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Abstract

While deep learning models are making fast
progress on the task of Natural Language In-
ference, recent studies have also shown that
these models achieve high accuracy by exploit-
ing several dataset biases, and without deep un-
derstanding of the language semantics. Using
contradiction-word bias and word-overlapping
bias as our two bias examples, this paper ex-
plores both data-level and model-level debias-
ing methods to robustify models against lexi-
cal dataset biases. First, we debias the dataset
through data augmentation and enhancement,
but show that the model bias cannot be fully
removed via this method. Next, we also com-
pare two ways of directly debiasing the model
without knowing what the dataset biases are in
advance. The first approach aims to remove
the label bias at the embedding level. The
second approach employs a bag-of-words sub-
model to capture the features that are likely
to exploit the bias and prevents the original
model from learning these biased features by
forcing orthogonality between these two sub-
models. We performed evaluations on new
balanced datasets extracted from the original
MNLI dataset as well as the NLI stress tests,
and show that the orthogonality approach is
better at debiasing the model while maintain-
ing competitive overall accuracy.1

1 Introduction

In this work, we focus on investigating and re-
ducing biases in the task of Natural Language In-
ference (NLI), where the target of the model is
to classify the relations between a pair of sen-
tences into three categories: entailment, neutral
and contradiction. With the release of large-scale
standard datasets (Bowman et al., 2015; Williams
et al., 2018), significant success has been made on

1Our code and data are available at: https://github.
com/owenzx/LexicalDebias-ACL2020

this task, and recent state-of-the-art neural mod-
els have already reached competitive performance
even compared to humans. However, a number of
papers (Gururangan et al., 2018; Poliak et al., 2018;
Nie et al., 2019; Naik et al., 2018) have shown that
despite the high accuracy on these datasets, these
models are far from mastering the required nature
of natural language inference. Instead of deeply
understanding the sentences in the correct semantic
way, these models tend to exploit shortcuts or an-
notation artifacts in the dataset and actually overfit
to these datasets to predict the label using sim-
ple patterns. However, most shortcuts are only
valid within the datasets and fail to hold for gen-
eral natural language. Hence, these models fail to
generalize to other datasets for the same task (Tal-
man and Chatzikyriakidis, 2019), perform badly on
challenge analysis datasets (Glockner et al., 2018;
McCoy et al., 2019; Wang et al., 2019b), and are
fooled by adversarial attacks (Naik et al., 2018).

One major cause of this problem is the existence
of dataset biases. Since most NLP datasets are
often collected and processed by crowdworkers,
bias can be added to the data at every step of data
collection. For example, when writing contradic-
tion pairs, workers are likely to use negation words
such as ‘not’, and when creating entailment pairs,
workers are likely to keep most of the words in
the premise sentence. This results in ‘annotation
artifacts’ in the dataset (Gururangan et al., 2018).
In reality, almost every dataset contains countless
such diverse biases. In our paper, we focus on the
Multi-Genre Natural Language Inference (MNLI)
dataset (Williams et al., 2018) in English, and on
two specific kinds of dataset bias:
Contradiction Word Bias (CWB): If the hypoth-
esis sentence contains some specific words (such as
negation words) that are always used by the crowd-
workers to generate contradiction pairs, then the
sentence pair is very likely to be contradiction.

https://github.com/owenzx/LexicalDebias-ACL2020
https://github.com/owenzx/LexicalDebias-ACL2020
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Contradiction-Word Bias Word-Overlapping Bias
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I Prem. A recorded menu will provide information on how to
obtain these lists.

This is especially true on Menocra, where cold winter
winds limit the seasons length.

Hypo. Recorded menus do not provide any information at
this time.

On Menocra, where cold winter winds limit the sea-
sons length, this is especially true.

St
re

ss

Prem. Understanding is the key. This is especially true on Menocra, where cold winter
winds limit the seasons length.

Hypo. Understanding is the most important and false is not
true.

On Menocra, where cold winter winds limit the sea-
sons length, this is especially true and true is true.

Table 1: The example samples for the CWB and WOB in the original dataset and the test samples in NLI stress
tests (Naik et al., 2018) designed to reveal these biases (the stress test samples aim to fool the model to predict
contradiction by adding negation word and to not predict entailment by reducing word overlapping).

Word Overlapping Bias (WOB): If the premise
sentence and the hypothesis sentence have a high
word-overlap, then the sentence pair is very likely
to be entailment.

These two types of biases are selected as the fo-
cus of our experiments because: (1) there exist a
significant number of samples in the dataset where
they are a major problem; (2) they are conceptually
easy to understand and relatively easier to evaluate.
In our experiments, we not only used current exist-
ing evaluation datasets from Naik et al. (2018), but
also extracted balanced evaluation datasets from
the original data to evaluate these two biases. Al-
though we only focus on these two kinds of dataset
biases throughout our experiments, our methods
are not specifically designed for these two biases
and should be able to reduce other similar lexical
biases simultaneously.

Using these two example lexical biases, our pa-
per discusses the following three questions:
Q1. Is lexical bias a problem that can be solved by

only balancing the dataset?
Q2. Can the lexical bias problem be solved using

existing ideas from the gender bias problem?
Q3. What are some promising new modeling di-

rections towards reducing lexical biases?

