
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 920–924
July 5 - 10, 2020. c©2020 Association for Computational Linguistics

920

Dynamic Sampling Strategies for Multi-Task Reading Comprehension

Ananth Gottumukkala† Dheeru Dua† Sameer Singh† Matt Gardner‡
†University of California, Irvine, USA

‡Allen Institute for Artificial Intelligence, Irvine, California, USA
{agottumu, ddua, sameer}@uci.edu mattg@allenai.edu

Abstract

Building general reading comprehension sys-
tems, capable of solving multiple datasets at
the same time, is a recent aspirational goal
in the research community. Prior work has
focused on model architectures or generaliza-
tion to held out datasets, and largely passed
over the particulars of the multi-task learning
set up. We show that a simple dynamic sam-
pling strategy, selecting instances for training
proportional to the multi-task model’s current
performance on a dataset relative to its single-
task performance, gives substantive gains over
prior multi-task sampling strategies, mitigat-
ing the catastrophic forgetting that is common
in multi-task learning. We also demonstrate
that allowing instances of different tasks to be
interleaved as much as possible between each
epoch and batch has a clear benefit in multi-
task performance over forcing task homogene-
ity at the epoch or batch level. Our final model
shows greatly increased performance over the
best model on ORB, a recently-released multi-
task reading comprehension benchmark.

1 Introduction

Building multi-task reading comprehension sys-
tems has received significant attention and been a
focus of active research (Talmor and Berant, 2019;
Xu et al., 2019). These approaches mostly focus on
model architecture improvements or generalizabil-
ity to new tasks or domains. While these contribu-
tions are important, it is also important to explore
the optimal way to structure training; as we will
show, training on instances from diverse datasets
(tasks) means that unlike in a single-task setting,
ample instances from each task distribution must
be represented during training to properly capture
that diversity. We explore 2 fundamental aspects
of structuring multi-task training: how many in-
stances are sampled from each task per epoch and
how those instances are organized within the epoch.

We investigate the importance of this structuring
by training a multi-task model on the 8 datasets
from ORB (Dua et al., 2019b), a recent multi-task
reading comprehension benchmark.

We first explore the sampling distribution over
datasets at each epoch: how many instances from
each dataset should be used to train. Prior work
has typically either made this a uniform distri-
bution over datasets (implicitly favoring smaller
datasets), a distribution proportional to the sizes
of the datasets (implicitly favoring larger datasets),
or some combination of the two. Because these
sampling strategies favor some datasets over oth-
ers, they can lead to catastrophic forgetting in the
non-favored datasets. We introduce a dynamic sam-
pling strategy that selects instances from a dataset
with probability proportional to the gap between
its current performance on some metric (like EM
or F1 score) and measured single-task performance
of the same model on that dataset. By adjusting the
sampling distribution over the course of training ac-
cording to what the model is learning, this method
is able to mitigate the catastrophic forgetting that
is observed with other sampling strategies.

Next we explore the impact of within-epoch
scheduling strategies: once a set of instances
has been selected for training, how should they
be ordered and batched together? We explore
three different strategies: partitioning, homoge-
neous batches, and heterogeneous batches. We
observe a steady increase in performance as in-
stances from different datasets become more and
more interleaved within an epoch (less partitioned)
and batches are more heterogeneous. This suggests
that more variety in batches aids convergence when
performing gradient descent steps as opposed to
steps using homogeneous batches which only up-
date the model with respect to one task at a time.
Partitioning also yields poorer performance since
it does not allow the model to see the least recent

mailto:ddua@uci.edu
mailto:mattg@allenai.edu


921

tasks later in the epoch which leads to catastrophic
forgetting on those tasks.

We empirically evaluate these various training
strategies on ORB, a recent multi-task reading com-
prehension benchmark: we take the previous best
published model and retrain it using dynamic sam-
pling and heterogeneous batches, leading to a per-
formance increase averaging about 12 points EM
and 9 points F1 per task. While we only evaluate
on reading comprehension, the methods we present
are quite general and can be applied to any multi-
task learning setting.

2 Sampling and Scheduling Strategies

We explore two main dimensions along which the
instances are ordered in multi-task learning: (1)
instance sampling from each dataset to get a col-
lection of examples to use for an epoch; and (2)
within-epoch scheduling of those instances, deter-
mining how they should be ordered and batched.
The key consideration for these various strategies is
avoiding a phenomenon similar to “catastrophic for-
getting” (Carpenter and Grossberg, 1988), where
performance on a specific dataset in an unbalanced
training set can drop dramatically when training
moves on from that dataset.

2.1 Instance Sampling
We investigate the following four alternatives for
determining how many instances to draw from each
dataset for each epoch:

Uniform The simplest way is to uniformly sam-
ple instances for each task (Caruana, 1997), which
results in an approximately equal number of in-
stances from each dataset per epoch. In practice,
this means randomly sampling the same number of
training instances from each dataset at each epoch,
which will likely be a small subset of all the train-
ing instances, as the number of instances in con-
strained by the smallest dataset. Large datasets will
be proportionally underrepresented here.

