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Abstract

The goal of conversational machine reading
is to answer user questions given a knowl-
edge base text which may require asking clar-
ification questions. Existing approaches are
limited in their decision making due to strug-
gles in extracting question-related rules and
reasoning about them. In this paper, we
present a new framework of conversational ma-
chine reading that comprises a novel Explicit
Memory Tracker (EMT) to track whether con-
ditions listed in the rule text have already
been satisfied to make a decision. More-
over, our framework generates clarification
questions by adopting a coarse-to-fine rea-
soning strategy, utilizing sentence-level entail-
ment scores to weight token-level distribu-
tions. On the ShARC benchmark (blind, held-
out) testset, EMT achieves new state-of-the-
art results of 74.6% micro-averaged decision
accuracy and 49.5 BLEU4. We also show
that EMT is more interpretable by visualiz-
ing the entailment-oriented reasoning process
as the conversation flows. Code and mod-
els are released at https://github.com/
Yifan-Gao/explicit_memory_tracker.

1 Introduction

In conversational machine reading (CMR), ma-
chines can take the initiative to ask users ques-
tions that help to solve their problems, instead of
jumping into a conclusion hurriedly (Saeidi et al.,
2018). In this case, machines need to understand
the knowledge base (KB) text, evaluate and keep
track of the user scenario, ask clarification ques-
tions, and then make a final decision. This inter-
active behavior between users and machines has
gained more attention recently because in practice
users are unaware of the KB text, thus they cannot
provide all the information needed in a single turn.

* This work was mostly done when Yifan Gao was an
intern at Salesforce Research Asia, Singapore.
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## Taking more leave than the entitlement
If a worker has taken more leave than they're
Rule entitled to, their employer must not take money from
their final pay unless it’s been agreed beforehand in
Text writing. The rules in this situation should be outlined
in the employment contract, company handbook or
intranet site.
User )
Scenario [ have questions regarding my employer ... ‘ F\q
Initial Can my employer take money from ﬁ
Question my final pay? }‘1

Q lDecision:lYeslNol Irrelevant |Inquire|
s
Did you take more leave than
Turnl |\ you v

they 're entitled to?

N
&)

lDecision:lYesl Nol Irrelevant |Inquire|
Turn 2 l Did you agree to it beforehand? ‘

*4
o
lDecnslon.lYeslNol Irrelevant || qui e‘

Turn 3

Figure 1: Example of Conversational Machine Reading
tasks from the ShARC dataset (Saeidi et al., 2018). At
each turn, given the rule text, a user scenario, an initial
user question, and previous interactions, a machine can
give a certain final answer such as Yes or No to the
initial question. If the machine cannot give a certain
answer because of missing information from the user,
it will ask a clarification question to fill in the informa-
tion gap. Clarification questions and their correspond-
ing rules are marked in the same colors.

For instance, consider the example in Figure 1
taken from the ShARC dataset for CMR (Saeidi
et al., 2018). A user posts her scenario and asks a
question on whether her employer can take money
from her final pay. Since she does not know the
relevant rule text, the provided scenario and the
initial question(s) from her are often too under-
specified for a machine to make a certain decision.
Therefore, a machine has to read the rule text and
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ask a series of clarification questions until it can
conclude the conversation with a certain answer.

Most existing approaches (Zhong and Zettle-
moyer, 2019; Sharma et al., 2019) formalize the
CMR problem into two sub-tasks. The first is to
make a decision among Yes, No, Irrelevant,
and Inquire at each dialog turn given a rule
text, a user scenario, an initial question and the
current dialog history. If one of Yes, No, or
Irrelevant is selected, it implies that a final
decision (Yes/No) can be made in response to the
user’s initial question, or stating the user’s initial
question is unanswerable (Irrelevant) accord-
ing to the rule text. If the decision at the current
turn is Inquire, it will then trigger the second
task for follow-up question generation, which ex-
tracts an underspecified rule span from the rule text
and generates a follow-up question accordingly.

However, there are two main drawbacks to the
existing methods. First, with respect to the rea-
soning of the rule text, existing methods do not
explicitly track whether a condition listed in the
rule has already been satisfied as the conversation
flows so that it can make a better decision. Second,
with respect to the extraction of question-related
rules, it is difficult in the current approach to ex-
tract the most relevant text span to generate the
next question. For example, the state-of-the-art
E? model (Zhong and Zettlemoyer, 2019) has only
60.6% F1 for question-related span extraction.