As responses to these three questions, we con-
duct three lines of experiments. Firstly, we expand
the discussion of Q1 by studying whether and how
the bias can be reduced by debiasing the dataset.
For this, we add new training data which does not
follow the bias pattern. This new data can come
from two sources, either from the original train-
ing set or via manually generated synthetic data.
We show that both methods can slightly reduce the
model’s bias. However, even after adding a large
amount of additional data, the model still cannot
be completely bias-free. Another critical problem
with these data augmentation/enhancement based
debiasing methods is that we need to know the spe-
cific behaviour of the biases before making some

related changes to the dataset. However, in reality,
models are always faced with new training datasets
containing unknown and inseparable biases. Hence,
the answer to Q1 is mostly negative for simple
data-level approaches and we also need to focus on
designing direct model-debiasing methods.

Therefore, we turn our focus to directly debi-
asing the model (Q2 and Q3). The first method
is to debias the model at the lower level, i.e., by
directly debiasing the embeddings so that they do
not show strong biases toward any specific label.
This is one of the most prevalent methods for reduc-
ing gender biases, so through the examination of
this idea, we aim to compare lexical bias problems
to gender bias problems and highlight its unique-
ness (hence answering Q2). Finally, we debias the
model at the higher level, i.e., by designing an-
other bag-of-words (BoW) sub-model to capture
the biased representation, and then preventing the
primary model from using the highly-biased lexi-
cal features by forcing orthogonality between the
main model and the BoW model (via HEX pro-
jection (Wang et al., 2019a)). In our experiments,
we show that debiasing the prediction part of the
model at higher levels using BoW-orthogonality
is more effective towards reducing lexical biases
than debiasing the model’s low-level components
(embeddings). This approach can significantly ro-
bustify the model while maintaining its overall per-
formance, hence providing a response to Q3. We
also present qualitative visualizations using LIME-
analysis for the important features before and after
applying the BoW-orthogonality projection.

2 Related Work

Problems with NLI Models and Datasets. De-
spite the seemingly impressive improvements in
NLI tasks, recently a number of papers revealed
different problems with these models. Gururangan
et al. (2018) showed that annotation artifacts in the
datasets are exploited by neural models to get high
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accuracy without understanding the sentence. Po-
liak et al. (2018) showed a similar phenomenon by
showing models getting good performance but only
taking one sentence as the input. Nie et al. (2019)
showed that NLI models achieved high accuracy by
word/phrase level matching instead of learning the
compositionality. Naik et al. (2018) constructed
bias-revealing datasets by modifying the develop-
ment set of MNLI. In our evaluation, besides using
the datasets from Naik et al. (2018), we also extract
new datasets from the original MNLI dataset to
maintain the consistency of input text distribution.
Adversarial Removal Methods. Adversarial re-
moval techniques are used to control the content of
representations. They were first used to do unsuper-
vised domain adaptation in Ganin and Lempitsky
(2015). Xie et al. (2017) later generalized this ap-
proach to control specific information learned by
the representation. Li et al. (2018) used a similar ap-
proach to learn privacy-preserving representations.
However, Elazar and Goldberg (2018) showed that
such adversarial approach fails to completely re-
move demographic information. Minervini and
Riedel (2018) generate adversarial examples and
regularize models based on first-order logic rules.
Belinkov et al. (2019a,b) showed that adversarial re-
moval methods can be effective for the hypothesis-
only NLI bias. Our focus is on two different lexical
biases and our results are complementary to theirs.2

Recently, Wang et al. (2019a) proposed HEX pro-
jection to force the orthogonality between the target
model and a superficial model to improve domain
generalization for image classification tasks. Here,
to make the model less lexically biased, we apply
the HEX projection with specially-designed NLP
model architectures to regularize the representation
in our models. Even more recently, Clark et al.
(2019) and He et al. (2019) propose to robustify the
task model with the help of an additional simple
model, using ensembling to encourage cooperation
of the two models. On the other hand, our main
motivation to compare the advantages/limitations
of dataset vs. embedding vs. classifier debiasing
methods (against two different types of problem-
atic lexical biases in NLI), and also our classifier
debiasing method forces the task model to capture
orthogonal information via HEX projection.
Removing Gender Bias in NLP Models. There

2We have tried a similar approach via gradient reversal
w.r.t. BoW sub-model in preliminary experiments and ob-
served less effectiveness (than HEX-projection), which hints
that different types of biases can lead to different behaviors.

is also a line of work in NLP on analyzing and
reducing gender bias in NLP models. Bolukbasi
et al. (2016); Caliskan et al. (2017); Zhao et al.
(2018a) studied the bias problem in word embed-
dings. Zhao et al. (2017) reduced gender bias in
visual recognition using corpus-level constraints.
Zhao et al. (2018b) discussed the gender bias prob-
lem in co-reference resolution. These problems
are related to our work, but lexical biases are more
complex. Multiple inseparable lexical dataset bi-
ases can influence one single example and the same
word can have different lexical biases in differ-
ent contexts. Later in our experiments, we show
that these two problems behave differently and we
present the need for different solutions.