By Size Alternatively, unbalanced datasets can
be dealt with by sampling from each task in propor-
tion to their training set size (e.g. Sanh et al., 2019).
However, this approach can result in underfitting
small-sized tasks and overfitting large-sized tasks
if the ratio between size differences is too extreme.

Uniform→Size 1 This sampling scheme simply
has instances sampled uniformly for the first half

1github.com/mrqa/MRQA-Shared-Task-2019

of training epochs and has instances sampled by
training set size for the second half.

Dynamic The prior two methods use a fixed sam-
pling distribution for every epoch of training. We
introduce a new, dynamic sampling strategy that
aims to focus training on places where it is most
needed. For this sampling strategy, we first com-
pute single-task validation metrics for the model
that we are training. For each task, we calculate
the gap between current multi-task performance
and the respective single-task performance and nor-
malize these metric differentials to create a proba-
bility distribution. Then, for every epoch after the
first (where we use sampling by size), we sample
instances by task from this distribution. If perfor-
mance on a dataset is far from single-task perfor-
mance, it will get sampled heavily, while datasets
that have reached or exceeded single-task perfor-
mance will get sampled little if at all.2

We also experimented with modifying the met-
ric used to calculate the differential. We tested
using the 1) validation loss differential, 2) valida-
tion EM differential, 3) validation F1 differential,
and 4) the sum of the validation EM and F1 differ-
entials (EM+F1 differential). Amongst these, the
validation loss for each dataset reaches the single-
task loss far quicker than others. This is likely due
to the phenomenon that neural networks can overfit
to specific loss functions while still benefitting in
terms of accuracy (Guo et al., 2017).This explains
why the gap in accuracy metrics can be so wide
while the loss gap closed within 1 or 2 epochs. Be-
cause of this behavior, the loss differentials were all
nearly identical in the first few epochs and behav-
ior became very similar to uniform sampling. We
finally decided to use EM+F1 differential as this
yielded nominally better performance than EM or
F1 differential and significantly better performance
than loss differential.

2.2 Epoch Scheduling

We explore several different methods for schedul-
ing and batching the instances within an epoch after
the set of instances has been sampled:

Partitioned This scheduling strategy partitions
the instances in the epoch by task. In other words,
the model will never see an instance from a new
dataset until all the instances from the current

2Sharma and Ravindran (2017) use a related technique in
reinforcement learning, though the setup is different.

https://github.com/mrqa/MRQA-Shared-Task-2019


922

M5

Partition

Epoch

Heterogeneous

M1 M2 M3 M4 M6 M7 M8 M9

Task 3Task 2Task 1

Homogeneous

Figure 1: Illustration of Epoch Scheduling Strate-
gies with Dynamic Sampling. Instances are sampled
dynamically in proportion to exact match accuracy dif-
ference of 25%, 10% and 15% for task 1, 2 and 3 re-
spectively. M1, M2, ... M9 depict nine mini-batches in
an epoch.

dataset are exhausted. It seems intuitive that this
strategy would exacerbate catastrophic forgetting
on the tasks it saw least recently, especially when
there are a large number of tasks. We include this
method simply for completeness.

Homogeneous Batches This scheduling strategy
does not force instances into partitions based on
the dataset. Instead, instances from each dataset
are batched together, then the batches are shuffled.

Heterogeneous Batches This scheduling strat-
egy shuffles all selected instances for the epoch,
then batches them together. Each batch could have
instances from many different datasets.

Uniform Batches This scheduling strategy is
used by the baseline model for the MRQA shared
task (Fisch et al., 2019) as well as for the best prior
result on ORB. This method places one instance
per dataset in each batch (forced heterogeneity) un-
til the smallest dataset runs out of instances. This
strategy continues with the remaining datasets, un-
til all datasets are exhausted.

3 Experiments

Setup The eight reading comprehension tasks
are from the ORB benchmark (Dua et al.,
2019b): DROP (Dua et al., 2019a), DuoRC (Saha
et al., 2018), NarrativeQA (Kočisky et al., 2017),
NewsQA (Trischler et al., 2017), Quoref (Dasigi
et al., 2019), ROPES (Lin et al., 2019),
SQuAD (Rajpurkar et al., 2016), and SQuAD

Dataset Train Size Dev Size

Small
Quoref 19,392 2,407
ROPES 10,924 1,688

Medium
DuoRC 54,746 12,224
NarrativeQA 32,717 3,393

Large
DROP 77,394 9,530
NewsQA 92,543 5,154
SQuAD1.1 87,596 10,570
SQuAD2.0 130,310 11,864