To address these issues, we propose a new frame-
work of conversational machine reading with a
novel Explicit Memory Tracker (EMT), which
explicitly tracks each rule sentence to make de-
cisions and generate follow-up questions. Specifi-
cally, EMT first segments the rule text into several
rule sentences and allocates them into its memory.
Then the initial question, user scenario, and dialog
history are fed into EMT sequentially to update
each memory module separately. At each dialog
turn, EMT predicts the entailment states (satisfac-
tion or not) for every rule sentence, and makes a
decision based on the current memory status. If the
decision is Inquire, EMT extracts a rule span to
generate a follow-up question by adopting a coarse-
to-fine reasoning strategy (i.e., weighting token-
level span distributions with its sentence-level en-
tailment scores). Compared to previous methods
which only consider entailment-oriented reasoning
for decision making or follow-up question genera-
tion, EMT utilizes its updated memory modules to

reason out these two tasks in a unified manner.

We compare EMT with the existing approaches
on the ShARC dataset (Saeidi et al., 2018). Our re-
sults show that explicitly tracking rules with exter-
nal memories boosts both the decision accuracy and
the quality of generated follow-up questions. In par-
ticular, EMT outperforms the previous best model
E? by 1.3 in macro-averaged decision accuracy and
10.8 in BLEU4 for follow-up question generation.
In addition to the performance improvement, EMT
yields interpretability by explicitly tracking rules,
which is visualized to show the entailment-oriented
reasoning process of our model.

2 Method

As illustrated in Figure 2, our proposed method
consists of the following four main modules.

(1) The Encoding module uses BERT (Devlin
etal., 2019) to encode the concatenation of the
rule text, initial question, scenario and dialog
history into contextualized representations.

(2) The Explicit Memory Tracking module se-
quentially reads the initial question, user sce-
nario, multi-turn dialog history, and updates
the entailment state of each rule sentence.

(3) The Decision Making module does entailment-
oriented reasoning based on the updated states
of rule sentences and makes a decision among
Yes, No, Irrelevant, and Inquire.

(4) If the decision is Inquire, the Question
Generation module is activated, which reuses
the updated states of rule sentences to identify
the underspecified rule sentence and extract
the most informative span within it in a coarse-
to-fine manner. Then it rephrases the extracted
span into a well-formed follow-up question.

2.1 Encoding

Let xR, xQ, x5, [*H1,TH2, ..., £, p) denote the
input of rule text, initial question, user scenario,
and P turns of dialog history, each of which is a
sequence of tokens. We first split the rule text x
into several rule sentences [Zg 1, TR 2, ..., TR, M]
according to sentence boundary or bullet points,
insert [CLS] tokens at the start of each sentence,
and concatenate them into one sequence:

[[CLS], R «.. 5 [CLS], wgpm; [CLS], xg;
[CLS], zg; [CLS], zH1; -.. 5 [CLS], zg Pl
Then we use BERT (Devlin et al., 2019), a pre-
trained transformer encoder (Vaswani et al., 2017)
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Overall Process: 1. Encoding ——> 2. Explicit Memory Tracking ——> 3. Decision Making ——> 4. Question Generation

Rule Text Dialog History
Rule Sentence 1 | Rule Sentence 2 | Rule Sentence 3 Initial Question | Scenario Q1A | Q2,A2
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Figure 2: The Explicit Memory Tracker with Coarse-to-Fine Reasoning for Conversational Machine Reading
(CMR). The CMR process includes (1) BERT encoding, (2) Explicit Memory Tracking for entailment state of each
rule sentence, (3) Decision Making on updated entailment states of all rule sentences, (4) Question Generation via
span extraction with coarse-to-fine reasoning and question rephrasing of the extracted span. (Best viewed in color)

to encode the sequence into a sequence of vec-
tors with the same length. We treat each [CLS]

representation as feature representation of the sen-
tence that follows it. In this way, we receive
both token-level representation and sentence-level
representation for each sentence. We denote
sentence-level representation of the rule sentences
as ki, ..., ks and their token-level representation
as [(ul’l, veey uLnl), ceey (uM71, ceey uMmM)], where
n; is number of tokens for rule sentence . Simi-
larly, we denote the sentence-level representation
of the initial question, user scenario, and P turns
of dialog history as sq, sg, and sy, ..., sp, respec-
tively. All these vectorized representations are of d
dimensions (768 for BERT-base).

