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Abstract

An interesting and frequent type of multi-
word expression (MWE) is the headless MWE,
for which there are no true internal syntactic
dominance relations; examples include many
named entities (“Wells Fargo”) and dates
(“July 5, 2020”) as well as certain produc-
tive constructions (“blow for blow”, “day after
day”). Despite their special status and preva-
lence, current dependency-annotation schemes
require treating such flat structures as if they
had internal syntactic heads, and most cur-
rent parsers handle them in the same fash-
ion as headed constructions. Meanwhile, out-
side the context of parsing, taggers are typ-
ically used for identifying MWEs, but tag-
gers might benefit from structural information.
We empirically compare these two common
strategies—parsing and tagging—for predict-
ing flat MWEs. Additionally, we propose an
efficient joint decoding algorithm that com-
bines scores from both strategies. Experimen-
tal results on the MWE-Aware English Depen-
dency Corpus and on six non-English depen-
dency treebanks with frequent flat structures
show that: (1) tagging is more accurate than
parsing for identifying flat-structure MWEs,
(2) our joint decoder reconciles the two differ-
ent views and, for non-BERT features, leads to
higher accuracies, and (3) most of the gains re-
sult from feature sharing between the parsers
and taggers.

1 Introduction

Headless multi-word expressions (MWEs), includ-
ing many named entities and certain productive
constructions, are frequent in natural language and
are important to NLP applications. In the con-
text of dependency-based syntactic parsing, how-
ever, they pose an interesting representational chal-
lenge. Dependency-graph formalisms for syntactic
structure represent lexical items as nodes and head-
dominates-modifier/argument relations between

Officials at Mellon Capital were unavailable for comment
O O B I O O O O

nsubj

case

nmod

mwe_NNP xcomp case

nmod

Figure 1: Dependency tree from the MWE-Aware En-
glish Dependency Corpus, imposing a “head” relation-
ship between the words in the actually headless MWE
Mellon Capital. Also shown are MWE BIO labels.

lexical items as directed arcs on the correspond-
ing pair of nodes. Most words can be assigned
clear linguistically-motivated syntactic heads, but
several frequently occurring phenomena do not eas-
ily fit into this framework, including punctuation,
coordinating conjunctions, and “flat”, or headless
MWEs. While the proper treatment of headless
constructions in dependency formalisms remains
debated (Kahane et al., 2017; Gerdes et al., 2018),
many well-known dependency treebanks handle
MWEs by giving their component words a “default
head”, which is not indicative of a true dominance
relation, but rather as “a tree encoding of a flat
structure without a syntactic head” (de Marneffe
and Nivre, 2019, pg. 213). Fig. 1 shows an exam-
ple: the headless MWE Mellon Capital has its first
word, Mellon, marked as the “head” of Capital.

Despite the special status of flat structures in
dependency tree annotations, most state-of-the-
art dependency parsers treat all annotated rela-
tions equally, and thus do not distinguish be-
tween headed and headless constructions. When
headless-span identification (e.g., as part of named-
entity recognition (NER)) is the specific task
at hand, begin-chunk/inside-chunk/outside-chunk
(BIO) tagging (Ramshaw and Marcus, 1995) is
generally adopted. It is therefore natural to ask
whether parsers are as accurate as taggers in iden-
tifying these “flat branches” in dependency trees.
Additionally, since parsing and tagging represent
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two different views of the same underlying struc-
tures, can joint decoding that combines scores from
the two modules and/or joint training under a multi-
task learning (MTL) framework derive more accu-
rate models than parsing or tagging alone?

To facilitate answering these questions, we in-
troduce a joint decoder that finds the maximum
sum of scores from both BIO tagging and parsing
decisions. The joint decoder incorporates a special
deduction item representing continuous headless
spans, while retaining the cubic-time efficiency of
projective dependency parsing. The outputs are
consistent structures across the tagging view and
the parsing view.

We perform evaluation of the different strate-
gies on the MWE-Aware English Dependency Cor-
pus and treebanks for five additional languages
from the Universal Dependencies 2.2 corpus that
have frequent multi-word headless constructions.
On average, we find taggers to be more accu-
rate than parsers at this task, providing 0.59%
(1.42%) absolute higher F1 scores with(out) pre-
trained contextualized word representations. Our
joint decoder combining jointly-trained taggers
and parsers further improves the tagging strategy
by 0.69% (1.64%) absolute. This corroborates
early evidence (Finkel and Manning, 2009) that
joint modeling with parsing improves over NER.
We also show that neural representation sharing
through MTL is an effective strategy, as it ac-
counts for a large portion of our observed im-
provements. Our code is publicly available at
https://github.com/tzshi/flat-mwe-parsing.