3 Data-Level Debiasing

Models naturally learn the biases from the dataset
they are trained on. Therefore, as we mentioned in
Q1 in Sec. 1, one may first wonder if lexical bias
can be completely removed by fixing the source
of the bias, i.e., datasets. While collecting large-
scale datasets (Bowman et al., 2015; Williams et al.,
2018) already takes a lot of time and effort, collect-
ing bias-free datasets is even more time-consuming
and hard to control. Therefore, here we focus on
getting additional data from currently-available re-
sources. We conducted experiments using two re-
sources of data. The first one is to do ‘data enhance-
ment’ by repeating samples in the original training
data. The second source is ‘data augmentation’ by
manually creating synthetic data. We follow the
construction of existing synthetic bias-revealing
datasets to create new samples for the training set
so that these targeted biases can be reduced.
Data Enhancement by Repeating Training
Data. For most kinds of biases, there still exists
a small portion of samples that don’t follow the
bias. Therefore, we reduce biases in datasets by
repeating this portion of samples. For CWB, we
select non-contradiction samples containing con-
tradiction words (details see Sec. 5.1) in the hy-
pothesis sentence but not in the premise sentence.
For the WOB, we select non-entailment samples
with highest word overlapping (measured by the
Jaccard distance (Hamers et al., 1989) of words).
Next, since the number of these unbiased samples
may not be large enough, we repeatedly add those
selected samples to make the training set more bal-
anced. The results from adding 500 new samples
to 50,000 new samples are shown in Sec. 6.1.
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Data Augmentation by Adding Synthetic Data.
Researchers have been using synthetic rules to gen-
erate harder or perturbed samples to fool the model.
Here, besides using these datasets only as the eval-
uation set, we also add these samples back to the
training set, similar to the concept of adversarial
training (Jia and Liang, 2017; Wang et al., 2019c;
Niu and Bansal, 2018) where the adversarial ex-
amples are added back to the training set so that
the resulting model will be more robust to similar
adversarial attacks. In our experiments, we follow
Naik et al. (2018) to append meaningless sentences
at the end of the hypothesis sentence like in Table 1
to create additional new samples. The detailed con-
struction of these samples can be seen in Appendix.
By learning from these augmented datasets, the
model should also be more robust to certain types
of perturbations/biases of the data.

In Sec. 6.1, our experiments showed that
while this approach can lead to less biased mod-
els, it cannot make the model completely bias-
free. Another disadvantage of these data enhance-
ment/augmentation approaches is that we need to
know all the specific kinds of biases in advance.
For instance, in order to reduce the CWB for ‘not’,
one needs carefully balance the samples contain-
ing ‘not’ in the training set. However, lots of other
words will exhibit similar biases (e.g., the model
tends to predict neutral when it sees ‘also’) and it is
impractical to identify and debias the dataset w.r.t.
every type of bias. Therefore, besides fixing the
dataset, we should also focus on directly debiasing
models against lexical biases.

4 Model-Level Debiasing

Model-level debiasing methods have the advantage
that there is no need to know the specific bias type
in advance. Here we propose two different methods.
The first method focuses on debiasing the content
of word/sentence embeddings, where we aim to re-
move strong bias in the embeddings towards any of
the labels so that there will be fewer shortcuts for
models to exploit. The second method builds a sep-
arate shallow bag-of-words (BoW) sub-model and
projects the primary model’s representation onto
the subspace orthogonal to this BoW sub-model
via the HEX projection algorithm (Wang et al.,
2019a). Our proposed methods can be applied to
a wide range of baseline model architectures. In
addition, none of our methods is bias-type specific,
so the results on CWB and WOB should generalize

to other similar lexical biases.

4.1 Baselines
We use sentence-embedding based models as our
baseline since they are more controllable, and be-
cause the interaction of sentences only appears at
the top classifier, which makes it easier to compare
the different effects of different regularization.3

Our baseline structures can be divided into three
stages. The first stage is to embed the words into
word embeddings. The second stage is to get the
representations for each sentence. We use three
layers of BiLSTM to get the representation. We
also added residual and skip-connections as Nie
et al. (2019), and find that it leads to better perfor-
mance. For the final stage, our baseline follows
Mou et al. (2016); Conneau et al. (2017) to con-
catenate these two sentence embeddings, their dif-
ference, and their element-wise product as follows:

m = [h1;h2;h1 − h2;h1 � h2] (1)

The resulting vector is passed through another
multi-layer perceptron (MLP) to get the final clas-
sification result.4

Next, we will describe two different methods to
directly debias the model.

4.2 Debiasing Embeddings
Word embeddings are an important component in
all neural NLP models. They contain the most basic
semantics of words. Recent studies have shown
that removing gender bias from word embeddings
can lead to less biased models (Zhao et al., 2018a).
In our work, as we discussed in Q2 in Sec. 1, we
explore whether similar ideas can be applied to
reducing lexical dataset biases.

For a large number of lexical dataset biases (e.g.,
CWB), the model tends to predict the label based
only on the existence of certain words. Hence, one

3Another popular choice of NLI model architecture is the
cross-attention based models (Chen et al., 2017; Devlin et al.,
2019). In our current work, we choose to only apply our BoW
Sub-Model approach on sentence-embedding based models
since our approach directly regularizes the representation vec-
tor learned by the main model, and hence it is most suitable for
models with a single vector containing rich information. On
the other hand, cross-attention based models do most of the
inference through cross-attention and do not learn such a sin-
gle vector, making it hard to regularize the model effectively
in a similar way. Investigation of similar HEX regularization
methods for cross-attention models is future work.

4Our baseline models achieve close to the best sentence
embedding based/cross-attention based models reported on
the NLI stress tests (Naik et al., 2018) and are hence good
starting points for this bias/debias analysis.
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Figure 1: The overall architecture for reducing bias us-
ing an embedding debiasing network. The red dashed
line denotes gradient reversal.

natural conjecture is that there is a strong bias to-
wards some labels in the word embeddings. Since
the label bias is not an attribute of the word, but it
is brought in by the model above, hence in order
to remove such label bias from the embeddings at
training time, we differ from Zhao et al. (2018a) to
use the gradient-reversal trick (Ganin and Lempit-
sky, 2015; Xie et al., 2017).