2.2 Explicit Memory Tracking

Given the rule sentences ki, ..., kjs and the user
provided information including the initial ques-
tion sg, scenario sg, and P turns of dialog his-
tory sy, ..., Sp, our goal is to find implications be-
tween the rule sentences and the user provided in-
formation. Inspired by Recurrent Entity Network
(Henaff et al., 2017) which tracks the world state

given a sequence of textual statements, we propose
the Explicit Memory Tracker (EMT), a gated re-
current memory-augmented neural network which
explicitly tracks the states of rule sentences by se-
quentially reading the user provided information.
As shown in Figure 2, EMT explicitly takes rule
sentences ki, ..., kps as keys, and assigns a state
v; to each key to save the most updated entail-
ment information (whether this rule has been en-
tailed from the user provided information). Each
value state v; is initialized with the same value
of its corresponding rule sentence: v;o = k;.
Then EMT sequentially reads user provided in-
formation sg, sg, S1,...,Sp. At time step ¢, the
value state v;; for -th rule sentence is updated
by incorporating the user provided information

st € {sQ,ss,s1,...,sp},
Vit = ReLUWik; + Wyv ¢ + Wsy), (1)
gi = o(s ki +5; viz) €[0,1], ()
(3)

Vit
Vil

_ < d _
Vit =Vit+ g OVvis € R vy =

where W, W,, W, € R4 & represents a sig-
moid function, and ® is scalar product. As the
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user background input s; may only be relevant
to parts of the rule sentences, the gating function
in Equation 2 matches s; to the memory. Then
EMT updates state v;; only in a gated manner.
Finally, the normalization allows EMT to forget
previous information, if necessary. After EMT se-
quentially reads all user provided information (the
initial question, scenario, and P turns of history
dialog) and finishes entailment-oriented reasoning,
keys and final states of rule sentences are denoted
as (ki,v1), ..., (kas, var), which will be used in
the decision making module (Section 2.3) and ques-
tion generation module (Section 2.4).

The key difference between our Explicit Mem-
ory Tracker and Recurrent Entity Network (REN)
(Henaff et al., 2017) is that each key k; in our case
has an explicit meaning (the corresponding rule
sentence) and thus it changes according to different
rule texts while in REN, the underlined meaning
of keys are learned through training and they are
fixed throughout all textual inputs. Moreover, the
number of keys is dynamic in our case (according
to the number of sentences parsed from the rule
text) while that is predefined in REN.

2.3 Decision Making

Based on the most up-to-date key-value states
of rule sentences (ky,v1), ..., (kas, vas) from the
EMT, the decision making module predicts a de-
cision among Yes, No, Irrelevant, and
Inquire. First, we use self-attention to compute
a summary vector c for the overall state:

a; = w, [ki; vi] + b € R 4
&; = softmax(a); € [0,1] (5)
CcC = ZdZ[k27VZ] S Rd (6)

where [k;; v;] denotes the concatenation of the vec-
tors k; and v;, and «; is the attention weight for the
rule sentence k; that determines the likelihood that
k; is entailed from the user provided information.

Then the final decision is made through a linear
transformation of the summary vector c:

z=W,c+b, e R? (7)

where z € R?* contains the model’s score for all
four possible classes. Let [ indicate the correct
decision, the decision making module is trained
with the following cross entropy loss:

Lgec = — log softmax(z); (8
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In order to explicitly track whether a condition
listed in the rule has already been satisfied or not,
we add a subtask to predict the entailment states
for each rule sentence. The possible entailment
labels are Entailment, Contradiction and
Unknown; details of acquiring such labels are de-
scribed in Section 3.1. With this intermediate super-
vision, the model can make better decisions based
on the correct entailment state of each rule sentence.
The entailment prediction is made through a linear
transformation of the most up-to-date key-value
state [k;; v;] from the EMT module:

e; = W.[k;;vi] + b, € R3 )

where e; € R? contains scores of three entailment
states [ﬁentailment,h Bcontradiction,i: 5unkn0wn,i] for the
t-th rule sentence. Let r indicate the correct en-
tailment state. The entailment prediction subtask
is trained with the following cross entropy loss,
normalized by the number of rule sentences M:

M
1
Lentail = ~ Z log softmax(e;), (10)
i=1

2.4 Follow-up Question Generation

When the decision making module predicts
Inquire, a follow-up question is required for fur-
ther clarification from the user. In the same spirit
of previous studies (Zhong and Zettlemoyer, 2019;
Sharma et al., 2019), we decompose this problem
into two stages. First, we extract a span inside the
rule text which contains the underspecified user
information (we name it as underspecified
span hereafter). Second, we rephrase the ex-
tracted underspecified span into a follow-up ques-
tion. We propose a coarse-to-fine approach to ex-
tract the underspecified span for the first stage, and
finetune the pretrained language model UniLM
(Dong et al., 2019) for the follow-up question
rephrasing, as we describe below.

