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Abstract

Operational risk management is one of the
biggest challenges nowadays faced by finan-
cial institutions. There are several major
challenges of building a text classification
system for automatic operational risk predic-
tion, including imbalanced labeled/unlabeled
data and lacking interpretability. To tackle
these challenges, we present a semi-supervised
text classification framework that integrates
multi-head attention mechanism with Semi-
supervised variational inference for Opera-
tional Risk Classification (SemiORC). We em-
pirically evaluate the framework on a real-
world dataset. The results demonstrate that our
method can better utilize unlabeled data and
learn visually interpretable document repre-
sentations. SemiORC also outperforms other
baseline methods on operational risk classifi-
cation.

1 Introduction

In the decade since the global financial crisis, banks
and regulators have become increasingly alert to
operational risks (OR). However, the banks still
struggle to deal with operational risks effectively
(Hoffman, 2002). It is reported that major banks
global wide have suffered nearly $210 billion in op-
erational risk losses since 2011 !. Operational risks
refer to the risks of loss due to errors, breaches, in-
terruptions or damages caused by people, internal
processes, systems or external events (Coleman,
2010). One of the daily jobs of risk officers is
screening potential operational risks from a mas-
sive amount of online news outlets. Therefore,
there is an urgent need for financial organizations
to use artificial intelligence methods for OR predic-
tion.

While this task can be easily formulated as a
classic document classification problem, there are
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at least two challenges in designing such an in-
telligent OR prediction system. First, acquiring
labels from risk officers is time-costly, and there is
no standard labeled dataset for this task. Second,
providing explanations is critical for OR predic-
tion as risk officers cannot solely rely on prediction
outcomes for subsequent decision making. There-
fore, these practical issues call for an interpretable
semi-supervised text classification framework for
OR prediction. However, little prior literature has
specifically studied these issues in one framework.

To tackle the above-mentioned practical chal-
lenges, we propose a semi-supervised text clas-
sification model based on the semi-supervised
variational autoencoder (SemiVAE) (Kingma
et al., 2014) and multi-head attention mechanism
(Vaswani et al., 2017) for OR prediction task. Semi-
VAE allows effective learning of latent represen-
tation from both labeled and unlabeled data, and
multi-head attention mechanism produces the di-
rect visualization of informative words associated
with multi-label predictive outcomes. Learning the
model parameters is effective and scalable under
the variational inference method.

This paper contributes to the burgeoning body of
research on using NLP techniques in key finan-
cial applications. For example, the prior study
leverages the textual features in firm annual re-
ports to predict a firm’s stock price volatility us-
ing firm annual reports (Kogan et al., 2009) and
earnings announcement transcripts (Qin and Yang,
2019). Other researches make use of news arti-
cles and social media data to predict financial mar-
kets variables, such as stock return, firm perfor-
mance, default prediction and market sentiment
(Tetlock, 2007; Schumaker and Chen, 2009; Ding
et al., 2015; Luo et al., 2018). It is worth empha-
sizing that the pre-requisites of using NLP in key
financial applications are effective and transparent.
In many cases, it requires extensive domain exper-
tise to annotate the variable of interests. Moreover,
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Figure 1: The framework of the proposed SemiORC. ®
denotes the matrix multiplication. In the training pro-
cess, the predicted labels ¢, and observed labels y, are
used to compute the classification loss for labeled data.

the black-box model does not meet the needs for
actionable managerial insights. Thus, we hope that
this work, which aims at addressing common is-
sues in financial NLP system, provides valuable
design guidance for financial applications with a
significant societal and economic impact.

2 The Proposed Method

We now proceed with the details of our model
SemiORC, and the overall architecture is shown in
Figure 1. In a nutshell, SemiORC consists of an
encoder, a decoder and a semi-supervised classifier.
Specifically, the encoder network combines the doc-
ument representation and label embedding to learn
latent variables of words. The decoder is used to
generate document representation based on these
latent variables. We model the semi-supervised
classifier by the LSTM, the fully-connected layer,
and the softmax function.