2 Background on Headless Structures

A (multi-word) headless construction, or flat struc-
ture, is a span of lexical items that together ref-
erence a single concept and where no component
is a syntactically more plausible candidate for the
span’s head than any other component. Examples
are boldfaced in the following English sentences.

(1) Within the scope of this paper:
a. ACL starts on July 5, 2020.
b. My bank is Wells Fargo.
c. The candidates matched each other in-

sult for insult. (Jackendoff, 2008)

(1)a and (1)b show that dates and many named
entities can be headless constructions, suggesting
that they are frequent. Indeed, in the MWE-Aware
English Dependency Corpus (Kato et al., 2017),

nearly half of the sentences contain headless con-
structions, 75% of which are named entities. For
comparison, (2) shows examples of non-flat MWEs,
which are also interesting and important, but they
are beyond the focus of our paper.

(2) Outside the scope of this paper:
a. congressman at large (Sag et al.,

2002) [head = “congressman”]
b. I have moved on. [verb-particle con-

struction, head = “moved”]
c. I take your argument into account.

(Constant et al., 2017) [light-verb con-
struction, head = “take”]

Returning to headless MWEs, the choice of rep-
resentation for headless spans depends on the task.
In named-entity recognition, such spans are often
treated as BIO tag sequences:1 for example, in
Fig. 1, “Mellon” is tagged as “B” and “Capital”
is tagged as “I”. In dependency parsing, where
labeled dependency arcs are the only way to ex-
press a syntactic analysis (short of treating MWEs
as atomic lexical items, which would result in a
chicken-and-egg problem) is to impose arcs within
the MWE’s span. Different corpora adopt different
annotation conventions. The MWE-Aware English
Dependency Corpus uses the arc label mwe_NNP,
as shown in Fig. 1. The Universal Dependencies
(UD; Nivre et al., 2018) annotation guidelines have
all following tokens in such constructions attached
to the first one via arcs labeled flat, a choice that is
admittedly “in principle arbitrary”.2

The frequency of flat structures across different
treebanks varies according to language, genre, and
even tokenization guidelines, among other factors.
Table 1 lists the UD 2.2 treebanks with the high-
est and lowest percentage of flat relations. While
the Korean treebank ko_gsd (with the highest per-
centage) splits up most names into multiple tokens
and connects them through flat, the Japanese tree-
bank ja_gsd (no flats at all) treats all names as
compound nouns, and thus represents them as hav-
ing internal structure without any indication that
a special case has occurred.3 Fig. 2 shows exam-
ples from the UD parallel treebanks, illustrating

1In this paper, we adopt the original BIO tagset, which can-
not properly represent discontinuous MWEs. See Schneider
et al. (2014) for modified tagsets providing such support.

2universaldependencies.org/u/dep/flat.html
3Some flat structures can end up using other dependency

labels such as compound, as a result of the fact that many
UD treebanks, including ja_gsd, are automatically converted
from non-UD style annotations. The UD annotations depend

https://github.com/tzshi/flat-mwe-parsing
https://universaldependencies.org/u/dep/flat.html
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It contains a monument to Martin Luther King , Jr.
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Es beherbergt ein Denkmal für Martin Luther King , jr .
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裡面 有 馬丁 · 路德 · 金 （ Martin Luther King, Jr. ） 的 紀念碑 。
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ここ に は マーチン ルーサー キング Jr の モニュメント が ある 。
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Burada Martin Luther King , Jr’ye adanmış bir anıt bulunmaktadır .
O B I I I I O O O O O

advmod
advmod

flat
flat

punct

flat acl

det nsubj punct

Possui um monumento a Martin Luther King Jr .
O O O O B I I O O
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case
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flat
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Figure 2: An illustration of flat-structure annotation variation across treebanks: a set of parallel sentences, all
containing the conceptually headless MWE “Martin Luther King, Jr.” (underlined), from UD 2.2 (treebank code
_pud) in English, German, Chinese, Japanese, Turkish, and Portuguese (top to bottom). The intent of this figure
is not to critique particular annotation decisions, but to demonstrate the notation, concepts, and data extraction
methods used in our paper. To wit: Highlights/black-background indicate well-formed flat-MWE tree fragments
according to the principles listed in §4. BIO sequences are induced by the longest-spanning flat arcs. When there
is a mismatch between the highlighted tree fragments and the BI spans—here, in the German, Chinese and Turkish
examples—it is because the dependency trees do not fully conform to the UD annotation guidelines on headless
structures.