The architecture of this approach is illus-
trated in Figure 1. We denote the embeddings
of the two input sequences for our model as
w(a) = {w(a)

1 ,w
(a)
2 , . . . ,w

(a)
la
} and w(b) =

{w(b)
1 ,w

(b)
2 , . . . ,w

(b)
lb
} respectively, where a de-

notes the premise sentence while b denotes the hy-
pothesis sentence. In order to apply the reverse
gradient trick (Ganin and Lempitsky, 2015) to the
embeddings, we add a small embedding-debias net-
work (the left blue box in Figure 1) for each of
the embedding wi in our model. The embedding-
debias network is a simple MLP. Since the other
parts of the sentence context may also contribute to
the bias, the debiasing network takes both w(a)

i and
the sentence embedding of b (and vice versa for
debiasing w(b)) as the input and predicts the label
y. Therefore, the total loss of this method is:

L(θc, θe, θed) = Lc(θc, θe)−
λ

la + lb
Led(θe, θed)

Here, λ is the multitask coefficient. la and lb are the
lengths of two input sentences. Lc is the standard
classification loss using the main model and Led is
the sum of all the classification loss using the de-
bias network. θe are parameters of the embeddings
and sentence encoder of the main model, θc are
parameters of the top classifier of the main model,
and θed are parameters of the embedding-debias
network. In order to find the optimal parameters,
we follow Ganin and Lempitsky (2015) to reverse
the gradient for θe w.r.t. Led.

Besides this approach, we also tried two variants
by changing the input of the debias network. The
first one is emb basic, where we only take the
single embedding wi as the input. The second one
only takes one sentence embedding as the input and
is called ind sent. The results of our embedding-
debias methods are shown in Sec. 6.2.

4.3 Bag-of-Words Sub-Model Orthogonality

While debiasing the embeddings can robustify the
models against certain biases, it may not be effec-
tive for all the lexical biases. Some lexical bias
may exist at the deeper compositionality level (e.g.,
WOB), while debiasing the embeddings can regu-
larize only the most basic semantics units instead
of how these semantics units are composed by the
model. In addition, removing the label biases may
also hurt the useful semantics contained in the em-
beddings, leading to significant performance drops.
A better approach is to leave the embedding intact,
but try to regularize how the classifier uses these
features. We observe that models exploiting dataset
biases in the training set (e.g., CWB and WOB)
tend to use very simple and superficial features to
make the prediction. These models tend to ignore
the order of the words, fail to learn compositional-
ity, and do not have a deep semantic understanding
of the sentences. Therefore, we aim to robustify
the model by letting it use fewer simple and su-
perficial features. With this motivation, we train
a bag-of-words (BoW) model that only captures
superficial patterns of the words without any word
order/compositionality information. Then we use
HEX projection (Wang et al., 2019a) to project the
representation of the original primary model to the
orthogonal space of the representation of the BoW
model.

BoW Model. For the BoW sub-model, we first
get the embedding of all the words. Then, in order
to capture more co-occurrence information of the
words, we add a multi-head self-attention layer like
the one used in Vaswani et al. (2017) (but without
position embeddings), because we empirically find
that this improves the performance. Finally, we use
mean-pooling among all the vectors to get the BoW
sentence-embedding: hbow = 1

l {self att(w)}.
To get a single representation for the sentence-pair,
we used the same concatenation layer as in Eqn 1
and pass the vector through an additional MLP to
get the representation ubow.

HEX Projection. Next, in order to encourage the
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Figure 2: The overall architecture for debiasing the
model via orthogonal projection w.r.t. BoW sub-model.

primary model to learn better features that are not
learn-able by the BoW model, we used the HEX
projection layer from Wang et al. (2019a), which
was originally proposed to improve the domain gen-
eralization performance of computer vision models;
here we combine HEX with BoW sub-model to ro-
bustify NLI models. With the addition of the BoW
sub-model, we can get two representations of the
sentence pair umain and ubow. In order to let the
final prediction to use high-level features that are to
some extent independent of the shallow and high-
biased BoW feature, HEX projection layer projects
these two representations into orthogonal spaces to
achieve the independence.

The inputs of the HEX projection layers are the
BoW model output ubow and the corresponding out-
put of the main model umain. We use f to denote
the final classification network parameterized by ξ.
Next, by zero-masking one of the two inputs, the
HEX projection layer can receive three different
inputs and calculate three different vector outputs:

FA = f([ubow;umain], ξ)

FP = f([0;umain], ξ)

FG = f([ubow;0], ξ)

(2)

To ensure that the overall model learns different
features than the BoW model, we project the joint
output FA to the orthogonal space of FG to get FL:

FL = (I− FG(FT
GFG)

−1FT
G)FA (3)

The output learns good representations for both sen-
tences but lies in the orthogonal space of the output
got from BoW sub-model’s input, thus not over-
emphasizing on word-pattern information. This
vector goes through the softmax layer to calculate

the probabilities for each label. Finally, we follow
the original paper (Wang et al., 2019a) to mini-
mize a weighted combination of the loss for FL

and FG, and use FP for testing. In Sec. 6.2, we
show that by adding the BoW sub-model orthogo-
nality, the model can be more robust against CWB
and WOB while maintaining competitive overall
accuracy. Hence, as a response to Q3 in Sec. 1, our
results indicate that debiasing models at the upper
level with regularization on the compositionality is
a more promising direction against lexical biases.

