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Abstract

Identifying user geolocation in online social
networks is an essential task in many location-
based applications. Existing methods rely
on the similarity of text and network struc-
ture, however, they suffer from a lack of inter-
pretability on the corresponding results, which
is crucial for understanding model behavior.
In this work, we adopt influence functions to
interpret the behavior of GNN-based models
by identifying the importance of training users
when predicting the locations of the testing
users. This methodology helps with providing
meaningful explanations on prediction results.
Furthermore, it also initiates an attempt to un-
cover the so-called “black-box” GNN-based
models by investigating the effect of individ-
ual nodes.

1 Introduction

Identifying geographic locations of users in online
social networks (OSN) has become a key Internet
service for many downstream applications, includ-
ing location-based targeted advertising, emergency
location identification, political election campaign,
local event/place recommendation, natural disas-
ter response, and remediation, etc. (Zheng et al.,
2018). As such, the problem of user geolocation
(UG) has received a great deal of research attention
in the past decade (Han et al., 2012; Do et al., 2017,
Miura et al., 2017; Rahimi et al., 2018; Bakerman
et al., 2018).

Earlier efforts (Amitay et al., 2004; Wing and
Baldridge, 2011; Han et al., 2012; Roller et al.,
2012; Ahmed et al., 2013; Han et al., 2014; Chong
and Lim, 2017) mainly focused on extracting in-
dicative information from user-posted contents.
These approaches rely on informative words that
can link users to their specific locations via vari-
ous natural language processing techniques such
as topic modeling and other statistical models.
More recently, researchers aimed at incorporating

multi-aspect information, especially the user men-
tion/interaction network to boost the performance
of geolocation identification (Rahimi et al., 2015;
Doetal.,2017; Rahimi et al., 2017, 2018; Hamouni
et al., 2019). For example, (Rahimi et al., 2018;
Wu et al., 2019) employ Graph Convolutional Net-
works (GCNs) (Kipf and Welling, 2017) or sim-
plified GCN (Wu et al., 2019) to learn network
structures for user geolocation. In addition, graph
representation-based methods (Tang et al., 2015;
Grover and Leskovec, 2016; Kipf and Welling,
2017; Hamilton et al., 2017; Qiu et al., 2018) have
also been widely used for user geolocation (Do
et al., 2017; Miura et al., 2017; Rahimi et al., 2018;
Hamouni et al., 2019; Huang and Carley, 2019).

However, the existing methods lack model trans-
parency and fail to provide meaningful explana-
tions regarding the model behavior and prediction
results, which prevents them from safety-critical
applications. For example, when locating an emer-
gency for a specific region, it would be more mean-
ingful to explain why such prediction is made,
rather than simply presenting numerical ranking
values.

To address such limitations, we propose a gen-
eral framework to explain the behavior of user ge-
olocation models and the prediction results, by uti-
lizing the influence function (Hampel et al., 2011;
Koh and Liang, 2017) to quantify the impact of
in-network users on the predicted outcome. The
main assumption is that the prediction results from
a trained geolocation model are typically affected
by the knowledge learned from training data (i.e.,
all in-network users and their associated attributes).
We demonstrate that the user geolocation (espe-
cially) for the network-based methods, is largely
dominated by the geographical locations of the 1-
hop neighboring nodes. This finding, on the one
hand, enables demystification of the model behav-
ior and quantitative measuring of the influence of
individual users (both 1-hop and high-order prox-
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imity nodes); and on the other hand, provides in-
terpretation on the predicted locations for down-
stream applications/decision makers — which, in
turn, points out a direction to further improve the
model.

2 Preliminaries

The User geolocation problem is defined as pre-
dicting the user’s “home” location (Zheng et al.,
2018). Since each location is described by a (lon-
gitude, latitude) pair, the task can be converted
into a typical classification problem where the
labels/categories are region ids obtained through
some space-partitioning methods, such as k-d trees,
that divides the surface of the earth into closed and
non-overlapping regions. Each user is associated
with one (and only one) region-label that she/he
belongs to. We use one-hot encoding to denote
each label y € R'*¢, where c is the number of
regions. The user geolocation task thus becomes
one of identifying the geographical locations, given
the user tweet contents X and the mention network
g.

Graph Neural Networks (GNNs) (Bruna et al.,
2014; Defferrard et al., 2016; Kipf and Welling,
2017; Hamilton et al., 2017; Velickovic et al., 2018;
Ying et al., 2018; Xu et al., 2019; You et al., 2019)
are powerful tools of representation learning for
graph data, which has received increasing attention
over the past several years (Zhou et al., 2018; Wu
et al., 2020). The main idea is that, given a network
G = (V, &) with attributes x,, € X for every node
v (v € V), a general GNN is to learn a vector
representation of node v by:

Xq()k) = 16[2 (ng_l), zl({xl(f 1)‘u 6/\/(’1})})) ,

where 67 and 05 are trainable parameters, and N (v)
indicates the neighboring nodes of node v. Specifi-
cally, fgl aggregates information from neighbors,

1\9,[2 merges the node representations from step
k — 1 with the computed neighborhood informa-
tion. Both fgl and fgf can be arbitrary differen-
tiable, permutation-invariant functions (e.g., neural

networks) (Rahimi et al., 2018; Wu et al., 2019).