8783

Treebank (Language)
% of flat

graphs
Ó

arcs

19 treebanks with highest percentages:
ko_gsd (Korean) 67.84 15.35
id_gsd (Indonesian) 61.63 9.39
ca_ancora (Catalan) 41.11 3.32
nl_lassysmall (Dutch) 38.90 5.87
ar_nyuad (Arabic) 37.63 2.19
es_ancora (Spanish), sr_set (Serbian), it_postwita (Italian), pt_bosque
(Portuguese), pt_gsd (Portuguese), fa_seraji (Persian), de_gsd (German),
hu_szeged (Hungarian), fr_gsd (French), es_gsd (Spanish), he_htb (He-
brew), kk_ktb (Kazakh), be_hse (Belarusian), nl_alpino (Dutch)

ą 20.00

. . . . . .

12 treebanks without flat arcs:
cs_cltt (Czech), grc_perseus (Ancient Greek), hi_hdtb (Hindi), ja_gsd
(Japanese), ja_bccwj (Japanese), la_ittb (Latin), la_perseus (Latin),
no_nynorsklia (Norwegian), swl_sslc (Swedish Sign Language), ta_ttb
(Tamil), ur_udtb (Urdu), vi_vtb (Vietnamese)

0.00 0.00

Table 1: The UD 2.2 training treebanks with highest and lowest percentage of flat arcs, out of 90 treebanks.

the diversity of annotation for the same sentence
rendered in different languages.

Overall, more than 20% of the treebanks in the
UD 2.2 collection have flat structures in more than
20% of their training-set sentences.4 Therefore, a
parsing approach taking into account the special
status of headless structural representations can
potentially benefit models for a large number of
languages and treebanks.

2.1 Notation and Definitions

Formally, given an n-word sentence w “

w1, w2, . . . , wn, we define its dependency structure
to be a graph G “ pV,Eq. Each node in V corre-
sponds to a word in the sentence. Each (labeled)
edge ph,m, rq P E denotes a syntactic relation la-
beled r between the head word wh and modifier
word wm, where h,m P t0, 1, . . . , nu and 0 de-
notes the dummy root of the sentence. Since we
work with dependency treebanks, we require that
the edges in E form a tree. To represent a multi-
word headless span wi, . . . , wj , all subsequent
words in the span are attached to the beginning
word wi, i.e., @k P ti ` 1, . . . , ju, pi, k, fq P E,
where f is the special syntactic relation label de-

on how detailed the original syntactic analyses are and the
accuracies of the conversion algorithms.

4Measured on the 90 treebanks with training splits.

noting headless structures (flat in UD annotation).
Alternatively, one can also use a BIO tag sequence
T “ pt1, t2, . . . , tnq P tB, I,Oun to indicate the
location of any headless spans within w. The head-
less MWE span wi, . . . , wj has the corresponding
tags ti “ B and @k P ti`1, . . . , ju, tk “ I; tokens
outside any spans are assigned the tag O. We call
G and T consistent if they indicate the same set of
headless spans for w.

3 Three Approaches

We first present the standard approaches of edge-
factored parsing (§3.2) and tagging (§3.3) for ex-
tracting headless spans in dependency trees, and
then introduce a joint decoder (§3.4) that finds the
global maximum among consistent (tree structure,
tag sequence) pairs.

3.1 Preliminaries
Given a length-n sentence w—which we hence-
forth denote with the variable x for consistency
with machine-learning conventions—we first ex-
tract contextualized representations from the input
to associate each word with a vector x0 (for the
dummy word “root”), x1, . . . , xn. We consider
two common choices of feature extractors: (1) bi-
directional long short-term memory networks (bi-
LSTMs; Graves and Schmidhuber, 2005) which
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have been widely adopted in dependency parsing
(Kiperwasser and Goldberg, 2016; Dozat and Man-
ning, 2017) and sequence tagging (Ma and Hovy,
2016); and (2) the Transformer-based (Vaswani
et al., 2017) BERT feature extractor (Devlin et al.,
2019), pre-trained on large corpora and known to
provide superior accuracies on both tasks (Kitaev
et al., 2019; Kondratyuk and Straka, 2019). For
BERT models, we fine-tune the representations
from the final layer for our parsing and tagging
tasks. When the BERT tokenizer renders multiple
tokens from a single pre-tokenized word, we fol-
low Kitaev et al. (2019) and use the BERT features
from the last token as its representation.

