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Abstract

Neural encoders have allowed dependency
parsers to shift from higher-order structured
models to simpler first-order ones, making de-
coding faster and still achieving better accu-
racy than non-neural parsers. This has led
to a belief that neural encoders can implic-
itly encode structural constraints, such as sib-
lings and grandparents in a tree. We tested
this hypothesis and found that neural parsers
may benefit from higher-order features, even
when employing a powerful pre-trained en-
coder, such as BERT. While the gains of
higher-order features are small in the presence
of a powerful encoder, they are consistent for
long-range dependencies and long sentences.
In particular, higher-order models are more ac-
curate on full sentence parses and on the ex-
act match of modifier lists, indicating that they
deal better with larger, more complex struc-
tures.

1 Introduction

Before the advent of neural networks in NLP, de-
pendency parsers relied on higher-order features
to better model sentence structure (McDonald and
Pereira, 2006; Carreras, 2007; Koo and Collins,
2010; Martins et al., 2013, inter alia). Common
choices for such features were siblings (a head
word and two modifiers) and grandparents (a head
word, its own head and a modifier).

Kiperwasser and Goldberg (2016) showed that
even without higher order features, a parser with
an RNN encoder could achieve state-of-the-art re-
sults. This led folk wisdom to suggest that model-
ing higher-order features in a neural parser would
not bring additional advantages, and nearly all re-
cent research on dependency parsing was restricted
to first-order models (Dozat and Manning, 2016;
Smith et al., 2018a). Kulmizev et al. (2019) fur-
ther reinforced this belief comparing transition and
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graph-based decoders (but none of which higher
order); Falenska and Kuhn (2019) suggested that
higher-order features become redundant because
the parsing models encode them implicitly.

However, there is some evidence that neural
parsers still benefit from structure modeling. Zhang
et al. (2019) showed that a parser trained with a
global structure loss function has higher accuracy
than when trained with a local objective (i.e., learn-
ing the head of each word independently). Falen-
ska and Kuhn (2019) examined the impact of con-
secutive sibling features in a neural dependency
parser. While they found mostly negative results
in a transition-based setting, a graph-based parser
still showed significant gains on two out of 10 tree-
banks.

In this paper, we test rigorously the hypothesis
of the utility of second-order features. In particu-
lar, we experiment with consecutive sibling and
grandparent features in a non-projective, graph-
based dependency parser. We found that without a
pretrained encoder, these features are only useful
for large treebanks; however, when using BERT,
they can improve performance on most treebanks
we tested on — especially true for longer sentences
and long-distance dependencies, and full sentence
parses'. This challenges the hypothesis that en-
coders can single-handedly improve parsers, or
more generally, structured models in general.

2 Model

2.1 Notation

We use x to refer to a sentence with tokens
(z1,22,...,2Ty), plus the ROOT pseudo-token, and
y to refer to a valid tree composed of n arcs (h, m).

We overload the notation sy(-) to indicate the
model score for a part or complete sentence, de-

'0ur code is available at https://github.com/
deep-spin/pyturbo/
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pending on its arguments.

2.2 Encoding

We encode a x with a bidirectional LSTM, produc-
ing hidden states (hy,h,, ..., h,), with h corre-
sponding to ROOT. Each token is represented by the
concatenation of its pretrained word embeddings, a
character-level left-to-right LSTM and, optionally,
BERT embeddings.

Similar to Straka et al. (2019), when using BERT,
we take the mean of its last four layers. When the
BERT tokenizer splits a token into more than one,
we take the first one and ignore the rest, and we use
the special token [CLS] to represent ROOT. The
word embeddings we use are the ones provided in
the CoNLL 2018 shared task.

2.3 First-Order Model

We start with a first-order model, which is used as
a pruner before running the second-order parser as
in Martins et al. (2013). It uses biaffine attention to
compute arc and label scores (Dozat and Manning,
2016), and similarly to Qi et al. (2018), we also
add distance and linearization terms.>

We want our pruner to be capable of estimat-
ing arc probabilities, and thus we train it with a
marginal inference loss, maximizing the log proba-
bility of the correct parse tree y:

Ly(x,y) = —logpa(y | x)
= —sp(y) + log Z exp(sg(yi))-

)

We can compute the partition function over all
possible trees y; efficiently using the Matrix-Tree
Theorem (Koo et al., 2007), which also gives us arc
marginal probabilities. The sentence score sy(x,y)
is computed as the sum of the score of its parts.