3 Interpreting Geolocation Results

Previous works (Rahimi et al., 2015; Do et al.,
2017; Hamouni et al., 2019) typically leverage
graph embedding methods (Grover and Leskovec,
2016; Kipf and Welling, 2017; Hamilton et al.,

2017; Wu et al., 2019) for user representation learn-
ing. In spite of the superior performance, GNNs
(including those used for user geolocation) (Rahimi
et al., 2018; Wu et al., 2019) model the process of
learning and prediction in a “black-box” manner
and, consequently, are limited in terms of inter-
pretability. Therefore, it is important to understand
how the model learns the data and why a particular
prediction is made. To demystify the geolocation
models, we intend to uncover and explain the train-
ing process and prediction outcomes.

There has been a growing interest to explain the
model behavior and the predicted outcomes in the
area of neural networks. In particular, an influ-
ence function (Cook and Weisberg, 1980; Hampel
et al., 2011) is used to estimate the effect of in-
dividual training sample and interpret the results
made by a specific model. While providing an ele-
gant post-training interpretation, computationally-
prohibitive cost of repeatedly retraining the model
is avoided, spurring wide uses in a range of appli-
cations, including image classification (Koh and
Liang, 2017), group effect (Koh et al., 2019), rec-
ommendation (Cheng et al., 2019), etc. However,
whether influence functions can be applied to GNN-
based models remained unclear. We take a step to-
wards bridging this gap by tracing the geolocation
results from the GNN-based models back to the
important nodes in the mention network.

Specifically, let z1, . . . , 2, denote the m training
samples (nodes in the mention network G), where
each z; = (x;,y;) is an attribute vector of i-th
node and its label. Removing one sample z from
the training set can change the model optimal pa-
rameters from 0* to 0* _, where 6* and 0*  is the
set of optimal parameters with and without the sam-
ple z, respectively. And 6* , can be obtained by:

0r, &t argmingee » _,. 2, £(2,0), where £(z;,0)
is the loss of sample zi.lTo estimate the influence
of every removed training sample z and avoid re-
training the model, Koh et al. (Koh and Liang,
2017) use an influence function strategy to effi-
ciently approximate this behavior. The basic idea
is to compute the change of optimal parameters if z
was upweighted by some small €, which gives the
new parameters:

0; . dffargmln—ZK (2:,0) + €l(2,0), (1)

where the influence of upweighting 2z on the param-
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eters 6* is given by:

39:z B .
o ()€ 55| = —HglUoll(=,0%), @)
e=0

Hy & L S V3l(z;, 0%) is the Hessian matrix,
and Eq. (2) shows that removing z is the same as
upweighting it by € = —%. Thus, we can linearly
approximate the parameter change of removing z
as 0%, — 0* ~ —L T, 9. () without retraining the
model. The influence of upweighting a training
node z on the loss for a testing node zs can then

be calculated according to the chain rule:

00 (2test, 07
def test
Z'—up,loss<2725test) = %

e=0
*

o007 ,
= v&g(ztesta 9*)T 667 o

= — Vo L zest, 0F)TH! 70 £(2,6%). (3)

To speed up the computation, we use implicit

Hessian-vector products (HVPs) to approximate

wese € Hy Vg (zex, 07), and Eq. (3) can be

rewritten as Zup loss (2, Ztest) = —Weest Vo £(2, 0%).
Since the Hessian Hy- is positive semi-definite by
assumption, we have:

e «
Wiest = arg IIIBIH {gﬁTHG*ﬁ - VGK(Ztesta 0 )T/B}’

where the exact solution 3 can be obtained with
conjugate gradients requiring only the evaluation
of Hy~ 3 instead of explicitly computing He_*l- We
refer the reader to (Koh and Liang, 2017) for more
detailed explanations on this topic, where the appli-
cation of influence functions in computer vision is
investigated. Note that the above method does not
depend on a specific GNN implementation, i.e., it
can be easily adapted to any GNN models.

4 Experiments

We now discuss in detail our experimental findings.

4.1 Datasets and Models

We investigate the interpretability of two user ge-
olocation models: (1) SGC (Wu et al., 2019), which
is a simplified GCN that removes the non-linearity
in each layer of GCN and has achieved state-of-the-
art performance for user geolocation. (2) A simple
MLP model which combines the embedding of
user-posted content and the node embedding for
UG prediction. Here, we use doc2vec for user con-
tent embedding. For SGC, we use the published
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code!, where the tweet content is fed into a GNN
as the node attribute. For MLP, we use node2vec to
generate node representations. Note that we follow
the evaluation metrics used by previous works.

We used two real-world Twitter datasets for
evaluation: GeoText (Eisenstein et al., 2010) and
Twitter-US (Roller et al., 2012). Their descriptive
statistics are shown in Table 1.