3.2 (Edge-Factored) Parsing

Since we consider headless structures that are em-
bedded inside parse trees, it is natural to identify
them through a rule-based post-processing step af-
ter full parsing. Our parsing component replicates
that of the state-of-the-art Che et al. (2018) parser,
which has the same parsing model as Dozat and
Manning (2017). We treat unlabelled parsing as a
head selection problem (Zhang et al., 2017) with
deep biaffine attention scoring:

hattach
i “ MLPattach-headpxiq

mattach
j “ MLPattach-modpxjq

si,j “ rhattach
i ; 1sJU attachrmattach

j ; 1s

P phj “ i |xq “ softmaxips:,jq,

where MLPattach-head and MLPattach-mod are multi-
layer perceptrons (MLPs) that project contextual-
ized representations into a d-dimensional space;
r¨; 1s indicates appending an extra entry of 1 to the
vector; U att P Rpd`1qˆpd`1q generates a score si,j
for wj attaching to wi (which we can then refer
to as the head of wj , hj); a softmax function de-
fines a probability distribution over all syntactic
head candidates in the argument vector (we use the
range operator “:” to evoke a vector); and, recall,
we represent potential heads as integers, so that we
may write hj “ i P t0, . . . , nu.

The model for arc labeling employs an analo-
gous deep biaffine scoring function:

hrel
i “ MLPrel-headpxiq

mrel
j “ MLPrel-modpxjq

vi,j,r “ rh
rel
i ; 1sJU rel

r rm
rel
j ; 1s

P prj “ r |x, hj “ iq “ softmaxrpvi,j,:q,

where rj is the arc label between whj
and wj .

The objective for training the parser is to mini-
mize the cumulative negative log-likelihood

Lparse “
ÿ

pi˚,j˚,r˚qPE

r´ logP phj˚ “ i˚ |xq

´ logP pri “ r˚ |x, hj˚ “ i˚qs.

After the model predicts a full parse, we extract
headless structures as the tokens “covered” by the
longest-spanning f -arcs (f “ flat in UD).

3.3 Tagging
For extracting spans in texts, if one chooses to
ignore the existence of parse trees, BIO tagging
is a natural choice. We treat the decision for the
label of each token as an individual multi-class
classification problem. We let

P pti “ t |xq “ softmaxtpMLPtagpxiqq,

where MLPtag has 3 output units corresponding to
the scores for tags B, I and O respectively.5

We train the tagger to minimize

Ltag “
ÿ

i

´ logP pti “ t˚i |xq,

where t˚ corresponds to the gold BIO sequence.
During inference, we predict the BIO tags inde-
pendently at each token position and interpret the
tag sequence as a set of MWE spans. As a post-
processing step, we discard all single-token spans,
since the task is to predict multi-word spans.

3.4 A Joint Decoder
A parser and a tagger take two different views of
the same underlying data. It is thus reasonable to
hypothesize that a joint decoding process that com-
bines the scores from the two models might yield
more accurate predictions. In this section, we pro-
pose such a joint decoder to find the parser+tagger-
consistent structure with the highest product of
probabilities. Formally, if Y is the output space
for all consistent parse tree structures and BIO tag
sequences, for y P Y with components consisting

5Sequence tagging is traditionally handled by conditional
random fields (Lafferty et al., 2001, CRFs). However, in recent
experiments using contextualized representations on tagging
(Clark et al., 2018; Devlin et al., 2019), CRF-style loss func-
tions provide little, if any, performance gains compared with
simple multi-class classification solutions, at slower training
speeds, to boot. Our preliminary experiments with both bi-
LSTM and BERT-based encoders corroborate these findings,
and thus we report results trained without CRFs.
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Axioms:
R-INIT:

i i
: logP pti “ Oq

L-INIT:

i i
: 0

R-MWE:

i j
: δpi, jq

,

where δpi, jq “ logP pti “ Bq `
řj

k“i`1 plogP ptk “ Iq ` logP phk “ iqq

Deduction Rules:

R-COMB:
i k

: s1
k j

: s2

i j

: s1 ` s2
R-LINK:

i k

: s1

k ` 1 j

: s2

i j

: s1 ` s2 ` logP phj “ iq

L-COMB:
j k

: s1
k i

: s2

j i

: s1 ` s2
L-LINK:

j k ´ 1

: s1

k i

: s2

j i
: s1 ` s2 ` logP phj “ iq

Figure 3: Eisner’s (1996) algorithm adapted to parsing headless structures (unlabeled case), our modifications
highlighted in blue. All deduction items are annotated with their scores. R-MWE combines BIO tagging scores
and head selection parsing scores. We need no L-MWE because of the rightward headless-structure-arc convention.

of tags ti, head assignments hi, and relation labels
ri, our decoder aims to find ŷ satisfying

ŷ “ argmax
yPY

P py |xq,

where

P py |xq “
ź

i

P pti |xqP phi |xqP pri |x, hiq.

