. After the
self-attention layer, we project the feature vector
to a dz-dimension vector via a linear layer. We
set dz=12 for SNIPS and SMP-2018, and dz=4 for
ATIS. We report the average results over 10 runs.
For the loss function, we set the margin m = 1 and
the trade-off parameter λ = 0.5.

For MSP, we set the threshold as 0.5 following
Lin and Xu (2019). For DOC, we set the threshold
as 0.5 as used in the original paper. During training
of MSP and DOC, we clip the gradient norm to
avoid gradient exploding. For LMCL, we follow



the original paper to set the scaling factor s = 30
and the cosine margin m = 0.35. Softmax, LMCL,
SEG/o and SEG all use LOF as the outlier detector,
and we use the same set of parameters for LOF.

4.3 Result Analysis

From Table 2, it can be seen that our method SEG
outperforms the baselines in most cases. Especially,
on the most challenging dataset SMP-2018, SEG
and SEG/o outperfom others by a large margin,
demonstrating its high effectiveness. Moreover, we
can make the following observations:

(1) SEG consistently outperforms SEG/o in most
cases, which proves the effectiveness of the pro-
posed semantic enhancement mechanism.

(2) SEG/o generally has higher scores than Soft-
max and LMCL, especially on the more complex
dataset SMP-2018, where significant gaps can be
observed. The results indicate the advantage of
Gaussian mixture model over Softmax and the vari-
ant LMCL for learning class-concentrated embed-
dings, which are more suitable to be coupled with
the outlier detector LOF.

(3) All the methods work well on SNIPS, which
is a simple dataset. MSP and DOC outperform
other methods on ATIS with only 25% seen classes.
However, as the proportion of seen class increases,
we can see a significant decline in their perfor-
mance. This is because ATIS is severely imbal-
anced where one intent accounts for 96% of the
entire data. When there are many seen classes,
DOC and MSP cannot learn an effective supervised
classifier due to the dominance of one class.

5 Application in Generalized Zero-shot
Intent Classification

In this section, we apply our method SEG to an ex-
tended application of unknown intent classification
– zero-shot intent classification. It aims to discrimi-
nate unseen intents, which is beyond only detecting
their existence. Specifically, given the training data
Dtr = (Xtr, Y tr) where Y tr ∈ Cseen, a zero-shot
classification system is trained to predict the label
ŷte of any test sample which may belong to an un-
seen class, using the knowledge transferred from
the seen data. There are two common settings for
zero-shot learning, generalized zero-shot classifi-
cation, where ŷte ∈ {Cseen, Cunseen}, and standard
zero-shot classification, where ŷte ∈ Cunseen. Here,
Cunseen is the set of unseen intent classes.

Previous attempts try to tackle the challenge of

Figure 2: A typical generalized zero-shot intent classifi-
cation pipeline.

zero-shot intent classification from three directions.
(1) What prior knowledge is more supportive, such
as morphology (character-level embedding), class
descriptions, and knowledge-based entity attributes
(Ferreira et al., 2015a,b; Chen et al., 2016; Ku-
mar et al., 2017). (2) How to better utilize these
prior knowledge to extract more informative se-
mantic representations, such as data augmentation
and hierarchical representations learned by capsule
networks (Xia et al., 2018). (3) With the extracted
semantic features, how to design a better zero-shot
learning strategy, such as reconstructing weight
matrix for unseen intents through relation learning
(Liu et al., 2019).

In this work, we improve generalized zero-shot
intent classification by integrating the proposed
SEG model as a binary unknown intent identifier
into the original pipeline. We explore multiple
ways of integration and conduct a case study based
on a state-of-the-art method ReCapsNet (Liu et al.,
2019).

5.1 Integrating Unknown Intent Identifier

As shown in Figure 2, a typical generalized zero-
shot classification framework can be abstracted into
two layers, the encoder layer and the zero-shot clas-
sifier layer. In the encoder layer, a user utterance
x in the text format needs to be first mapped to
the semantic representation zZS

x . In addition, it
is common to encode class information as S for
better semantic learning or knowledge transfer. In
order to learn better semantic representation, prior
knowledge is usually incorporated at this stage.
Then, the learned representation will be fed to the
zero-shot classifier layer. Various zero-shot classi-
fication strategies have been proposed to transfer
knowledge to new categories. Finally, the system
outputs the prediction ŷte ∈ {Cseen, Cunseen} for
the utterance x.