Table 1: Open Reading Benchmark (ORB) Datasets

2.0 (Rajpurkar et al., 2018). We use the NABERT3

(Numerically Augmented BERT) model with an
additional reasoning type to allow “No Answer” as
an answer to accommodate the SQuAD 2.0 dataset
which has about 40,000 “No Answer” questions.
Each training session lasted 30 epochs with 50,000
instances sampled per epoch. Three training ses-
sions were conducted per sampling method and the
EM and F1 scores shown are averaged over those
three sessions. Note that NarrativeQA is evaluated
using only ROUGE F1 score. Due to GPU mem-
ory constraints, we are limited to a batch size of
4, so we are unable replicate the Uniform Batches
configuration of MRQA (requires a batch size of 8
to fit 1 instance from each of the 8 datasets).

Sampling Strategies Table 2 shows the effec-
tiveness of the sampling techniques discussed
above. Uniform sampling yields a very mediocre
performance for 7 datasets but significantly un-
derperforms on SQuAD 2.0, which is likely not
getting enough representation each epoch for its
unique no-answer questions. Sampling by size
yields mediocre performances for 7 datasets but un-
derperforms on ROPES, which is easily the small-
est dataset and therefore gets undersampled. How-
ever, performance on Quoref, the second small-
est dataset, is still relatively high, which might be
explained by its SQuAD-style questions. Expo-
sure to SQuAD, one of the largest datasets, likely
benefits performance on Quoref as well. Interest-
ingly, uniform sampling followed by size sampling
slightly alleviates the problems from the individ-
ual sampling methods but also slightly underforms

3https://github.com/raylin1000/drop bert

https://github.com/raylin1000/drop_bert


923

Method Average Quoref ROPES DuoRC NarrQA SQuAD SQuAD2 DROP NewsQA

EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1

Single
Task

- - 53.0 58.6 67.5 72.1 23.3 30.8 - 50.3 57.5 73.5 66.0 69.6 57.1 54.4 35.3 49.8

Uniform 49.2 55.8 56.9 61.5 69.7 74.3 23.4 32.1 - 53.1 69.3 78.0 38.1 42.9 51.8 54.4 35.0 49.9

By Size 50.0 56.3 53.7 57.7 62.7 68.1 23.3 31.6 - 52.4 65.8 74.1 58.1 63.0 52.0 54.5 34.6 49.1

Uni→Size 49.7 56.5 55.8 60.0 68.8 73.8 23.2 32.0 - 53.0 52.0 63.7 63.4 67.4 49.7 52.2 35.0 49.8

Dynamic 51.7 58.1 56.3 60.4 65.1 71.9 23.1 31.5 - 52.9 66.3 74.7 63.2 67.7 53.8 56.3 34.5 49.2

Table 2: Effect of using different instance sampling strategies with heterogeneous batch scheduling

Method Average Quoref ROPES DuoRC NarrQA SQuAD SQuAD2 DROP NewsQA

EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1

Partition 46.1 53.2 50.7 55.3 58.1 65.4 22.1 30.7 - 50.9 67.0 76.6 36.5 41.6 55.3 58.2 32.0 47.4

Homo 48.8 54.7 53.3 56.8 61.5 66.6 21.6 29.6 - 49.9 63.7 71.7 56.0 60.6 51.8 54.1 33.5 48.2

Hetero 51.7 58.1 56.3 60.4 65.1 71.9 23.1 31.5 - 52.9 66.3 74.7 63.2 67.7 53.8 56.3 34.5 49.2

Table 3: Effect of using different epoch scheduling strategies with dynamic sampling

Method Average Quoref ROPES DuoRC NarrQA SQuAD SQuAD2 DROP NewsQA

EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1

ORB 34.4 42.1 35.0 44.7 31.1 37.3 25.4 34.1 - 36.6 67.3 77.7 32.8 38.0 20.2 23.6 29.2 44.6

Dynamic 47.6 54.5 59.4 63.9 36.5 44.8 23.0 31.5 - 52.0 66.3 74.7 61.2 65.7 51.9 54.2 34.7 49.1

Table 4: Results on ORB test sets.

on DROP. Finally, dynamic sampling achieves the
highest average performance and fully cures both
problems mentioned above since each epoch, the
sampling distribution can be adjusted based on
which datasets perform poorly. The previous sam-
pling methods have static sampling distributions,
so these adjustments are impossible.

Scheduling Strategies Table 3 show that hetero-
geneous batches during sampling leads to the best
multi-task performance, and performance steadily
decreases as instance grouping becomes more and
more homogenized with respect to the dataset.

ORB Evaluation Finally, Table 4 shows that our
model trained with dynamic sampling and het-
erogeneous batches significantly outperforms the
previous ORB state-of-the-art NABERT baseline
model (submitted on 11/12/2019 on the leader-
board site4).

