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Abstract
Models for natural language understanding
(NLU) tasks often rely on the idiosyncratic
biases of the dataset, which make them brit-
tle against test cases outside the training dis-
tribution. Recently, several proposed debias-
ing methods are shown to be very effective
in improving out-of-distribution performance.
However, their improvements come at the ex-
pense of performance drop when models are
evaluated on the in-distribution data, which
contain examples with higher diversity. This
seemingly inevitable trade-off may not tell
us much about the changes in the reasoning
and understanding capabilities of the result-
ing models on broader types of examples be-
yond the small subset represented in the out-
of-distribution data. In this paper, we address
this trade-off by introducing a novel debias-
ing method, called confidence regularization,
which discourage models from exploiting bi-
ases while enabling them to receive enough
incentive to learn from all the training ex-
amples. We evaluate our method on three
NLU tasks and show that, in contrast to its
predecessors, it improves the performance on
out-of-distribution datasets (e.g., 7pp gain on
HANS dataset) while maintaining the original
in-distribution accuracy.1

1 Introduction

Despite the impressive performance on many nat-
ural language understanding (NLU) benchmarks
(Wang et al., 2018), recent pre-trained language
models (LM) such as BERT (Devlin et al., 2019)
are shown to rely heavily on idiosyncratic biases
of datasets (McCoy et al., 2019b; Schuster et al.,
2019; Zhang et al., 2019). These biases are com-
monly characterized as surface features of input
examples that are strongly associated with the tar-
get labels, e.g., occurrences of negation words in

1The code is available at https://github.com/
UKPLab/acl2020-confidence-regularization

natural language inference (NLI) datasets which
are biased towards the contradiction label (Guru-
rangan et al., 2018; Poliak et al., 2018). As a rami-
fication of relying on biases, models break on the
out-of-distribution data, in which such associative
patterns between the surface features and the tar-
get labels are not present. This brittleness has, in
turn, limited their practical applicability in some
extrinsic use cases (Falke et al., 2019).

This problem has sparked interest among re-
searchers in building models that are robust against
dataset biases. Proposed methods in this direc-
tion build on previous works, which have largely
explored the format of several prominent label-
revealing biases on certain datasets (Belinkov et al.,
2019). Two current prevailing methods, product-of-
expert (He et al., 2019; Mahabadi and Henderson,
2019) and learned-mixin (Clark et al., 2019a) in-
troduce several strategies to overcome the known
biases by correcting the conditional distribution
of the target labels given the presence of biased
features. They achieve this by reducing the impor-
tance of examples that can be predicted correctly
by using only biased features. As a result, models
are forced to learn from harder examples in which
utilizing solely superficial features is not sufficient
to make correct predictions.

While these two state-of-the-art debiasing meth-
ods provide a remarkable improvement on the tar-
geted out-of-distribution test sets, they do so at the
cost of degrading the model’s performance on the
in-distribution setting, i.e., evaluation on the origi-
nal test data which contains more diverse inference
phenomena. It raises a question on whether these
debiasing methods truly help in capturing a better
notion of language understanding or simply bias-
ing models to other directions. Ideally, if such an
improvement is achieved for the right reasons (i.e.,
better reasoning capabilities by learning a more
general feature representation), a debiased model

https://www.ukp.tu-darmstadt.de
https://github.com/UKPLab/acl2020-confidence-regularization
https://github.com/UKPLab/acl2020-confidence-regularization
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product-of-
expert

learned-
mixin

conf-reg
(our)

in-distribution
out-of-distribution

calibration

requires biased model 4 4 4

requires hyperparameter 6 4 6

Table 1: Comparison of our method against the state-of-
the-art debiasing methods. Learned-mixin (Clark et al.,
2019a) is a parameterized variant of Product-of-expert
(He et al., 2019; Mahabadi and Henderson, 2019). Our
novel confidence regularization method improves the
out-of-distribution performance while optimally main-
tain the in-distribution accuracy.

should still be able to maintain its accuracy on pre-
viously unambiguous instances (i.e., instances that
are predicted correctly by the baseline model), even
when they contain biases.