5 Experimental Setup

5.1 Datasets

We evaluate our models using both off-the-shelf
testing datasets as well as new datasets extracted
from the original MNLI dataset. We use the word
overlap and the negation sets from the NLI stress
tests dataset (Naik et al., 2018). These two eval-
uation sets from the NLI stress tests modified the
original MNLI development set by appending some
meaningless phrases (examples shown in Table 1).
If the model has certain biases, then the model
will be fooled by such perturbations and make the
wrong classification.

In addition, we also extract samples from the
original MNLI development dataset to get bias test-
ing sets with exactly the same data distribution.
We first select samples that follow the bias pattern
from the matched development set. For CWB, we
use ‘not’, ‘no’, ‘any’, ‘never’ ,and ‘anything’ as
five example contradiction words. To make this
testing set balanced for labels (contradiction vs
non-contradiction for CWB and entailment vs non-
entailment for WOB), we move some samples with
the same pattern from the training set to this testing
set.5 Later we refer to this dataset as Bal.

Since the negation dataset from NLI stress tests
dataset only considers the word ‘not’, it fails to eval-
uate the bias for other contradiction words. We aug-
ment this dataset by creating new samples for other
contradiction words. We denote the original NLI
stress tests dataset as Stress and this augmented
one as Stress*. Please refer to the Appendix for a
detailed description of how we chose the example
contradiction words and created our test sets.

Throughout our experiments, we select the best

5While this makes our model’s performance incomparable
to other literature, we train all the models in our experiments
in this same setting to ensure the fairness of our analysis
comparisons. All our experiments use the same val/test set.
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MNLI Bal Stress*
Train/Test Acc Acc Acc hr Acc Acc hr

baseline 69.8 70.5 45.7 50.9 38.7
+ origin 69.7/69.2/69.1 71.2/71.1/70.6 46.3/49.0/47.9 49.7/49.2/50.7 40.2/40.2/42.1

+ synthetic 69.8/70.0/69.7 71.0/70.7/71.2 45.7/45.9/47.1 67.2/68.5/68.4 65.8/68.3/68.4

Table 2: The performance for reducing the CWB via data enhancement/augmentation. The numbers each repre-
senting the result after adding 500/20,000/50,000 additional data.

model during training on the MNLI mismatched
development dataset and we tune all the hyper-
parameters on the NLI Stress mismatch datasets.
All the other datasets are only used as test sets and
we only report results on these test sets. We use the
MNLI matched development dataset to evaluate the
overall performance of the model.

5.2 Metrics
Overall accuracy is widely used as the only metric
for NLI. However, models can get very high ac-
curacy by exploiting the bias patterns. Hence, in
order to test how the model performs when it can-
not exploit the bias pattern, we focus on model’s
accuracy on the harder parts of the data (Acc hr)
where the bias pattern is wrong6. For the balanced
testing set, this subset means samples with ‘non-
contradiction’ label for CWB case and samples
with ‘non-entailment’ label for the WOB case. For
the NLI stress tests dataset7, this subset means
the samples with ‘non-contradiction’ label for the
CWB set and the samples with ‘entailment’ label
for the WOB set. Ideally, for an unbiased model, it
should both have competitive overall performance
and perform almost equally well on these harder
parts of the data. Hence, we focus on maintaining
the accuracy on the whole dataset and improving
the Acc hr metric. All training details and hyper-
parameter settings are presented in Appendix.

6 Results

6.1 Data-Level Debiasing Results
We first show our baseline’s performance on the
CWB biases in the first row of Table 2. Since we ob-

6One may wonder if biases can also be evaluated simply
using generalization performance. However, good generaliza-
tion to current datasets (e.g., SNLI (Bowman et al., 2015),
MNLI (Williams et al., 2018), SICK (Marelli et al., 2014),
etc.) is different from being bias-free. As shown in Guru-
rangan et al. (2018), similar annotation artifacts can appear
in multiple different datasets. So by overfitting to common
lexical biases across multiple datasets, biased models might
still reach higher generalization accuracy.

7Another metric on NLI-stress can be checking the portion
of model predictions on the hard data that is correct both be-
fore and after adding the extra words. We empirically verified
that this metric shows the same result trends as Acc hard.

serve similar performance for CWB and WOB, we
leave the results for WOB in Appendix. On every
dataset, there’s a significant gap between Acc and
Acc hr, showing the baseline has both strong CWB
bias and strong WOB bias. For the data augmen-
tation/enhancement experiments, we report results
after adding 500/20,000/50,000 additional samples.
We demonstrate the effect of adding a small portion
of data for the 500 case and the limitation of this
method using the 20,000 and 50,000 cases.8 The re-
sults are again shown in Table 2. We use “+origin”
to denote the results from data enhancement using
the original dataset and use “+synthetic” to denote
the results from data augmentation by generating
new synthetic data similar to NLI stress tests.9

With a small number of additional data (500),
wherever the data comes from, the performance
on the balanced testing set remains very close.
However, the performance on the NLI stress tests
improves significantly when it sees 500 synthetic
new samples generated in the same way. The gap
between the overall accuracy and the Acc hr on
NLI stress tests is reduced to less than 5%, which
means that the models can easily learn how the syn-
thetic data is generated through only 500 samples.
Next, we compare the performance after adding
20,000 and 50,000 additional data to check the
limitation of the improvement from adding addi-
tional data. With this amount of additional original
data, the Acc hr on the balanced dataset improves
and the model is less biased. However, adding
20,000/50,000 synthetic samples doesn’t always
lead to the improvement on the balanced dataset.
This reflects that the generation rules of NLI stress
tests dataset are too simple so that training on these
adversarial samples is not a good way to robustify
the model. However, more natural and diverse syn-
thetic data may be helpful to robustify the models.