Dataset # Train  # Val  # Test # Label
GeoText 5,685 1,895 1,895 129
Twitter-US 429,200 10,000 10,000 256

Table 1: Descriptive statistics of datasets.

GeoText Twitter-US
Method
Mean Median Acc@161 Mean Median Acc@161
GCN 546 45 60.1 485 71 62.3
SGC 531 40 61.1 479 70 62.5
MLP 555 46 60.2 545 86 59.6

Table 2: Performance comparison.

4.2 Interpretable Results

Before explaining the results, we compare the per-
formance of SGC, MLP and GCN (Rahimi et al.,
2018)% models as shown in Table 2. First of all,
all three models can achieve similar performance
results. While SGC performs slightly better, its
superiority is not obvious compared to other GNN-
based models and even the simple MLP model.
This result implies that the improvement of UG
results is limited even with the most advanced
GNN-based models, at least on the two widely
used benchmark datasets. Next, we turn to explain
the results made by the SGC and MLP models. We
omit other GCN-based models due to the limited
space.

Influence of n-hop neighbors. For each test
node, we average the influence value of the n-hop
(n =1, 2, 3) training neighbors in the mention net-
work. As Figure 1 illustrates, 1-hop nodes usually
have more positive influence on the test sample,
while in contrast, the influence of 2-hop and 3-hop
neighbors is relatively smaller. This is an intuitive
interpretation of the geolocation results, but it ver-
ifies the effect of network-view modeling in user
geolocation (Rahimi et al., 2015; Do et al., 2017;

"https://github.com/Tiiiger/SGC
>We used the implementation of GCN for geolocation
provided by https://github.com/afshinrahimi/geographconv
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Figure 1: The influence of n-hop neighbors.

Hamouni et al., 2019), i.e., the immediate neigh-
bors can largely contribute to the user geolocation.

By comparing the results between SGC and
MLP, we have the following observations. First,
SGC is more sensitive to training samples, e.g., the
influence value of SGC (y-axis) is far smaller than
MLP. This is caused by the difference of funda-
mental training paradigms between SGC and MLP,
i.e., SGC is a GNN-based model which considers
the tweet content as attributes, but MLP embeds
the tweet content and nodes independently. There-
fore, a small change (removing a node) in SGC
may incur significant influence on testing results.
This result also implies that GNN-based models
are more vulnerable to adversarial attacks, which is
problematic for all existing GNN-based models as
observed in recent works (Ziigner and Giinnemann,
2019a,b).

Second, for some nodes (indexed by x-axis) the
average influence of their n-hop neighbors is nega-
tive, i.e., those data points that value are below O.
An interesting phenomena is that there are more
such nodes for MLP as compared to SGC. We hy-
pothesize that these nodes are the main reason of
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Figure 2: (a) Overall performance vs. using only pos-
itive influence nodes vs. using only negative influence
nodes of GeoText; (b) Average influence varies with
distance (KM) between training and testing samples of
GeoText.

the inferior performance of MLP. To verify this
assumption, we scrutinize the prediction results of
these nodes. As shown in Figure 2(a), where the
accuracy of predicting these nodes in MLP is sig-
nificantly lower than in SGC, which confirms our
hypothesis and gives promising explanations on
the classification error, i.e., the low classification
accuracy might be caused by those nodes whose
n-hop influence are negative (cf. Figure 1).

Influence of geographic distance. We also
quantify the influence of geographic distance be-
tween training samples and testing samples. As
Figure 2(b) shows, the close training data (e.g.,
less than 10KM) have higher impacts on locating
users. However, the influence significantly drops
with distance greater than 10KM. In another word,
geographically far nodes (beyond a threshold) may
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Figure 3: Visualization of the influence on all regions
of GeoText. Upper cluster: the impact of in-region sam-
ples; Bottom cluster: the impact of out-region samples.

have less impact on geolocating a user.

Influence of regions. It is of interest to investi-
gate the effect of regions on the user geolocation.
The most important assumption in user geoloca-
tion is that geographically similar users should be
topologically proximal. To quantify this assump-
tion, for each region, we treat the training samples
within this region as in-region nodes, and those out
of it as out-region nodes. By calculating the mean
influence of in-region and out-region samples for
each test user, we can measure the influence of
different regions. As Figure 3 shows, in-region
samples (positive samples) have more significantly
positive influence than out-region samples (nega-
tive samples). This result not only consolidates
the motivation of most multi-view user geolocation
models, but also suggests an important direction
for improving the geolocation performance, i.e.,
paying more attention to the in-region samples.

5 Conclusion

In this work, we presented a framework for ex-
plaining the GNN-based models by extending the
influence function to estimate the effect of samples
in graph data. The experiments conducted on a
specific task — user geolocation — provided intu-
itive explanations and enabled quantification of the
influence of individual training samples. Some in-
teresting observations include the effects of regions
and the sensitivity of GNN-based models, which
open potentials for further improvements that we
plan to address in our future work.
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