Coarse-to-Fine Reasoning for Underspecified
Span Extraction. Zhong and Zettlemoyer
(2019) extract the underspecified span by extract-
ing several spans and retrieving the most likely
one. The disadvantage of their approach is that
extracting multiple rule spans is a challenging
task, and it will propagate errors to the retrieval
stage. Instead of extracting multiple spans from
the rule text, we propose a coarse-to-fine reasoning
approach to directly identify the underspecified



span. For this, we reuse the Unknown scores
Bunknown,i from the entailment prediction subtask
(Eqgn. 9), and normalize it (over the rule sentences)
with a softmax to determine how likely that the
1-th rule sentence contains the underspecified span:

Gi = SOftmaX(ﬁunknown)i € [07 1] (11)

Knowing how likely a rule sentence is under-
specified greatly reduces the difficulty to extract
the underspecified span within it. We adopt a soft
selection approach to modulate span extraction (i.e.,
predicting the start and end points of a span) score
by rule sentence identification score (;. We fol-
low the BERTQA approach (Devlin et al., 2019)
to learn a start vector wy € R? and an end vector
w, € R? to locate the start and end positions from
the whole rule text. The probability of j-th word
in ¢-th rule sentence u; ; being the start/end of the
span is computed as a dot product between w and
u; j, modulated by its rule sentence score (;:

Vig = Wil x Gy Sy =wlugiG o (12)

We extract the span with the highest span score
~ % § under the restriction that the start and end po-
sitions must belong to the same rule sentence. Let
s and e be the ground truth start and end position of
the span. The underspecified span extraction loss
is computed as the pointing loss

(13)
(14)

Espan,s = _ﬂl:inquire log SOftmaX(’y)S
»Cspan,e = —Li=inquire log softmax(d).

The overall loss is the sum of the decision loss,
entailment prediction loss and span extraction loss

L= Edec + )\lﬁemail + )\2£span (15)

where \; and )\, are tunable hyperparameters.

Question Rephrasing. The underspecified span
extracted in the previous stage is fed into the ques-
tion rephrasing model to generate a follow-up ques-
tion. We finetune the UniLM (Dong et al., 2019)
to achieve this goal. UnilLM is a pretrained lan-
guage model which demonstrates its effectiveness
in both natural language understanding and gener-
ation tasks. Specifically, it outperforms previous
methods by a large margin on the SQuAD question
generation task (Du and Cardie, 2018).

As shown in Figure 2, UniLLM takes the concate-
nation of rule text and the extracted rule span as
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input, separated by the sentinel tokens: [CLS] rule-
text [SEP] extracted-span [SEP]. The training
target is the follow-up question we want to gener-
ate. Please refer to Dong et al. (2019) for details
on finetuning UniLM and doing inference with it.

3 Experiments

3.1 Experimental Setup

Dataset. We conduct experiments on the ShARC
CMR dataset (Saeidi et al., 2018). It contains 948
dialog trees, which are flattened into 32,436 ex-
amples by considering all possible nodes in the
trees. Each example is a quintuple of (rule text,
initial question, user scenario, dialog history, de-
cision), where decision is either one of {Yes, No,
Irrelevant} or a follow-up question. The train,
development, and test dataset sizes are 21890, 2270,
and 8276, respectively.!

End-to-End Evaluation. Organizers of the
ShARC competition evaluate model performance
as an end-to-end task. They first evaluate the micro-
and macro-accuracy for the decision making task.
If both the ground truth decision and the predicted
decision are Inquire, then they evaluate the gen-
erated follow-up question using BLEU score (Pap-
ineni et al., 2002). However, this way of evaluating
follow-up questions has one issue. If two models
have different Inquire predictions, the follow-up
questions for evaluation will be different, making
the comparison unfair. For example, a model could
classify only one example as Inquire in the
whole test set and generate the follow-up question
correctly, achieving a 100% BLEU score. There-
fore, we also propose to evaluate the follow-up
question generation performance in an oracle eval-
uation setup as described below.

Oracle Question Generation Evaluation. In
this evaluation, we ask the models to generate
follow-up questions whenever the ground truth de-
cision is Inquire, and compute the BLEU score
for the generated questions accordingly. In this
setup, there are 6804 examples for training and 562
examples for evaluation.