Additionally, we try first-order models trained
with a hinge loss, as Zhang et al. (2019) (also used
with our second-order models; see §2.4), maximiz-
ing the margin between the correct parse tree y and
any other tree y:

Lo(x,y) = man[Se(x, ¥) —so(x,y) + Ay, ¥)],

where A(y, y) is the Hamming cost between y and
¥, i.e., the number of arcs in which they differ.
2We refer the reader to Qi et al. (2018) for further definition

of the distance and linearization terms. Also, like them, we
only backpropagate error for these scores for the gold arcs.

2.4 Second-Order Model

We train second-order models with a hinge loss.
It is computed in the same way as in the first-
order case, except now the sentence scores include
second-order parts. Notice that the Hamming cost
still only considers differing arcs.

Consecutive siblings A consecutive sibling part
is a tuple (h,m,s) such that h is the parent of
both m and s, which are both to the left or to the
right of h, and no other child of & exists between
them. Additionally, we consider tuples (h,m, }) to
indicate that m is the first child (if to the left of h)
or the last child (if to the right).

Grandparents A grandparent part is a tuple
(h,m, g) such that g is the parent of h and h is
the parent of m. There are no grandparent parts
such that i is ROOT.

Scoring The score for a higher order part
(h,m,r) of type p (in our case, either grandpar-
ent or consecutive sibling) is computed as:

sg(h,m,r) = wP" - (M tanh(h} + h?)
+ A tanh(h?, + h?)
+ Aj tanh(h? + h?, + h?)),

hj = f7(hy,), by, = f7.(h,,), by = ff(h,).

where A}, A and A5 are learnable scalars, w” is a
learnable vector, f7(-), fi(-) and fF(-) are learn-
able affine transforms. There is a set of these pa-
rameters for consecutive siblings and another for
grandparents. The factors that compose the score
represent different combinations of a second-order
part with h, m, or both. There is no factor combin-
ing h and m only, since they are already present in
the first-order scoring. We also introduce a param-
eter vector hy to account for 0.

Decoding The drawback of higher-order feature
templates is that exact decoding is intractable for
the non-projective case. Classically, researchers
have resorted to approximate decoding as well as
using a first-order parser to eliminate unlikely arcs
and their respective higher-order parts. We employ
both of these techniques; specifically, we use the
dual decomposition algorithm AD? (Martins et al.,
2011, 2013) for decoding, which often arrives at
the exact solution. We use head automata factors
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to handle sibling and grandparent structures (Koo
et al., 2010), and the traditional Chu-Liu-Edmonds
algorithm to handle the tree constraint factor (Mc-
Donald et al., 2005).

2.5 Additional Training Details

Multitask Learning Our models also predict
UPOS, XPOS and morphology tags (UFeats), as
training for these additional objectives increases
parsing performance. They are implemented via
softmax layers on top of the BiLSTM output, and
have a cross-entropy loss. Parser and tagger share
two BiLSTM layers, with an additional layer for
each one (similar to Straka, 2018). We only con-
sider UFeats singletons in the training data, i.e., we
do not decompose them into individual features.

Perturb and MAP During training with a hinge
loss, we add noise sampled from a standard Gum-
bel distribution to the arc scores, as in Papandreou
and Yuille (2011). This effectively makes decoding
behave as sampling from the tree space.

3 Experiments

Data We evaluate our models on 19 treebanks
from Universal Dependencies 2.3: Afrikaans (Afri-
Booms), Ancient Greek (Perseus), Arabic (PADT),
Basque (BDT), Chinese (GSD), Czech (PDT),
Finnish (TDT), Hebrew (HTB), Hindi (HDTB),
Hungarian (Szeged), Italian (ISDT), Japanese
(GSD), Korean (GSD), Persian (Seraji), Portuguese
(Bosque), Russian (SynTagRUS), Swedish (Tal-
banken) and Turkish (IMST). In all cases, we use
gold tokenization. They represent varied language
families, writing systems and typology, inspired by
Smith et al. (2018b).