Fig. 3 illustrates our joint decoder in the unla-
beled case.6 It builds on Eisner’s (1996) decoder
for projective dependency parsing. In addition to
having single-word spans as axioms in the deduc-
tion system, we further allow multi-word spans
to enter the decoding procedures through the ax-
iom R-MWE. Any initial single-word spans receive
an O-tag score for that word, while the newly in-
troduced MWE spans receive B-tag, I-tag, attach-
ment and relation scores that correspond to the two
consistent views of the same structure. The time
complexity for this decoding algorithm remains the
same Opn3q as the original Eisner algorithm.

During training, we let the parser and the tagger
share the same contextualized representation x and
optimize a linearly interpolated joint objective

Ljoint “ λLparse ` p1´ λqLtag,

6In the labeled case, the parser further adds the arc-labeling
scores to the R-MWE and LINK rules.

where λ is a hyper-parameter adjusting the relative
weight of each module.7 This is an instance of
multi-task learning (MTL; Caruana, 1993, 1997).
MTL has proven to be a successful technique (Col-
lobert and Weston, 2008) on its own; thus, in our
experiments, we compare the joint decoder and
using the MTL strategy alone.

4 Experiments

Data We perform experiments on the MWE-
Aware English Dependency Corpus (Kato et al.,
2017) and treebanks selected from Universal De-
pendencies 2.2 (UD; Nivre et al., 2018) for hav-
ing frequent occurrences of headless MWE struc-
tures. The MWE-Aware English Dependency Cor-
pus provides automatically unified named-entity
annotations based on OntoNotes 5.0 (Weischedel
et al., 2013) and Stanford-style dependency trees
(de Marneffe and Manning, 2008). We extract
MWE spans according to mwe_NNP dependency
relations. We choose the UD treebanks based on
two basic properties that hold for flat structures

7The joint decoder combines tagging and parsing scores
regardless of whether the two modules are jointly trained.
However, since feature extraction is the most time-consuming
step in our neural models, especially with BERT-based feature
extractors, it is most practical to save memory and time by
sharing common feature representations across modules.
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Treebank # tokens
# headless

%
# headless Average Compliance

arcs spans span length ratio

English 731,677 32,065 4.38% 16,997 2.89 100.00%
U

D
2.

2

de_gsd 263,804 6,786 2.57% 5,663 2.59 93.00%
it_postwita 99,441 2,733 2.75% 2,277 2.26 94.89%
nl_alpino 186,046 4,734 2.54% 3,269 2.45 100.00%
nl_lassysmall 75,134 4,408 5.87% 3,018 2.46 99.82%
no_nynorsk 245,330 5,578 2.27% 3,670 2.54 99.78%
pt_bosque 206,739 5,375 2.60% 4,310 2.25 97.38%

Table 2: Dataset statistics. Language codes: de=German; it=Italian; nl=Dutch; no=Norwegian; pt=Portuguese.

conforming to the UD annotation guidelines: (1)
all words that are attached via flat relations must
be leaf nodes and (2) all words within a flat span
should be attached to a common “head” word, and
each arc label should be either flat or punct.8 For
each treebank, we compute its compliance ratio,
defined as the percentage of its trees containing flat
arc labels that satisfy both properties above; and
we filter out those with compliance ratios below
90%.9 We rank the remaining treebanks by their
ratios of flat relations among all dependency arcs,
and pick those with ratios higher than 2%. Six tree-
banks representing 5 languages, German (McDon-
ald et al., 2013), Italian (Sanguinetti et al., 2018),
Dutch (Bouma and van Noord, 2017), Norwegian
(Solberg et al., 2014) and Portuguese (Rademaker
et al., 2017), are selected for our experiments.10

Data statistics are given in Table 2. To construct
gold-standard BIO labels, we extract MWE spans
according to the longest-spanning arcs that corre-
spond to headless structures.

Implementation Details We use 3-layer bi-
LSTMs where each layer has 400 dimensions

8punct inside a headless span is often used for hyphens and
other internal punctuation in named entities. See the English
sentence in Fig. 2 for an example.

9The two properties defined in the UD guidelines for head-
less structures provide us with a common basis for uniform
treatment across languages and treebanks. Unfortunately, the
two properties can be violated quite often, due to issues in an-
notation and automatic treebank conversion into UD style. In
6 out of the top 10 treebanks containing the most flat relations,
(at least one of) these properties are violated in more than 35%
of the sentences with flat relations and have to be excluded
from our experiments. We hope that ongoing community ef-
fort in data curation will facilitate evaluation on more diverse
languages.