Data Augmentation. In the annotation process
of the ShARC dataset, the scenario is manually
constructed from a part of the dialog history, and
that excerpt of the dialog is not shown as input to

Leaderboard: https://sharc-data.github.
io/leaderboard.html
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End-to-End Task (Leaderboard Performance)

Models Micro Acc. Macro Acc. BLEU1 ~ BLEU4
Seq2Seq (Saeidi et al., 2018) 44.8 42.8 34.0 7.8
Pipeline (Saeidi et al., 2018) 61.9 68.9 54.4 344
BERTQA (Zhong and Zettlemoyer, 2019) 63.6 70.8 46.2 36.3
UrcaNet (Sharma et al., 2019) 65.1 71.2 60.5 46.1
BiSon (Lawrence et al., 2019) 66.9 71.6 58.8 443
E? (Zhong and Zettlemoyer, 2019) 67.6 73.3 54.1 38.7
EMT (our single model) 69.1 74.6 63.9 49.5

Table 1: Performance on the blind, held-out test set of ShARC end-to-end task.

the model. Instead, it is treated as the evidence
which should be entailed from the scenario. To ef-
fectively utilize this additional signal, we construct
more examples by replacing the scenario with the
evidence. This leads to additional 5800 training
instances. We use this augmented dataset for the
EMT model and its ablations in our experiments.

Labeling Underspecified Spans. To supervise
the process of coarse-to-fine reasoning, we follow
Zhong and Zettlemoyer (2019) to label the rule
spans. We first trim the follow-up questions in
the conversation by removing question words “do,
does, did, is, was, are, have” and the question mark
“?”. For each trimmed question, we find the shortest
span inside the rule text which has the minimum
edit distance from the trimmed question, and treat
it as an underspecified span.

Acquiring Labels for Entailment. To super-
vise the subtask of entailment prediction for each
rule sentence, we use a heuristic to automati-
cally label its entailment state. For each rule
sentence, we first find if it contains any under-
specified span for the questions in the dialog
history (and evidence text), and use the corre-
sponding Yes/No answers to label the rule text
as Entailment/Contradiction. The rule
text without any underspecified span is labeled as
Unknown.

Implementation Details. We tokenize all text in-
puts with spaCy (Honnibal and Montani, 2017).
The EMT model and the follow-up question gen-
eration model UniLM are trained separately and
pipelined together at test time. For EMT, we use
the uncased BERT base model (Wolf et al., 2019)
for encoding. We train EMT with Adam (Kingma
and Ba, 2015) optimizer with a learning rate of Se-
5, a warm-up rate of 0.1 and a dropout rate of 0.35.
The loss weights A\; and A9 in Eq. 15 are set to 10
and 0.6 respectively, based on the development set
results. For UniLM, we fine-tuning it with a batch
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Models ‘ Yes No Inquire Irrelevant
BERTQA 61.2 61.0 62.6 96.4
E3 65.9 70.6 60.5 96.4
UrcaNet* 63.3 68.4 58.9 95.7
EMT 70.5 73.2 70.8 98.6

Table 2: Class-wise decision prediction accuracy on the
development set (*: reported in the paper).

Oracle Question Generation Task
Models Development Set Cross Validation
BLEUI BLEU4 BLEU1 BLEU4
E3 52.79+42.87 37314235 51.75 35.94
E*+UniLM | 57.09+170 41.05+180 | 56.94  42.87
EMT 62.32+1.62 47.89+1.58 64.48 52.40

Table 3: Performance on Oracle Question Generation
Task. We show both results on the development set and
10-fold cross validation. E3+UniLLM replaces the editor
of E? to our finetuned UniLM.

size of 16 and a learning rate of 2e-5, and we use a
beam size of 10 for inference.

To reduce the variance of our experimental re-
sults, all experiments reported on the development
set are repeated 5 times with different random
seeds. We report the average results along with
their standard deviations.

3.2 Results

End-to-End Task. The end-to-end performance
on the held-out test set is shown in Table 1. EMT
outperforms the existing state-of-the-art model E?
on decision classification in both micro- and macro-
accuracy. Although the BLEU scores are not di-
rectly comparable among different models, EMT
achieves competitive BLEU1 and BLEU4 scores
on the examples it makes an Inquire decision.
The results show that EMT has strong capability
in both decision making and follow-up question
generation tasks. Table 2 presents the class-wise
accuracy on the four decision types. EMT improves
on the Inquire decision significantly. It is be-
cause EMT can explicitly track the states of all rule
sentences; it has a macro accuracy of 80% on the