There is still a significant gap between over-
all accuracy and Acc hr even after 50,000 sam-

8Adding additional data (e.g., 50,000) can change the label
distribution, but we have experimented with different numbers
of additional data between 500 and 50,000 and the reported
trend always holds.

9We run all the experiments 5 times and report the mean.
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CWB WOB
MNLI Bal Stress* Bal Stress

Model Acc Acc Acc hr Acc Acc hr Acc Acc hr Acc Acc hr

baseline 70.0 70.6 45.3 49.9 37.0 75.4 58.5 59.8 40.2
emb basic 67.8 70.3 49.5 50.2 41.1 73.9 56.2 56.9 35.6
emb cond 67.9 68.5 46.4 48.8 38.3 74.5 54.5 56.7 39.6
sgl sent 67.2 68.9 47.3 48.8 37.4 73.8 55.5 54.1 29.1

Table 3: The performance for debiasing the embeddings on CWB and WOB.

CWB WOB
MNLI Bal Stress* Bal Stress

Model Acc Acc Acc hr Acc Acc hr Acc Acc hr Acc Acc hr

baseline 69.8±0.25 70.5±0.75 45.7±2.28 50.9±1.50 38.7±3.94 76.3±0.59 59.4±0.82 58.2±3.04 37.6±9.63
+ BoW 68.4±0.25 72.6±0.84 56.3±1.69 54.9±0.66 48.0±1.44 75.1±0.90 69.3±1.51 60.8±1.05 46.6±4.64

#layers=2 69.8±0.34 69.9±0.93 44.8±1.70 51.4±0.94 40.0±2.05 76.6±0.85 58.6±0.84 58.7±1.56 40.5±5.49
+ BoW 68.5±0.47 71.2±1.05 54.1±1.65 56.3±1.26 49.9±1.24 74.2±1.41 68.1±0.76 62.2±1.41 49.6±4.34

Table 4: The performance for BoW sub-model orthogonality on CWB and WOB. The means and standard deviation
here are averaged over five random runs.

ples. Also, the effect of adding the last 30,000
data is very small, indicating a clear limitation of
this method. Thus, doing simple data augmenta-
tion/enhancement only using the currently avail-
able resources is insufficient to fully debias the
model. In addition, one has to carefully select
which data to add for each different bias, so we
need to also design inherently more robust models.

6.2 Model-Level Debiasing Results

Debiasing Embeddings (Lower Level Model De-
biasing). We compared three variants of debiasing
embeddings in Table 3. Empirically, we observe
that training the whole model with the debias net-
work from a pre-trained baseline can significantly
improve the stability of results, so we perform
our experiments from one baseline with average
performance for fair comparisons. The multi-task
coefficient λ controls the trade-off between high
accuracy and little bias. Here we report the re-
sults with λ = 1, which we find is one good bal-
ance point. From both tables, none of the methods
achieved a significant improvement on the Acc hr
metrics. The best results come from the emb basic
approach, but even this method only achieves small
improvement on the Acc hr metric for CWB but
does worse on WOB and has a comparable loss on
overall Acc. We do not observe any significantly
larger improvements with smaller or larger λ. We
also tried other techniques to further stabilize the
training (e.g., freezing the main model when train-
ing, using different optimization algorithms), but
we observe no significant improvement.

Therefore, while removing the bias from the em-
beddings is effective for reducing gender bias (e.g.,

remove the male bias from the word ‘doctor’ to
make the embedding gender-neutral), it does not
help in debiasing certain lexical biases. Directly
removing information from the embedding only
slightly debiases the model but also hurts the over-
all performance. The difference in these results
highlights the difference between gender bias and
lexical bias problems. As shown in these experi-
ments, lexical biases cannot be effectively reduced
at the embedding level. We argue that this is be-
cause a majority of lexical biases appear at the com-
positionality level. For example, for WOB, a biased
model will predict “entailment” entirely relying on
the overlapping word embeddings on both sides.
Here, even when we make the embeddings com-
pletely unbiased, as long as the upper model learns
to directly compare the overlapping of embeddings
on both sides, there will still exist a strong WOB
bias in the model. Hence, in order to robustify
models towards lexical bias, we need to develop
methods that regularize the upper-interaction part
of the model.