Problem Definition. Let D = D; U D,, be a set
of finance documents with labeled D; and unla-
beled data D,,. Each labeled document D; € D;
is associated with a number of operational risks
y;(C y), where y = {y1,y2,- - ,yr} is a set of
R risk labels (e.g., Data Privacy and Bank Prose-
cution, etc.). We consider operational risk classifi-
cation (ORC) problem that labels the unlabeled
documents with possible operational risks, i.e.,
Di(€ Dy) — 4;(C y).

Document Representation. In SemiORC, we em-
ploy a Bidirectional LSTM (Bi-LSTM) (Hochre-
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iter and Schmidhuber, 1997; Schuster and Pali-
wal, 1997) as the basic content learning module.
Let D; be the i-th document with K words and
w; 1, denotes the one-hot representation of the k-
th word. We first embed the k-th word into low-
dimensional vectors using an embedding matrix
M: w; ;. = w; M, where w; ;. € R? and d is the
dimension of word embedding. Then, we use the
two-layer Bi-LSTMs as the document encoder to
obtain the representation of k-th word by concate-
nating the forward and backward hidden states of
the second Bi-LSTM layer:

- — =
h; =LSTM(h 1, W), (1

Ti = ESTM(W g, wi), @

where h;, = [ﬁk, ik] € R2?. Then, we can ob-
tain the i-th document representation D; € R%*24
by concatenating all words’ representation in this
document. Meanwhile, we get two final states from
two directions of the second Bi-LSTM layer: hid-
den state f; € R2%4 and cell state m; € R2x?,
Label Embedding. In order to efficiently leverage
risk label information, we propose a useful way
to encode labels into low dimensional vectors in
the training process. We first get label embedding
matrix E; as follows:

E - Linear(y,),
' | Classifier(D;),

if D; € D
if D; € D, 3)
where E; € R%Li and L, is the number of Y,
y; are the observed operational risks of ¢-th doc-
ument, and the Linear is a fully-connected layer.
The Classifier is a semi-supervised classifier, which
can predict risk labels and learn the corresponding
label embedding based on both labeled and unla-
beled document representation. Inspired by prior
work (Rai et al., 2015; Yang et al., 2018; Wang
et al., 2018), we incorporate two final states f; and
m; into label embedding E; through another Bi-
LSTM, which is beneficial to learn the specific
label embedding of i-th document:

A

E; = Bi-LSTM(E;, (f;, m;)), “)

where E; € R2dxLi,

Multi-head Attention. The document vector usu-
ally involves rich semantics in multiple semantic
spaces. However, the traditional attention mecha-
nisms only focus on a specific semantic space of
document representation to learn the weights of



words, which ignores the influence of other seman-
tic spaces. In our work, we utilize the multi-head at-
tention mechanism (Vaswani et al., 2017; Tao et al.,
2018; Huang et al., 2019) to learn the weights of
all words for the corresponding labels in each doc-
ument. We first project document representation
D; and label embedding matrix Ei to h different
semantic spaces through different learnable projec-
tion matrices. Then, we learn the weight matrices
of words for the labels from these semantic spaces:

2

=

DET) =D;-P,, E

(r) o7

F (5)
a\"”) = softmax(D\" - E

—pr.
Nor=1,,h (6

);

where P, € R24%(24/1) is the r-th projection ma-
trix, f)z@ € REX(d/M) and Ez(»r) € RE/M)xLi,
alm € RE*Li denotes the weight matrix of words

for the corresponding labels at the r-th semantic

spaces. Besides, a; = %2?21 agr) is the aver-

age accumulated weight matrix of words. Subse-
quently, we can learn latent variables of words from
the document representation through the LSTM
network. Inspired by prior work (Xu et al., 2017),
we combine the label embedding and the latent
variables to generate the document representation
through the Decoder:

&L~

z; = LSTM[sigmoid(a; - a; ) - D;], (7)

(2

A~ A

D; = Decoder[z; + tanh(Linear(a; - E:))], (8)

where z; € REX(4/2) P, € RE*2d_and the Linear
is another fully-connected layer. The sigmoid and
tanh are two activation functions. We model the
Decoder by the LSTM network.
Leveraging Unlabeled Financial Documents.
Various machine learning models, including SVM
(Cesa-Bianchi et al., 20006), representation learn-
ing (Dai and Le, 2015), and adversarial training
(Miyato et al., 2017), have been used to solve the
semi-supervised text classification. Recently, VAE-
based methods have been successfully used in semi-
supervised learning and utilize unlabeled data to
model the generating process of underlying data
(Kingma and Welling, 2014; Miao et al., 2016; Xie
and Ma, 2019; Gururangan et al., 2019). In addi-
tion, previous work (Xu et al., 2017) proposes to
incorporate labels into the decoder RNN for better
text classification performance.

In this work, we use the semi-supervised vari-
ational autoencoder (SemiVAE) (Kingma et al.,
2014; Yang et al., 2019) to exploit these data, which
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provides an efficient way to approximate the pos-
terior distribution of latent variables by deriving
a lower bound for the marginal likelihood of the
observed data (a.k.a. ELBO). More specifically, we
assume a latent variable z for generating the repre-
sentation of finance document, whose true posterior
distribution p(z|D) is usually too complicated to
have an analytical form. We alternatively resort to
the distribution in an exponential family to approx-
imate the true posterior: ¢(z|D) ~ p(z|D). The
ELBO on the marginal likelihood of the finance
documents is as follows:

logpe(D) > log pg(D) — KL[gy(2|D) || pe(z|D)]
=Eq, (z/p) [log po(D|2)] — KL [g4(2z|D)l|pe(2)] ,
9

where g4 (z|D) is an approximation to the true pos-
terior py(z|D). Since the objective is to minimize
the KL divergence between g, (z|D) and the true
distribution py(z|D) — we can alternatively maxi-
mize ELBO L(D) of log p(D).

Our model consists of three components: an
encoder network ¢4(z;|D;,y;), the decoder net-
work pg(D;|y;,z:), and a semi-supervised clas-
sifier g4(y;|D;). For each labeled finance data
D; € D; and its corresponding observed risk la-
bels y; C y, the ELBO £(D;) with corresponding
latent variable z is as follows:

log po(Di, Y;) 2Ky, (2D, ;) [log Po (Dily;, z:)]

+log pe(y;) — KL [q4(2:| D, ;)| |p(2i)]
= —L(Dy), (10)

where KL [g4(2;|Ds, y;)||p(2i)] is the KL diver-
gence between the latent posterior g4 (z;|D;,y;)
and the prior distribution p(z;) that should be min-
imized. Note that we utilize the KL cost anneal-
ing method (Bowman et al., 2016; Sgnderby et al.,
2016) to smooth the training process by gradually
increasing the weight 5 of KL cost from O to 1.

In the case of each unlabeled document D; €
D,, the corresponding risks y, are predicted by
performing posterior inference with a probabilistic
classifier ¢4(y;|D;). We now have the following
ELBO L(D,), by considering possible risks y; as
another latent variable:

logpo(Di) > Y~ (| Di) (—L(Dy))+
Yi

H(qy(9;Di)) = —L(Du), (1)



The ELBO £(D) on the marginal likelihood for
the entire dataset is as follows:

L(D)=> L(D)+> L(Dy)
D, D

+ aE(p, y,)ep, [~ 108 ¢4 (Y;|Di)]. (12)

where the last term denotes an additional classifi-
cation loss of classifier ¢4(y;|/D;) when learning
from the labeled data with a weight controlling
hyper-parameter c.