End-to-End Task Oracle Question Generation Task
Models Micro Acc.  Macro Acc. BLEU1 BLEU4 BLEU1 BLEU4
EMT 71.36+0.69  76.70+054  67.04+1.59 52.37+1.92 63.53+1.03 48.69-+0.80
EMT (w/o data aug.) | 70.67+052  76.33+0.69  65.864+225 51.02+2.52 62.384+1.34 47.58+1.30
EMT (w/o c2f) 70.41+£094  75.964+091  65.73+1.76  50.84+2.31 61.98+1.26 47.66+1.33
EMT (W/0 Lentail) 67.81+120  73.50+083  63.84+180 49.35+2.10 60.50+1.16 45.34+1.73
EMT (w/o tracker) 67.42+1.15 72.73+£074  63.26+0.64 47.9740.40 61.87+1.46 47.13£1.35

Table 4: Ablation Study of EMT on the development set of ShARC.

entailment state prediction task.

Oracle Question Generation Task. To estab-
lish a concrete question generation evaluation, we
conduct experiments on our proposed oracle ques-
tion generation task. We compare our model EMT
with E? and an extension E3+UniLM; implementa-
tions for other methods are not publicly available.
E3+UniLLM replaces the editor of E? with our fine-
tuned UniLLM. The results on the development set
and 10-fold cross validation are shown in Table 3.
Firstly, E3+UniLM performs better than E3, val-
idating the effectiveness of our follow-up question
rephrasing module: finetuned UniLM. More im-
portantly, EMT consistently outperforms E? and
E3+UniLM on both the development set and the
cross validation by a large margin. Although there
is no ground truth label for span extraction, we can
infer from the question generation results that our
coarse-to-fine reasoning approach extracts better
spans than the extraction and retrieval modules of
E3. This is because E? propagates error from the
span extraction module to the span retrieval mod-
ule while our coarse-to-fine approach avoids this
problem through weighting token-level span distri-
butions with its sentence-level entailment scores.

3.3 Ablation Study

We conduct an ablation study on the development
set for both the end-to-end evaluation task and or-
acle question generation evaluation task. We con-
sider four ablations of our EMT model:

(1) EMT (w/o data aug.) trains the model on the
original ShARC training set and do not use
any augmented data using the evidence.

(2) EMT (w/o c2f) extracts the rule span without
weighted by the entailment score ¢ in Eqn. 12.

(3) EMT (W/0 Lentail) removes the entailment
state prediction subtask in decision making,
and thus there is no entailment score ¢ for
underspecified span extraction in Eqn. 12.

(4) EMT (w/o tracker) that removes the explicit
memory tracking module. Instead, it treats
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the [CLS] token for each rule sentence as the
state for decision making and span extraction.

Results of the ablations are shown in Table 4,
and we have the following observations:

e With the help of data augmentation, EMT boosts
the performance slightly on the end-to-end task, es-
pecially for the question generation task which orig-
inally has only 6804 training examples. The aug-
mented training instances boosts the performance
even though the augmentation method does not
produce any new question. This implies that the
size of the ShARC dataset is a bottleneck for an
effective end-to-end neural models.

e Without the coarse-to-fine reasoning for span ex-
traction, EMT (w/o c2f) drops by 1.53 on BLEU4,
which implies that it is necessary for the question
generation task. The reason is that, as a classi-
fication task, entailment state prediction can be
trained reasonably well (80% macro accuracy) with
a limited amount of data (6804 training examples).
Therefore, the Unknown scores in the entailment
state prediction can guide the span extraction via a
soft modulation (Equation 12). On the other hand,
one-step span extraction method does not utilize
the entailment states of the rule sentences from
EMT, meaning it does not learn to extract the un-
derspecified part of the rule text.

e With the guidance of explicit entailment super-
vision, EMT outperforms EMT (W/0 Lentil) by a
large margin. Intuitively, knowing the entailment
states of the rule sentences makes the decision mak-
ing process easier for complex tasks that require
logical reasoning on conjunctions of conditions or
disjunctions of conditions. It also helps span ex-
traction through the coarse-to-fine approach.

e Without the explicit memory tracker described
in Section 2.2, EMT (w/o tracker) performs poorly
on the decision making task. Although there exist
interactions between rule sentences and user infor-
mation in BERT-encoded representations through