10It is a coincidence that all the selected languages are Indo-
European (IE). Although there are some non-IE treebanks with
high flat ratio, such as Korean (see Table 1), the annotated
structures frequently break one or both of the basic properties.
See Fig. 2 for violation examples.

in both directions and the inputs are concate-
nations of 100-dimensional randomly-initialized
word embeddings with the final hidden vectors
of 256-dimensional single-layer character-based
bi-LSTMs; for BERT, we use pre-trained cased
multi-lingual BERT models11 and fine-tune the
weights. We adopt the parameter settings of Dozat
and Manning (2017) and use 500 and 100 dimen-
sions for U att and U rel

r , respectively. The MLP in
the taggers have 500 hidden dimensions. We use
a dropout (Srivastava et al., 2014) rate of 0.33, a
single hidden layer, and a ReLU activation function
(Nair and Hinton, 2010) for all MLPs. The mod-
els are trained with the Adam optimizer (Kingma
and Ba, 2015) using a batch size of 16 sentences.
The learning rates are set to 1e´3 for bi-LSTMs
and 1e´5 for BERT initially and then multiplied
by a factor of 0.1 if the performance on the de-
velopment set stops improving within 3200 train-
ing iterations. For the parsing models, we use the
projective Eisner (1996) decoder algorithm. For
the joint training and joint decoding models, we
tune λ P t0.02, 0.05, 0.1, 0.3, 0.5, 0.9u for each
treebank independently and fix the settings based
on the best dev-set scores. We run each model with
5 different random seeds and report the mean and
standard deviation for each setting.

Results We report F1 scores based on multi-word
headless-structure extraction. Table 3 compares
different strategies for identifying headless MWEs
in parse trees. Tagging is consistently better than
parsing except for two treebanks with BERT fea-
ture extractor. Tagging beats parsing in all but two
combinations of treebank and feature extractor. As
hypothesized, our joint decoder improves over both
strategies by 0.69% (1.64%) absolute through com-
bined decisions from parsing and tagging with(out)

11https://github.com/huggingface/transformers

https://github.com/huggingface/transformers
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w/ bi-LSTM Compl. MTL Joint
Treebank Ratio Ó Parsing Tagging Parsing Tagging Decoding

English 100.00 91.24˘0.60 91.81˘0.45 93.00˘0.83 93.24˘0.76 93.49˘0.43

U
D

2.
2

nl_alpino 100.00 72.66˘1.73 74.94˘1.00 77.29˘0.80 75.58˘1.18 79.65˘1.05
nl_lassysmall 99.82 76.44˘1.56 77.98˘1.56 78.13˘0.98 77.58˘1.17 78.92˘1.00
no_nynorsk 99.78 85.34˘0.81 87.67˘0.90 86.72˘0.76 87.44˘0.76 88.40˘0.39
pt_bosque 97.38 89.55˘1.10 90.97˘0.46 91.30˘0.75 92.07˘1.04 90.63˘1.56
it_postwita 94.89 75.35˘1.05 76.37˘1.72 78.46˘1.08 77.87˘0.57 78.38˘1.04
de_gsd 93.00 63.32˘1.36 64.10˘1.31 64.81˘2.05 65.07˘1.35 65.86˘1.34

Average 79.13 80.55 81.39 81.26 82.19

w/ BERT Compl. MTL Joint
Treebank Ratio Ó Parsing Tagging Parsing Tagging Decoding

English 100.00 94.98˘0.26 95.45˘0.23 95.01˘0.20 95.86˘0.19 95.51˘0.58

U
D

2.
2

nl_alpino 100.00 83.87˘1.61 83.32˘1.01 84.65˘1.48 85.90˘1.51 86.61˘1.52
nl_lassysmall 99.82 87.16˘1.20 87.52˘0.59 88.10˘0.80 87.68˘0.78 88.35˘0.49
no_nynorsk 99.78 92.16˘0.93 93.48˘0.48 92.45˘0.34 93.11˘0.21 93.08˘0.62
pt_bosque 97.38 92.98˘0.82 93.47˘0.55 93.42˘0.65 93.85˘0.57 94.01˘0.19
it_postwita 94.89 80.80˘1.51 80.80˘1.52 80.90˘1.78 81.33˘0.43 80.83˘1.20
de_gsd 93.00 68.21˘1.43 70.28˘0.70 70.04˘1.14 71.05˘1.12 70.72˘0.90

Average 85.74 86.33 86.37 86.97 87.02

Table 3: Flat-structure identification test-set F1 scores (%) with bi-LSTM (top) and BERT (bottom). The cell with
the best result for each treebank has blue shading; results within one standard deviation of the best are bolded.