We integrate SEG into the pipeline between the
encoder layer and the classifier layer as shown in
Figure 3. With the semantic feature zx, we predict
if the utterance x is an outlier via:

p(g|zx), g ∈ {“seen”, “unseen”}. (16)



Figure 3: Integration of the new intent identifier (SEG) into the generalized zero-shot intent classification pipeline.

For the case g = “seen”, the intent of the ut-
terance is considered to be a seen one. We then
predict the intent by p(y|zx, y ∈ Cseen, X

tr,θ)
where θ denotes the parameters of the original
framework. Otherwise, the intent of the utterance
is considered to be unseen, and we predict it via
p(y|zx, y ∈ Cunseen, X

tr,θ).

Feature Assemble We adopt two ways “Sepa-
rate” and “Combine” to assemble features for the
following outlier detection task.

• Separate (Sep). We directly feed the output of
the pre-trained SEG encoder zSEG

x to LOF for
outlier detection, i.e.,

zx = zSEG
x . (17)

• Combine. To take advantage of the original
model, we first obtain the original semantic fea-
ture representation zZS

x and define a transform
function f . Then, f(zZS

x ) is concatenated with
the pre-trained features by SEG, zSEG

x , to make
a combined feature representation:

zx = [zSEG
x ||f(zZS

x )]. (18)

5.2 A Case Study on ReCapsNet
ReCapsNet Recently, ReCapsNet-ZS (Liu et al.,
2019) demonstrates state-of-the-art performance in
generalized zero-shot intent classification. In this
section, we conduct a case study on integrating the
new intent identifier into ReCapsNet.

The framework of ReCapsNet is illustrated
in Figure 4. In the encoder layer, each utter-
ance x is encoded with R semantic capsules
[m1,m2, ...,mR] as the representations in R dif-
ferent semantic spaces. In addition, the training
set Dtr and class labels L are encoded as Str and

Figure 4: The framework of ReCapsNet.

SC , respectively. In the zero-shot classifier layer,
zZS
x is fed to a capsule network to make prediction.

Each seen class k has R transformation matrices
{Wkr}Rr=1. In the testing phase, ReCapsNet re-
constructs the r-th transformation matrix for each
unseen class l as Wlr =

∑
k qlkWkr, where qlk is

the relation between unseen class l and seen class
k learned from (Str,Y tr) and SC by metric learn-
ing.

For the variant “Combine”, to exploit the prop-
erty that each utterance is variously represented in
different semantic spaces as discussed in Liu et al.
(2019), we define the semantic feature representa-
tion of ReCapsNet as

f(zZS
x ) = [∥m1∥2 , ∥m2∥2 , · · · , ∥mR∥2]. (19)

Experimental Setup We integrate SEG into the
ReCapsNet pipeline with both “Sep” and “Com-
bine” variants and test the performance of general-
ized zero-shot classification.

Following the settings of generalized zero-shot
classification in Liu et al. (2019), we test our meth-
ods on two datasets SNIPS (Coucke et al., 2018)
and SMP-2018 (Zhang et al., 2017) and report the
micro-averaged recall (accuracy) and F1 scores.
The baselines include DeVISE (Frome et al., 2013),
CMT (Socher et al., 2013), CDSSM (Chen et al.,
2016), Zero-shot DNN (Kumar et al., 2017), Intent-



Method
SNIPS SMP-2018

Seen Unseen Overall Seen Unseen Overall

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

DeViSE 0.9481 0.6536 0.0211 0.0398 0.4215 0.3049 0.8040 0.6740 0.0270 0.0310 0.5030 0.4250
CMT 0.9755 0.6648 0.0397 0.0704 0.4438 0.3271 0.8314 0.7221 0.0798 0.1069 0.5398 0.4834
CDSSM 0.9549 0.7033 0.0111 0.0218 0.4234 0.3194 0.6653 0.5540 0.1436 0.1200 0.4864 0.4052
Zero-shot DNN 0.9432 0.6679 0.0682 0.1041 0.4488 0.3493 0.7323 0.6116 0.0590 0.0869 0.5013 0.4316
IntentCapsNet 0.9741 0.6517 0.0000 0.0000 0.4200 0.2810 0.8850 0.7281 0.0000 0.0000 0.5375 0.4423
ReCapsNet 0.9511 0.6777 0.0994 0.1594 0.4705 0.3826 0.8107 0.7417 0.1959 0.1727 0.5692 0.5182