Hyperparameters All LSTM cells have 400
units in each direction, as well as arc and label
biaffine projections. Second-order layers have 200
units, and character embeddings have 250. We ap-
ply dropout with p = 0.5 to all linear layers, and
we use word dropout (replacing an encoded word
vector with a trainable vector) with p = 0.33 in
models without BERT and 0.2 in the ones with it.
We use Adam with 5; = 0.9, 5o = 0.99, and con-
stant learning rate of 10~ for the first-order mod-
els without BERT and 5 - 10~ for all others. We
used bert-chinese for Chinese and Japanese,
and bert-base-multilingual-cased for
other languages; and did not fine-tune its weights.
We run the AD? decoder for up to 500 iterations

with a step size of 0.05. We use batches of 1,000
tokens for first-order models and 800 for second-
order, and train for up to 100k batches. We evaluate
on the dev set each 200 batches and stop early after
50 evaluations without improvement.

Pruning Before training or evaluating a second-
order parser, we run a first-order model trained with
marginal inference to prune unlikely arcs and any
second-order parts including them. When using
BERT in the main parser, we also use a pruner
trained with BERT. We keep up to 10 candidate
heads for each token, and further prune arcs with
posterior probability lower than a threshold ¢ times
the probability of the most likely head. Without
BERT, ¢t = 107°, and with it ¢ = 1075, as we
found BERT makes the pruner overconfident. The
lowest pruner recall on the dev set was 98.91%
(on Turkish); all other treebanks are above 99%.
During training, we never prune out gold arcs.

3.1 Results

Table 1 shows the test set UAS and LAS for our
models. Parsers with BERT and hinge loss achieve
the best performance in most datasets; second-
order models are generally better at UAS. An
interesting case is Ancient Greek, which is not
in BERT’s pretraining data. First-order models
with BERT perform worse than the ones without
it in UAS and LAS, but the second-order model
achieves the highest UAS.

Without BERT, second-order features are only
beneficial in some medium-to-large treebanks. In
the smallest ones, as Turkish and Hungarian, they
actually lead to a performance drop; when using
BERT, however, they increase accuracy in these
datasets. On the other hand, large treebanks such
as Russian and Czech have improvements from
second-order features even without BERT. This
suggests that in order for them to be beneficial,
either large amounts of annotated training data are
needed (which not all UD treebanks have) or a
powerful encoder such as BERT.

Considering first-order models, Zhang et al.
(2019) found no particular advantage of a hinge
loss objective over a cross-entropy one or vice-
versa. In our experiments, this is mostly the case
for models trained with small-to-medium treebanks
and without BERT. When more training data or
a pretrained encoder is available, the hinge loss
objective tends to reach higher accuracy than the
Cross-entropy one.
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First Order First Order Second Order FO + BERT FO + BERT SO + BERT
Marginal Hinge Hinge Marginal Hinge Hinge

Tokens UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS
AF 338k | 88.08 85.24 | 88.38 85.15 | 87.93 84.85 | 90.54 87.99 | 90.96 88.22 | 90.66 88.03
AR 223.8k | 88.07 83.51 | 88.36 83.62 | 88.37 83.71 | 88.37 83.79 | 88.78 84.16 | 88.97 84.29
CS 1.IM | 9235 89.88 | 9291 90.44 | 9325 90.89 | 93.61 91.49 | 93.96 91.79 | 93.90 91.71
EN 204.6k | 89.82 87.15 | 90.02 87.29 | 90.20 87.53 | 92.51 90.22 | 92.80 90.53 | 92.63 90.31
EU 729k | 86.32 83.02 | 86.35 83.02 | 86.24 82.66 | 87.42 84.11 | 87.34 83.93 | 8742 84.03
FA 121.1k | 90.76  87.15 | 90.59 8733 | 90.60 86.97 | 91.95 88.79 | 92.27 89.14 | 9191 88.83
FI 162.6k | 90.51 88.20 | 90.97 88.69 | 91.07 8890 | 91.84 89.81 | 91.66 89.38 | 91.72 89.47
GRC 159.8k | 79.81 74.40 | 80.11 74.61 | 80.12 74.74 | 79.72 7394 | 78.61 72.51 | 80.33 74.33
HE 137.7k | 89.65 86.86 | 89.89 87.10 | 89.56 86.67 | 91.00 88.25 | 91.44 88.59 | 91.25 88.43
HI 281k | 94.79 9152 | 95.12 9197 | 9503 91.86 | 9526 92.00 | 95.30 92.24 | 95.34 92.11
HU 20.2k | 83.02 77.78 | 83.66 78.26 | 8230 76.97 | 87.71 83.21 | 87.90 83.21 | 86.62 82.38
IT 276k | 93.35 91.27 | 93.63 91.65 | 93.65 91.64 | 9498 93.28 | 95.23 93.53 | 95.25 93.42
JA 1604k | 94.82 93.21 | 9476 9325 | 94.19 9256 | 95.14 93.62 | 95.07 93.62 | 95.18 93.62
KO 56.6k | 86.89 82.97 | 87.69 84.00 | 88.02 84.16 | 89.06 85.69 | 89.71 86.33 | 89.62 86.26
PT 206.7k | 91.76  89.37 | 91.59 88.95 | 92.09 89.64 | 92.55 90.20 | 92.63 90.14 | 92.97 90.58
RU 870.4k | 93.02 91.14 | 9343 91.51 | 93.87 92.06 | 9447 93.01 | 9451 9298 | 9470 93.16
Sv 66.6k | 89.50 86.62 | 89.31 86.16 | 87.00 83.95 | 9149 8893 | 91.79 89.31 | 91.82 89.08
TR 379k | 74.48 67.63 | 7242 6522 | 7330 65.86 | 7459 6796 | 7543 68.72 | 75.66 68.88
ZH 98.6k | 85.06 80.94 | 8498 80.65 | 84.97 80.40 | 90.08 87.32 | 90.03 87.17 | 9043 87.53