3 Experiments

Label Risk type
) Non relevant
(D) Internal Fraud
2) Bank Disruption & System Failure
3) External Fraud
“) Employment Practices & HR
5) Compliance & Regulation
(6) Clients & Market Practices
@) Data Privacy

Table 1: Operational Risk Categories. Numbers in the
parentheses are the category index used in experiments.

Data Description. Our proprietary dataset com-
bines a set of 5,483 financial news articles, col-
lected by a risk management team (with a focus
on Asian-Pacific region) in an international bank-
ing organization. The financial news articles are
collected from several online mainstream financial
news outlets during Feb 1, 2019, to Mar 1, 2019.
The news outlets include government agency such
as the Association of Certified Financial Crime
Specialists (ACFCS) and news agency such as The
Edge Markets and Japan Times. We remove noise
data (e.g., inserted advertising and specific symbol)
of all finance documents. There are eight Oper-
ational Risk categories in Tabel 1, as defined in
Basel Accords. The details of our dataset are as
follows: 730 labeled documents; 4,753 unlabeled
documents; the average number of risk labels and
words for documents are 2.1 and 453, respectively.
Baselines. We consider the following baselines.
Logistic Regression is a vanilla supervised clas-
sification baseline. It only leverages labeled doc-
uments to build a text classifier and predict risk
categories. We also consider the following three
semi-supervised learning baselines. Transductive
SVM (TSVM) (Joachims, 1999) is a widely used
semi-supervised method that extends SVMs with
the goal that there are a few unlabeled data near

the margin as possible. Semi-supervised Varia-
tional Autoencoder (SemiVAE) (Kingma et al.,
2014) proposes to utilize a deep generative model
to exploit unlabeled data. Our model SemiORC
uses SemiVAE as one key component. Semi-
supervised Sequential Variational Autoencoder
(SSVAE) (Xu et al., 2017) proposes to use a mod-
ified version of LSTM as the decoder and is the
state-of-the-art semi-supervised model for text clas-
sification. However, none of the above baselines
can highlight keywords that are informative to pre-
diction outcomes, since they are black-box semi-
supervised learning models. Lastly, we consider
one ablation baseline ORC, which is a supervised
version of our SemiORC. It ignores unlabeled data
for modeling document representation.

Evaluation Metrics. We follow the standard eval-
uation metrics of multi-label classification, includ-
ing hamming loss, accuracy and micro-F1 score.
Hamming-loss (Schapire and Singer, 1999) calcu-
lates the average Hamming distance between true
labels and predicted labels. Accuracy computes
the subset accuracy between true labels and pre-
dicted labels. Micro-F1 (Manning et al., 2008)
returns a weighted average of precision and recall,
which is computed from true positives, false nega-
tives, and false positives.

Experimental Setting. Our model SemiORC is
implemented with Tensorflow on a machine with
NVIDIA GeForce GTX 1080Ti. Specifically, we
optimize the training process of the model us-
ing Adam optimizer (Kingma and Ba, 2015) and
dropout regularization (Srivastava et al., 2014; Gal
and Ghahramani, 2016). We set the number of pro-
jection matrices and the dimension of word embed-
ding as h = 4 and d = 64. The learning rate and
weight parameter « are empirically tuned to 0.001
and 2, respectively. The dropout rate is scaled from
0.3 to 0.7. For Logistic Regression and TSVM,
we both use doc2vec (Le and Mikolov, 2014) to
learn the finance document representation. Addi-
tionally, we leverage the scikit-learn (Pedregosa
et al., 2011) to build two text classifiers to predict
the corresponding risk labels. For SemiVAE and
SSVAE, we model the encoders, the decoders, and
the classifiers by the LSTM networks.