BERT. We also compare the joint decoding set-
ting with MTL training strategy alone. While joint
decoding yields superior F1 scores, MTL is respon-
sible for a large portion of the gains: it accounts
for over half of the average gains with bi-LSTMs,
and when we use pre-trained BERT feature extrac-
tors, the accuracies of jointly-trained taggers are
essentially as good as joint decoding models.

Interestingly, the choice of feature extractors
also has an effect on the performance gap between
parsers and taggers. With bi-LSTMs, tagging is
1.42% absolute F1 higher than parsing, and the
gap is mitigated through MTL. While pre-trained
BERT reduces the performance difference dramat-
ically down to 0.59% absolute, MTL no longer
helps parsers overcome this gap. Additionally, we
observe that MTL helps both parsing and tagging
models, demonstrating that the two views of the
same underlying structures are complementary to
each other and that learning both can be beneficial
to model training. By resolving such representa-
tional discrepancies, joint decoding exhibits further
accuracy improvement.

In terms of dependency parsing accuracies, we

confirm that our parsing-only models achieve
state-of-the-art performance on the UD treebanks,
but there are no significant differences in pars-
ing results among parsing-only, MTL and jointly-
decoded models. See Appendix for detailed results.

5 Related Work

Syntactic analysis in conjunction with MWE iden-
tification is an important line of research (Wehrli,
2000). The span-based representations that form
the basis of phrase-structure trees (as opposed to
dependency trees) are arguably directly compatible
with headless spans. This motivates approaches
using joint constituency-tree representations based
on context-free grammars (Arun and Keller, 2005;
Constant et al., 2013) and tree substitution gram-
mars (Green et al., 2011, 2013). Finkel and Man-
ning (2009) add new phrasal nodes to denote named
entities, enabling statistical parsers trained on this
modified representation to produce both parse trees
and named entity spans simultaneously. Le Roux
et al. (2014) use dual decomposition to develop a
joint system that combines phrase-structure parsers
and taggers for compound recognition. These ap-
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proaches do not directly transfer to dependency-
based representations since dependency trees do
not explicitly represent phrases.

In the context of dependency parsing, Eryiğit
et al. (2011) report that MWE annotations have
a large impact on parsing. They find that the de-
pendency parsers are more accurate when MWE
spans are not unified into single lexical items. Sim-
ilar to the phrase-structure case, Candito and Con-
stant (2014) consider MWE identification as a side
product of dependency parsing into joint represen-
tations. This parse-then-extract strategy is widely
adopted (Vincze et al., 2013; Nasr et al., 2015;
Simkó et al., 2017). Waszczuk et al. (2019) intro-
duce additional parameterized scoring functions for
the arc labelers and use global decoding to produce
consistent structures during arc-labeling steps once
unlabeled dependency parse trees are predicted.
Our work additionally proposes a joint decoder that
combines the scores from both parsers and taggers.
Alternative approaches to graph-based joint parsing
and MWE identification include transition-based
(Constant and Nivre, 2016) and easy-first (Constant
et al., 2016) dependency parsing. These approaches
typically rely on greedy decoding, whereas our
joint decoder finds the globally optimal solution
through dynamic programming.

Our work only focuses on a subset of MWEs that
do not have internal structures. There is substan-
tial research interest in the broad area of MWEs
(Sag et al., 2002; Constant et al., 2017) including
recent releases of datasets (Schneider and Smith,
2015), editions of shared tasks (Savary et al., 2017;
Ramisch et al., 2018) and workshops (Savary et al.,
2018, 2019). We leave it to future work to extend
the comparison and combination of taggers and
dependency parsers to other MWE constructions.

6 Conclusion and Further Directions

Our paper provides an empirical comparison of
different strategies for extracting headless MWEs
from dependency parse trees: parsing, tagging, and
joint modeling. Experiments on the MWE-Aware
English Dependency Corpus and UD 2.2 across
five languages show that tagging, a widely-used
methodology for extracting spans from texts, is
more accurate than parsing for this task. When us-
ing bi-LSTM (but not BERT) representations, our
proposed joint decoder reaches higher F1 scores
than either of the two other strategies, by combin-
ing scores of the two different and complementary

representations of the same structures. We also
show that most of the gains stem from a multi-task
learning strategy that shares common neural repre-
sentations between the parsers and the taggers.