Table 1: Results on 19 UD treebanks. FO: first order, SO: second order.

Figures 1, 2 and 3 show LAS by sentence length,
dependency length and depth in the tree (distance
to root). While BERT reduces the gap between
first and second-order models, the latter are con-
sistently more accurate in sentences longer than
10 tokens, and in dependencies longer than four
tokens. Varying distance to root shows a some-
what irregular pattern (similar to what Kulmizev
et al., 2019 found); the three BERT models are
close to each other, but among the other three, the
second-order parser is clearly best for depths 2-9.

Table 2 shows complete sentence matches and
head words with exact match of their modifier set,
over all treebanks. Second-order models are better
on both metrics.

Table 3 shows results for models that do not em-
ploy multitask learning (in our case, jointly learn-
ing UPOS, XPOS and morphological features) on
the development set for a subset of the treebanks,
and the results for the models that employ it on the
same data. All models are first order with a prob-
abilistic loss function. MTL parsers performed
better except for Arabic UAS, and even then only
by a small difference, which motivated us to use
MTL in all our experiments.

Runtime Our first-order parsers without BERT
process 2,000 tokens per second on average, and
the second-order ones around 600 (averaged across
all treebanks). For models with BERT, the figures

- No BERT, Marginal
No BERT, FO Hinge
8671 _.- No BERT, SO Hinge
-»-- BERT, Marginal
—o— BERT, FO Hinge
—e— BERT, SO Hinge
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Figure 1: LAS by sentence length.
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Figure 2: LAS by dependency distance.

are 1,600 and 460, respectively.®> This slowdown of
3.5x for second-order models is even smaller than
the ones reported by Martins et al. (2013).

4 Conclusion

We compared second-order dependency parsers
to their more common, first-order counterparts.

*Runtime on an NVidia Titan Xp GPU.
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Figure 3: LAS by distance to root.

MODEL FUuLL SENT ALL MoD

FO, Marginal 47.36/37.25  75.38/71.41
FO, Hinge 49.05/38.34  76.51/72.42
SO, Hinge 51.14/39.79  77.90/73.75
FO+BERT, Marg. 51.87/41.63  78.82/75.11
FO+BERT, Hinge 53.23/42.42  79.34/75.50
SO+BERT, Hinge 54.39/42.88  80.14/76.13

Table 2: Unlabeled/labeled full correct sentences and
head words with full correct set of modifiers per model.

While their overall performance gain was small,
they are distinctively better for longer sentences
and long-range dependencies. Considering the ex-
act match of complete parse trees or all modifiers
of a word, second-order models exhibit an advan-
tage over first-order ones. Our results indicate that
even a powerful encoder as BERT can still bene-
fit from explicit output structure modelling; this
would be interesting to explore in other NLP tasks
as well. Another interesting line of research would
be to evaluate the contribution of higher-order fea-
tures in a cross-lingual setting, leveraging structure
learned from larger treebanks to underresourced
languages.
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