SEG (Sep / o) 0.9308 0.7501 0.3523 0.4514 0.6014 0.5800 0.7066 0.7391 0.3848 0.3038 0.5802 0.5681
SEG (Combine / o) 0.9217 0.7924 0.4642 0.5321 0.6612 0.6441 0.7054 0.7326 0.3888 0.3116 0.5811 0.5672
SEG (Sep / w) 0.7898 0.8335 0.6728 0.6420 0.7232 0.7245 0.6624 0.7243 0.4779 0.3627 0.5899 0.5823
SEG (Combine / w) 0.8644 0.8658 0.6961 0.6931 0.7685 0.7674 0.6821 0.7359 0.4848 0.3806 0.6046 0.5963

Table 3: Results of generalized zero-shot intent classification equipped with our new intent identifier SEG. “Seen”,
“Unseen” and “Overall” respectively denote the prediction performance on the utterances from seen intents, unseen
intents, and both seen and unseen intents. The suffixes ”/w” and ”/o” stand for with and without semantic
enhancement, respectively. The top 2 results for each metric are marked in bold.

CapsNet (Xia et al., 2018), and ReCapsNet (Liu
et al., 2019). The average results over 10 runs of
our methods and ReCapsNet are reported in Table
3, where the results of other baselines are taken
from Liu et al. (2019).

We use the same setting and hyper-parameters
as in ReCapsNet (Liu et al., 2019). We set dz=4
for SNIPS and dz=12 for SMP-2018. The rest of
the parameters of SEG are the same as those used
in Section 4.2. In addition, we also conduct an
ablation study to demonstrate the effectiveness of
the proposed semantic enhancement mechanism by
testing two variants of our integration (“Sep / o”
and “Combine / o”) without using it.

Result Analysis From the results in Table 3, we
can make the following observations:

(1) All variants of our integration achieve a sig-
nificant boost in the overall accuracy and F1 scores
on the two datasets, especially on SNIPS, where
the performance increase is huge. Each variant
leads to a qualitative leap in the performance on
unseen intents. The prediction accuracy (micro-
averaged recall) on seen intents may be reduced
compared to ReCapsNet and other baselines, since
some utterances of seen intents are classified to un-
seen intents. However, the F1 score on seen intents
increases significantly, indicating that it has much
higher precision than that of the baselines.

(2) The variants of our integration with semantic
enhancement significantly outperform those with-
out using it on predicting unseen intents by very
large margins. Although their accuracy scores on
seen intents are lower, their overall accuracy and
F1 scores are consistently better, which confirms

the effectiveness of semantic enhancement.
(3) It can be seen that the “Combine” variants

generally perform much better than the “Sep” vari-
ants, especially the one with semantic enhancement
(“Combine / w”), which performs outstandingly. It
surpasses the performance of “Sep / w” in every
metric, demonstrating the usefulness of the sim-
ple feature assemble strategy of concatenating the
feature representations of ReCapsNet and SEG.

6 Conclusion

In this paper, we have proposed SEG, a semantic-
enhanced Gaussian mixture model coupled with
a LOF outlier detector, for unknown (new) intent
detection. We empirically verified the effective-
ness of SEG for unknown intent detection on real
dialogue datasets in English and Chinese. Further-
more, we successfully applied SEG to improve gen-
eralized zero-shot intent classification and achieved
remarkable performance gain over a most recent
competitive method ReCapsNet. In future work,
we plan to conduct more empirical studies on SEG
and further improve its performance on new intent
identification. We also plan to conduct more case
studies in applying SEG to boost the performance
of current zero-shot intent classification methods.
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