BoW Sub-Model Orthogonality (Higher Level
Model Debiasing). Results for adding the BoW
sub-model are shown in Table 4. Here, we also
show that the improvement trend holds regardless
of minor hyper-parameter changes in the model
(number of layers). On both CWB and WOB, the
model shows a large improvement on Acc hr for
both Bal and stress-test datasets. We achieve close
or higher Acc on all the bias testing sets and the
overall Acc is only 1.4%/1.3% lower than the base-
line, showing that adding a BoW sub-model or-
thogonality will only slightly hurt the model. In
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conclusion, this approach significantly robustifies
the model against CWB and WOB while maintain-
ing competitive overall performance. In compar-
ison to the debiasing embeddings results, we can
see that instead of regularizing the content in the
word embeddings, regularizing the model’s compo-
sitionality at the upper interaction level is a more
promising direction for debiasing lexical biases.
We have also tried combining this method with
the data-level debiasing approach above but get no
further improvement.10

6.3 Qualitative Feature Analysis

We use LIME (Ribeiro et al., 2016) to qualita-
tively visualize how orthogonal projection w.r.t.
BoW sub-model changes the features used by the
model. We selected one example from the CWB
Bal dataset to see how applying the BoW model
with HEX corrects previous mistakes. From Fig.
3, we can see that before applying the BoW sub-
model (the upper part of the figure), the model
predicts the contradiction label almost solely based
on the existence of the word “no” in the hypothesis.
However, after applying our BoW sub-model with
HEX projection, our model can give higher impor-
tance to other useful features (e.g., the match of the
two “bad” tokens, and the match of important past-
tense temporal words such as “passed” and “longer”
in the premise-hypothesis pair) despite the fact that
“no” still has high influence towards the contradic-
tion label. Another example from the CWB Stress*
dataset can be seen in Appendix.

7 Conclusion

We study the problem of lexical dataset biases using
WOB and CWB as two examples. We first showed
that lexical dataset biases cannot be solved by sim-
ple dataset changes and motivate the importance
of directly designing model-level changes to solve
this problem. For model-level changes, we first
show the ineffectiveness of embedding-debiasing
approaches, thus highlighting the uniqueness of
lexical bias against gender bias problems. Next,

10We also tried some initial simple ensembles of 2 different
initializations of BoW sub-models, so that we can potentially
regularize against a more diverse set of lexicon biases. When
training, the main model is paired with each BoW sub-models
to go through each HEX layers and then the output logits are
averaged to get the final logits. This ensembling results also
outperform the baseline significantly and is higher than the
single BoW Sub-Model in WOB Stress, but equal or worse in
the other cases. We leave the exploration of different/better
ways of ensembling to future work.

Figure 3: LIME analysis on the CWB Bal dataset show-
ing the 6 most important features used by the model.

we robustify the model by forcing orthogonality
between a BoW sub-model and the main model
and demonstrate its effectiveness through several
experiments. Since none of our methods is bias-
type specific, we believe these results can also be
generalized to other similar lexical biases. Finally,
we would like to point out that our methods and
results here do not mean to belittle the importance
of collecting clean/unbiased data. We strongly be-
lieve in the importance of unbiased data for model
design and evaluation. However, some biases are
inherent and inevitable in the natural distribution
of the task (e.g., for NLI, it is natural that sentences
with high overlapping are most likely entailment
pairs). Therefore, our work stresses that it is also
very important to encourage the development of
models that are unlikely to exploit these inevitable
biases/shortcuts in the dataset. Neither model-level
debiasing nor data-level debiasing alone is the con-
clusive solution for this problem. Joint efforts are
needed for promoting unbiased models that learn
true semantics; and we hope our paper can encour-
age more work towards this important direction.
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Appendix

A Training Details

For all our models except BERT (Devlin et al.,
2019), we use pre-trained 300-dimension GloVe
(Pennington et al., 2014) word embeddings to ini-
tialize the embedding layers. The hidden dimen-
sion of LSTM (Hochreiter and Schmidhuber, 1997)
is 300. We use Adam (Kingma and Ba, 2015) as
the optimizer and the initial learning rate is set to
0.0004. We apply dropout (Srivastava et al., 2014)
with a rate of 0.4 to regularize our model. For the
model with HEX projection, we apply all the tricks
in the original paper (Wang et al., 2019a) (column-
wise normalize the input features in every batch,
fine-tune from a trained model with the bottom
layer fixed) to stabilize the training. In our exper-
iments, we set the multi-task coefficient between
loss for FL and FG to 1.0 and 0.3.

B Detailed Description of the Extraction
of Balanced Testing Sets

B.1 Extraction of the
Contradiction-Word-Bias Testing Set

For evaluating the contradiction-word-bias (CWB),
we look for words that both have a strong bias
towards the ‘contradiction’ label and have a signifi-
cant number of samples in the training set. We first
select ‘no’, ‘any’, ‘never’ and ‘anything’, which
are four most frequent words with over 50% of

https://openreview.net/forum?id=rJEjjoR9K7
https://openreview.net/forum?id=rJEjjoR9K7
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contradiction-word appended phrase
no and false is no true
any and any true is true

never and false is never true
anything and anything true is true

not and false is not true

Table 5: The phrases to append at the end of the hypoth-
esis sentence for each contradiction word.

samples in the training data containing these words
labeled as ’contradiction’. Since most of the anal-
ysis papers also study the bias of ‘not’, here we
also include the ‘not’ as the contradiction word.
However, as in the training set of MNLI (Williams
et al., 2018), only 45.3% of the samples are ‘con-
tradiction’, so the bias of ‘not’ is actually not as
strong as the other words.

Next, in order to create a balanced dataset for
these selected contradiction-words, we first se-
lect the samples containing these words from the
matched development set. In order to let the sam-
ples be more difficult and better test the model’s
bias. We only select the samples where the hypoth-
esis samples contain the contradiction word, while
there’s no negation word in the premise sentence
(so that the contradiction word is generated by the
annotator instead of copying from the premise sen-
tence). Since the bias of ‘not’ is not uniformly
strong, here we only select samples that both con-
tain ‘not’ and have small Jaccard distance (Hamers
et al., 1989) between the sentence pairs, which we
empirically find that the bias is stronger.