:Entailment :Contradiction :Unknown

Regulation Text A Entailment States Regulation Text B Entailment States

(parsed into six rule sentences: S1 ~S6) | Turn1 | Turn 2 | Turn 3 (parsed into four rule sentences: S1 ~ S4) Turn1 | Turn 2
S1 Statutory Maternity Pay U 9999 | U (9999 | U (99.99) S1 :Age Restrictions: U (9999 | U (9999
S2 \To qualify for smp you must: U 9999 | U 9999 | U (9999 2 Patients under the age of 18 must have a e ¢ cos
S3 i *earn on average atleast £113 aweek | U (9993)| E (999D | E (99.:67) designated provider. : :
S4 ! * give the correct notice U 9997 | U (9961)| C (99.81) 53 Patients under the age of 21 cannot U 99| U 0635
S5, * give proof you're pregnant U 98| U ©975)| U (99949 participate in a cooperative garden or ... e
S6:*h ked f 1 U 9998)| U (99.70) | U (99.96;

dve WOTKer 10T YOUr empioyer 259 — — The patient’s designated provider may

Scenario: I've been old enough to get my pension. My wife just reached S4 participate in a cooperative garden on U @) U ©229)
pension age last year. Neither of us have applied for it yet. behalf of the patient.

Initial Question: Do I qualify for SMP?

’ Scenario: The contract is for payments below the minimum wage. ‘

|

’ Initial Question: Do I have to have a designated provider?

Decision: Generated Question Answer
Turn 1: Inquire Do you earn on average at least £113 a week? Yes Decision: Generated Question Answer
Turn 2: Inquire Didyou give the correct notice? No Turn1: Inquire Are you under the age of 18 ? No
Turn 3: No Turn 2: No

@

()

Figure 3: Predicted decisions and generated questions by our EMT model. Extracted spans and their correspond-
ing questions are marked in the same colors. We also visualize the transitions of predicted entailment states
(Entailment, Contradiction, Unknown) over rule sentences (S1, S2, S3 ...) as the conversation flows, with associ-

ated entailment scores [ﬂenlailments ﬂcontradiction’ ﬁunknown]-

multi-head self-attentions, it is not adequate to
learn whether conditions listed in the rule text have
already been satisfied or not.

3.4 Interpretability

To get better insights into the underlying
entailment-oriented reasoning process of EMT, we
examine the entailment states of the rule sentences
as the conversation flows. Two example cases are
provided in Figure 3. Given a rule text containing
several rule sentences (S1, S2, S3, ...), we show the
transition of predicted entailment states [ Bentailments
Beontradictions Bunknown] over multiple turns in the di-
alogue.

Rules in Bullet Points. Figure 3 (a) shows an
example in which the rule text is expressed in the
conjunction of four bullet-point conditions. On the
first turn, EMT reads “Scenario” and “Initial Ques-
tion” and they only imply that the question from
the user is relevant to the rule text. Thus the entail-
ment states for all the rule sentences are Unknown,
and EMT makes an Inquire decision, and asks a
question. Once a positive answer is received from
the user part for the first turn, EMT transits the en-
tailment state for rule sentence S3 from Unknown
to Entailment, but it still cannot conclude the
dialogue, so it asks a second follow-up question.
Then we see that the user response for the second
question is negative, which makes EMT conclude
a final decision No in the third turn.
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Rules in Plain Text. Figure 3 (b) presents a more
challenging case where the rules are in plain text.
Therefore, it is not possible to put the whole sen-
tence into a clarification question as EMT in Figure
3(a) does. In this case, both the decision mak-
ing module and span extraction module contribute
to helping the user. The span extraction module
locates the correct spans inside S2, and EMT con-
cludes a correct answer “No” after knowing the
user does not fulfill the condition listed in S2.

3.5 Error Analysis

We analyze some errors of EMT predictions on the
ShARC development set, as described below.

Decision Making Error. Out of 2270 examples
in the development set, our EMT produces incor-
rect decisions on 608 cases. We manually analyze
104 error cases. In 40 of these cases, EMT fails to
derive the correct entailment states for each rule
sentence, while in 23 cases, the model predicts the
correct entailment states but cannot predict correct
decisions based on that. These errors suggest that
explicitly modeling the logic reasoning process is
a promising direction. Another challenge comes
from extracting useful information from the user
scenarios. In 24 cases, the model fails to make the
correct decision because it could not infer neces-
sary user information from the scenarios. Last but
not least, parsing the rule text into rule sentences is
also a challenge. As shown in Figure 3(b), the plain



text usually contains complicated clauses for rule
conditions, which is difficult to disentangle them
into separate conditions. In 17 cases, one single
rule sentence contains multiple conditions, which
makes the model fail to conduct the entailment
reasoning correctly.