4https://leaderboard.allenai.org/orb/submissions/
public

4 Conclusions

Our goal was to investigate which instance sam-
pling method and epoch scheduling strategy gives
optimal performance in a multi-task reading com-
prehension setting. The results suggest that dy-
namic sampling—sampling instances from each
task based on their respective metric differentials—
is a fruitful direction to explore for improving per-
formance. We also show that interleaving instances
from different tasks within each epoch and form-
ing heterogeneous batches is crucial for optimizing
multi-task performance. It is also worth noting that
for the DuoRC, NarrativeQA, SQuAD, and Quoref
datasets there are cases where the multi-task model
outperforms the single-task model. This suggests
that for specific cases, we observe an effect similar
to data augmentation (like exposure to SQuAD ben-
efitting QuoREF performance as mentioned above)
but this needs to be explored further. We hope
that future work experiments further with dynamic
sampling such as by modifying the metric (e.g.,
using BLEU or ROUGE score if applicable) and/or
modifying other values like number of instances
per epoch based on performance metrics (not only

https://leaderboard.allenai.org/orb/submissions/public
https://leaderboard.allenai.org/orb/submissions/public


924

does this effectively change learning rate, but it
would also allow the model to update the sampling
distribution more or less frequently).

Acknowledgements

This work was supported in part by funding from
Allen Institute of Artificial Intelligence, in part by
Amazon, and in part by the National Science Foun-
dation (NSF) grant #CNS-1730158.

References
Gail A Carpenter and Stephen Grossberg. 1988.

The art of adaptive pattern recognition by a self-
organizing neural network. Computer, 21(3):77–88.

Rich Caruana. 1997. Multitask learning. Machine
learning, 28(1):41–75.

Pradeep Dasigi, Nelson Liu, Ana Marasovic, Noah
Smith, and Matt Gardner. 2019. Quoref: A read-
ing comprehension dataset with questions requiring
coreferential reasoning. In EMNLP.

D. Dua, Y. Wang, P. Dasigi, G. Stanovsky, S. Singh,
and M. Gardner. 2019a. Drop: A reading com-
prehension benchmark requiring discrete reasoning
over paragraphs. In North American Association for
Computational Linguistics (NAACL).

Dheeru Dua, Ananth Gottumukkala, Alon Talmor,
Sameer Singh, and Matt Gardner. 2019b. Orb: An
open reading benchmark for comprehensive evalua-
tion of machine reading comprehension. In Proceed-
ings of the Second Workshop on Machine Reading
for Question Answering, pages 147–153.

Adam Fisch, Alon Talmor, Robin Jia, Minjoon Seo,
Eunsol Choi, and Danqi Chen. 2019. Mrqa 2019
shared task: Evaluating generalization in reading
comprehension. arXiv preprint arXiv:1910.09753.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Wein-
berger. 2017. On calibration of modern neural net-
works.

T. Kočisky, J. Schwarz, P. Blunsom, C. Dyer, K. M.
Hermann, G. Melis, and E. Grefenstette. 2017.
The NarrativeQA reading comprehension challenge.
arXiv preprint arXiv:1712.07040.

Kevin Lin, Oyvind Tafjord, Peter Clark, and Matt Gard-
ner. 2019. Reasoning over paragraph effects in situ-
ations. arXiv preprint arXiv:1908.05852.

P. Rajpurkar, R. Jia, and P. Liang. 2018. Know
what you don’t know: Unanswerable questions for
SQuAD. In Association for Computational Linguis-
tics (ACL).

P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang. 2016.
SQuAD: 100,000+ questions for machine compre-
hension of text. In Empirical Methods in Natural
Language Processing (EMNLP).

A. Saha, R. Aralikatte, M. Khapra, and K. Sankara-
narayanan. 2018. Duorc: Towards complex lan-
guage understanding with paraphrased reading com-
prehension. In Association for Computational Lin-
guistics (ACL).

Victor Sanh, Thomas Wolf, and Sebastian Ruder. 2019.
A hierarchical multi-task approach for learning em-
beddings from semantic tasks. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 33, pages 6949–6956.

Sahil Sharma and Balaraman Ravindran. 2017. Online
multi-task learning using active sampling.

Alon Talmor and Jonathan Berant. 2019. Multiqa: An
empirical investigation of generalization and transfer
in reading comprehension. Association for Compu-
tational Linguistics.

A. Trischler, T. Wang, X. Yuan, J. Harris, A. Sordoni,
P. Bachman, and K. Suleman. 2017. NewsQA: A
machine comprehension dataset. In Workshop on
Representation Learning for NLP.

Yichong Xu, Xiaodong Liu, Yelong Shen, Jingjing Liu,
and Jianfeng Gao. 2019. Multi-task learning with
sample re-weighting for machine reading compre-
hension. North American Chapter of the Associa-
tion for Computational Linguistics.