After selecting these samples, we can extract
a testing set with most of the samples labeled as
contradiction, but the label distribution is severely
unbalanced. In order to balance the label distri-
bution, we randomly sample some examples from
the training set using the same criterion (contain-
ing contradiction word in the hypothesis sentence
but no negation word in the premise sentence) and
put them in the testing set. Our resulting dataset
contains 1100 samples with 550 are labeled as con-
tradiction and the other 550 are non-contradiction
labels. Since the domain of the training set is differ-
ent from the domain of the mismatched validation
set, we only extract a balanced test set based on the
matched validation set.

B.2 Extraction of the
Word-Overlapping-Bias Testing set

We first sort the samples in the MNLI matched
validation set using Jaccard distance (Hamers et al.,

1989) and choose the samples with the smallest
distance (highest overlapping). In order to match
the size of the contradiction-word-bias testing set,
we select the top 550 samples with entailment label
and the top 550 samples with non-entailment label
to get a dataset with high word overlapping but
balanced label distribution.

C Construction of Synthetic Data

We follow the construction rule of the NLI stress
tests (Naik et al., 2018) to generate synthetic data
for the training set. We appended meaningless
sentences at the end of the hypothesis sentence
and keep the original label unchanged. For CWB,
we focus on 5 different contradiction words: ‘no’,
‘any’, ‘never’, ‘anything’ ,and ‘not’. Therefore, for
each sentence pair, we create five different new
pairs by appending five different phrases for eval-
uating the bias of each contradiction word. The
appended phrases are listed in Table 5. For WOB,
we also follow (Naik et al., 2018) to append ‘and
true is true’ to every hypothesis sentence to create
one new pair for each sample.

D Data Augmentation/Enhancement
Results for BERT

The data augmentation/enhancement results for
BERT-base (Devlin et al., 2019) is shown in Ta-
ble 7 and Table 8. 11 As is shown in Table 7,
BERT shows significant performance gap between
Acc and Acc hr on both CWB datasets, indicat-
ing BERT’s clear bias on CWB. As for WOB,
the gap between Acc and Acc hr for Bal is much
smaller, however, the performance on Stress is very
poor. Therefore, we assume that even though BERT
achieves a high score on the WOB Bal dataset,
BERT is just overfitting the dataset in another dif-
ferent way, i.e., there is still significant WOB bias
in BERT. In conclusion, in our experiment, BERT
still shows significant CWB and WOB.

Similar to our main data augmenta-
tion/enhancement results, here we find that
after adding 500 additional synthetic samples,
BERT can quickly learn their pattern. But still,
adding more synthetic data doesn’t help improve
the performance on the Bal dataset. For BERT,
we also cannot see any significant improvement
when adding additional original samples. In all the
+ origin experiments, BERT performs similarly.
Again, this shows the limitation of the data

11We run all the experiments 5 times and report the mean.



8771

MNLI Bal Stress
Train/Test Acc Acc Acc hr Acc Acc hr

baseline 69.8 76.3 59.4 58.2 37.6
+ origin 70.1/70.0/69.4 77.1/77.5/76.4 61.5/64.1/64.7 56.0/58.0/55.4 31.0/37.3/29.5

+ synthetic 70.0/69.8/69.6 77.2/75.7/75.7 61.3/58.8/58.6 67.7/68.8/68.7 66.2/72.9/72.0

Table 6: The performance of LSTM baseline model for reducing the WOB via data enhancement/augmentation.
The numbers each representing the result after adding 500/20,000/50,000 additional data.

MNLI Bal Stress*
Train/Test Acc Acc Acc hr Acc Acc hr

baseline 82.3 84.2 71.2 55.8 41.9
+ origin 82.3/82.6/82.7 83.8/83.7/83.6 70.7/70.6/70.2 55.7/55.3/55.2 42.4/41.7/43.2

+ synthetic 82.6/82.4/82.4 84.3/84.1/84.3 71.9/71.2/71.5 83.3/84.0/83.9 81.9/83.2/83.0

Table 7: The performance of BERT for reducing the CWB via data enhancement/augmentation. The numbers each
representing the result after adding 500/20,000/50,000 additional data.

MNLI Bal Stress
Train/Test Acc Acc Acc hr Acc Acc hr

baseline 82.3 90.5 87.0 58.1 6.49
+ origin 82.7/82.4/82.4 91.3/90.5/90.8 87.9/87.2/87.5 58.1/58.2/58.1 7.43/7.61/5.88

+ synthetic 82.4/82.5/82.5 90.7/90.6/91.1 87.0/86.7/87.5 83.4/84.0/83.9 82.4/83.8/83.8

Table 8: The performance of BERT for reducing the WOB via data enhancement/augmentation. The numbers each
representing the result after adding 500/20,000/50,000 additional data.

Figure 4: LIME analysis on the CWB Stress* dataset showing the 6 most important features used by the model.

augmentation/enhancement approach, especially
starting with a stronger baseline as BERT.

E More Qualitative Feature Analysis
In Fig. 4, we can see the feature importance change
before/after adding the BoW sub-model for a CWB
Stress* example (we chose a borderline example
where the prediction distribution change to the

correct label is not extreme). We can see that
before adding the BoW sub-model orthogonality-
projection, the extra misleading words (both “and”
and “not”) confused the model to predict the wrong
contradiction label, while after adding the BoW
sub-model, our model can assign higher weights to
useful features such as “have”, “before”, etc.