Experiment Results. We perform 10 runs of
10-fold cross-validation on the dataset for each
method. Table 2 reports the overall classifica-
tion performance on three metrics. We can see
that SemiORC achieves the best classification per-
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Method

Hamming-loss

Accuracy

Micro-F1 score

Logistic Regression
TSVM
SemiVAE
SSVAE
ORC
SemiORC

0.156(0.030)
0.135(£0.027)
0.106(20.024)
0.097(£0.019)
0.105(0.013)
0.084(+0.018)

0.406(£0.026)
0.392(£0.037)
0.417(£0.031)
0.457(£0.026)
0.443(£0.022)
0.529(+0.020)

0.510(£0.031)
0.493(+0.036)
0.595(20.020)
0.621(£0.022)
0.601(20.028)
0.651(+0.023)

Table 2: Overall operational risk classification results. The bold number indicates statistically significant over
the second-best results at 5% level under a one-tailed t-test (p < 0.05). Standard deviation is reported in the
parentheses. For Hamming-loss, the smaller number indicates better performance. For Accuracy and Micro-F1

score, the larger number is better.

Example documents

A group of companies run by them were involved in a conflict of

Company B failed to expired software

Cyber criminals typically look for loopholes of vulnerable in...

Retailers acknowledge
Some personal data had been

Bank employees helped taxpayers open bank
The Anti-Money Laundering Act

of ... and recognize the need for encryption
because of the cyber intrusion

Banks had experienced data breaches because their systems were under

to assist them in tax evasion [

that each citizen links identity number

Table 3: Examples of financial documents where the keywords are highlighted. Each row is an example document,
and darker color indicates higher attention weight. Note that only words with the largest attention weights in the
sentence are colored for better illustration. Right columns are indexes of each operational risk category, where the
color density indicates the predicted probability that the left document is belonging to the category.

formance in all three metrics. Compared with
SSVAE, SemiORC improves the Hamming-loss
by 13.4% (0.097 vs. 0.084), Accuracy by 15.7%
(0.457 vs. 0.529), Micro-F1 score by 4.8% (0.621
vs. 0.651). Compared with the pioneer semi-
supervised learning model SemiVAE, SemiORC
improves the Hamming-loss by 20.7% (0.106 vs.
0.094), Accuracy by 21.1% (0.417 vs. 0.529), and
Micro-F1 score by 24.3% (0.493 vs. 0.651). The
key difference between SemiORC and SSVAE or
SemiVAE is that we leverage the multi-head atten-
tion mechanism to learn the weights of informative
words which better encodes labeled and unlabeled
documents. Moreover, we can conclude that utiliz-
ing unlabeled data can significantly improve model
performance (ORC vs. SemiORC). Considering
that the current risk management team in the bank
only utilizes labeled data, this improvement is quite
significant and should be emphasized.

Transparent Operational Risk Prediction. In
financial institutions, risk officers are strictly re-
quired to comply with regulations and be respon-
sible for any decisions that they make. Therefore,
in order for the operation risk prediction system
to be useful, it calls for transparency in the text
classification system. SemiORC highlights key-
words that are informative to each predicted risk
type, as shown in Table 3. Take the last document
“the anti-money laundering act mandates that each
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citizen links identify number” for example. It is
predicted to be multiple labels (category 5, 6 and
7). By examining the highlighted keywords, we
can see word “anti-money” has the highest atten-
tion weight under category 6 while “identity” has
the highest attention weight under category 7. In
other words, each predicted label is associated with
a set of label-related keywords, which provides
a visual explanation of why a financial news ar-
ticle is assigned to a specific risk category. The
label-dependent attention words allow risk officers
to screen out the news articles efficiently and to
assess the operational risk categories accurately.

4 Conclusion

To conclude, in this paper, we work on a signif-
icant practical problem in the financial industry:
operational risk prediction. We design a text clas-
sification framework with the multi-head attention
mechanism and SemiVAE. In sum, our framework
aims to address two common issues in the finan-
cial industry: lacking labeled data and the need for
transparency in prediction outcomes.
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