An interesting additional use-case for our joint
decoder is when a downstream task, e.g., relation
extraction, requires output structures from both a
parser and a tagger. Our joint decoder can find
the highest-scoring consistent structures among all
candidates, and thus has the potential to provide
simpler model designs in downstream applications.

Our study has been limited to a few treebanks in
UD partially due to large variations and inconsisten-
cies across different treebanks. Future community
efforts on a unified representation of flat structures
for all languages would facilitate further research
on linguistically-motivated treatments of headless
structures in “headful” dependency treebanks.

Another limitation of our current work is that our
joint decoder only produces projective dependency
parse trees. To handle non-projectivity, one pos-
sible solution is pseudo-projective parsing (Nivre
and Nilsson, 2005). We leave it to future work to
design a non-projective decoder for joint parsing
and headless structure extraction.
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Appendix A Evaluation of the Strengths
of Our Parsing Models

To confirm that we work with reasonable parsing
models, we compare our parsers with those in the
CoNLL 2018 shared task (Zeman et al., 2018). The
shared task featured an end-to-end parsing task,
requiring all levels of text processing including
tokenization, POS tagging, morphological analysis,
etc. We focus on the parsing task only, and predict
syntactic trees based on sentences tokenized by the
Qi et al. (2018) submission.12 Table A1 shows that
our parsing models are highly competitive with the
current state-of-the-art. Indeed, on four out of the
six treebanks we selected for their density of flat
structures, our baseline models actually achieve
higher labeled attachment scores (LAS) than the
the top scorer did in the official shared task.

Treebank
Our CoNLL 2018

Parsers Best

de_gsd 80.65 80.36
it_ostwita 79.33 79.39
nl_alpino 89.78 89.56
nl_lassysmall 87.96 86.84
no_nynorsk 90.44 90.99
pt_bosque 89.25 87.81

Table A1: Comparison of our (non-MTL) parsing mod-
els with the best-performing systems (Che et al., 2018;
Qi et al., 2018) from the CoNLL 2018 shared task, mea-
sured by labeled attachment scores (LAS, %).

12We thank the shared task participants and the organizers
for making system predictions available at https://lindat.
mff.cuni.cz/repository/xmlui/handle/11234/1-2885.

Appendix B Do MTL and Joint Decoding
Help Parsing Performance?

In Table A2 (next page), we investigate whether
MTL and combining scores from both representa-
tions of flat-structure MWEs can improve parsing
performance. We observe very little difference
among the various strategies. This fact can be ex-
plained by the relatively low ratios of flat relations
and the already-high base performance: the room
for improvement on the standard LAS metrics is
quite small.

https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-2885
https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-2885
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w/ bi-LSTM Compl. MTL Joint
Treebank Ratio Ó Parsing Parsing Decoding

English 100.00 89.30˘0.41 89.39˘0.67 89.77˘0.52

U
D

2.
2

nl_alpino 100.00 81.97˘1.27 82.57˘0.99 82.79˘0.77
nl_lassysmall 99.82 82.06˘1.30 82.90˘0.64 81.55˘1.26
no_nynorsk 99.78 86.54˘0.50 86.35˘0.37 86.65˘0.64
pt_bosque 97.38 84.29˘2.15 84.48˘1.61 85.28˘0.25
it_postwita 94.89 77.39˘0.69 76.75˘1.29 76.59˘1.46
de_gsd 93.00 76.66˘0.64 76.35˘0.83 75.22˘1.98

Average 82.60 82.69 82.55

w/ BERT Compl. MTL Joint
Treebank Ratio Ó Parsing Parsing Decoding

English 100.00 93.73˘0.24 93.52˘0.17 93.38˘0.39

U
D

2.
2

nl_alpino 100.00 89.82˘0.55 89.95˘0.41 89.86˘0.59
nl_lassysmall 99.82 89.78˘0.46 89.76˘0.17 89.67˘0.16
no_nynorsk 99.78 90.77˘0.20 90.98˘0.38 90.85˘0.32
pt_bosque 97.38 89.78˘0.32 89.51˘0.39 89.79˘0.39
it_postwita 94.89 81.61˘0.32 81.70˘0.14 81.53˘0.63
de_gsd 93.00 81.51˘0.23 81.74˘0.23 81.52˘0.17

Average 88.14 88.17 88.09

Table A2: Dependency-parsing labeled attachment scores (LAS, %) on the test sets with bi-LSTM (top) and BERT
(bottom) feature extractors. The cell containing the best result for each treebank has blue shading; results within
one standard deviation of the best are in boldface.