Question Generation Error. Out of 562 ques-
tion generation examples in the development set,
our EMT locates the underspecified span poorly
in 115 cases (span extraction F1 score < 0.5). We
manually analyze 52 wrong question generation
cases. Out of 29 cases of them, EMT fails to pre-
dict correct entailment states for rule sentences,
and thus does not locate the span within the ground
truth rule sentence, while in 9 cases, it finds the
correct rule sentence but extracts a different span.
Another challenge comes from the one-to-many
problem in sequence generation. When there are
multiple underspecified rule sentences, the model
asks about one of these underspecified rule sen-
tences which is different from the ground truth one.
This suggests that new evaluation metrics could be
proposed by taking this into consideration.

4 Related Work

ShARC Conversational Machine Reading
(Saeidi et al., 2018) differs from conversational
question answering (Choi et al., 2018; Reddy
et al., 2019) and conversational question gener-
ation (Gao et al., 2019) in that 1) machines are
required to formulate follow-up questions to fill
the information gap, and 2) machines have to
interpret a set of complex decision rules and make
a question-related conclusion, instead of extracting
the answer from the text. CMR can be viewed
as a special type of task-oriented dialog systems
(Wen et al., 2017; Zhong et al., 2018; Wu et al.,
2019) to help users achieve their goals. However,
it does not rely on predefined slot and ontology
information but natural language rules.

On the ShARC CMR challenge (Saeidi et al.,
2018), Lawrence et al. (2019) propose an end-to-
end bidirectional sequence generation approach
with mixed decision making and question gen-
eration stages. Saeidi et al. (2018) split it into
sub-tasks and combines hand-designed sub-models
for decision classification, entailment and question
generation. Zhong and Zettlemoyer (2019) pro-
pose to extract all possible rule text spans, assign
each of them an entailment score, and edit the span
with the highest score into a follow-up question.
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However, they do not use these entailment scores
for decision making. Sharma et al. (2019) study
patterns of the dataset and include additional em-
beddings from dialog history and user scenario as
rule markers to help decision making. Compared to
these methods, our EMT has two key differences:
(1) EMT makes decision via explicitly entailment-
oriented reasoning, which, to our knowledge, is the
first such approach; (2) Instead of treating decision
making and follow-up question generation (or span
extraction) separately, EMT is a unified approach
that exploits its memory states for both decision
making and question generation.

Memory-Augmented Neural Networks. Our
work is also related to memory-augmented neural
networks (Graves et al., 2014, 2016), which have
been applied in some NLP tasks such as question
answering (Henalff et al., 2017) and machine trans-
lation (Wang et al., 2016). For dialog applications,
Zhang et al. (2019) propose a dialogue manage-
ment model that employs a memory controller and
a slot-value memory, Bordes et al. (2016) learn
a restaurant bot by end-to-end memory networks,
Madotto et al. (2018) incorporate external memory
modules into dialog generation.

5 Conclusions

In this paper, we have proposed a new framework
for conversational machine reading (CMR) that
comprises a novel explicit memory tracker (EMT)
to track entailment states of the rule sentences ex-
plicitly within its memory module. The updated
states are utilized for decision making and coarse-
to-fine follow-up question generation in a unified
manner. EMT achieved a new state-of-the-art result
on the ShARC CMR challenge. EMT also gives
interpretability by showing the entailment-oriented
reasoning process as the conversation flows. While
we conducted experiments on the ShARC dataset,
we believe the proposed methodology could be ex-
tended to other kinds of CMR tasks.
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A Appendices
A.1 Model Variant

In our preliminary investigation, we did not add the
entailment state prediction subtask (Eqn.9 & 10)
in Section 2.3. Consequently, there is no sentence-
level entailment score in Eqn.11 for coarse-to-fine
reasoning. Instead, we tried to predict the under-
specified rule sentence separately and treat it as the
sentence-level score:

G=wclki;vi] +bc €R (16)
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where (; is the score that determines how likely
the i-th rule sentence contains the underspecified
span. Let [ indicate the correct decision and j be
the underspecified rule sentence, the identification
loss of the underspecified rule sentence is

['sent - - ]ll:inquire log SOftmaX(C)j (17)

On the ShARC hidden test set, it turns out that
this model EMT (prev.) performs slightly better on
the decision making part but worse than EMT for
the question generation task. However, it is hard
to balance the decision making performance and
the question generation (span extraction) perfor-
mance for this model EMT (prev.), and thus we
develop the current version described in the main
paper which introduces an entailment state predic-
tion subtask. Table 5 shows the results of these two
models on the ShARC test set.

Models End-to-End Task

Micro Acc. Macro Acc. BLEU1 BLEU4
EMT (prev.) 609.4 74.8 60.9 46.0
EMT 69.1 74.6 63.9 49.5

Table 5: Results of EMT and its previous version on
the hidden test set of ShARC.
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