In this work, we address this shortcoming by in-
troducing a novel debiasing method that improves
models’ performance on the out-of-distribution ex-
amples while preserves the in-distribution accu-
racy. The method, called confidence regulariza-
tion, draws a connection between the robustness
against dataset biases and the overconfidence pre-
diction problem in neural network models (Feng
et al., 2018; Papernot et al., 2016). We show that
by preventing models from being overconfident on
biased examples, they are less likely to exploit the
simple cues from these examples. The motivation
of our proposed training objective is to explicitly
encourage models to make predictions with lower
confidence (i.e., assigning a lower probability to the
predicted label) on examples that contain biased
features.

Table 1 shows the comparison of our method
with the existing state-of-the-art debiasing methods:
product-of-expert and learned-mixin. We show that
our method is highly effective in improving out-
of-distribution performance while preserving the
in-distribution accuracy. For example, our method
achieves 7 points gain on an out-of-distribution
NLI evaluation set, while slightly improves the
in-distribution accuracy. Besides, we show that
our method is able to improve models’ calibration
(Guo et al., 2017) so that the confidences of their
predictions are more aligned with their accuracies.
Overall, our contributions are the following:

• We present a novel confidence regularization
method to prevent models from utilizing bi-

ased features in the dataset. We evaluate the
advantage of our method over the state-of-the-
art debiasing methods on three tasks, includ-
ing natural language inference, fact verifica-
tion, and paraphrase identification. Experi-
mental results show that our method provides
competitive out-of-distribution improvement
while retaining the original in-distribution per-
formance.

• We provide insights on how the debiasing
methods behave across different datasets with
varying degrees of biases and show that our
method is more optimal when enough bias-
free examples are available in the dataset.

2 Related Work

Biases in Datasets Researchers have recently
studied more closely the success of large fine-tuned
LMs in many NLU tasks and found that models are
simply better in leveraging biased patterns instead
of capturing a better notion of language understand-
ing for the intended task (Bender and Koller, 2020).
Models’ performance often drops to a random base-
line when evaluated on out-of-distribution datasets
which are carefully designed to be void of the bi-
ases found in the training data. Using such targeted
evaluation, McCoy et al. (2019b) observe that mod-
els trained on MNLI dataset (Williams et al., 2018)
leverage syntactic patterns involving word overlap
to blindly predict entailment. Similarly, Schuster
et al. (2019) show that the predictions of fact verifi-
cation models trained for the FEVER task (Thorne
et al., 2018) are largely driven by the presence of
indicative words in the input claim sentences.

Following similar observations across other
tasks and domains, e.g., visual question-answering
(Agrawal et al., 2016), paraphrase identification
(Zhang et al., 2019), and argument reasoning com-
prehension (Niven and Kao, 2019), researchers
proposed improved data collection techniques to
reduce the artifacts that result in dataset biases.
While these approaches are promising, only apply-
ing them without additional efforts in the modeling
part may still deliver an unsatisfactory outcome.
For instance, collecting new examples by asking hu-
man annotators to conform to specific rules may be
costly and thus limit the scale and diversity of the
resulting data (Kaushik et al., 2020). Recently pro-
posed adversarial filtering methods (Zellers et al.,
2019; Sakaguchi et al., 2019) are more cost effec-
tive but are not guaranteed to be artifacts-free. It is,
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therefore, crucial to develop learning methods that
can overcome biases as a complement to the data
collection efforts.

Debiasing Models There exist several methods
that aim to improve models’ robustness and gen-
eralization by leveraging the insights from previ-
ous work about the datasets’ artifacts. In the NLI
task, Belinkov et al. (2019) make use of the finding
that partial input information from the hypothesis
sentence is sufficient to achieve reasonable accu-
racy. They then remove this hypothesis-only bias
from the input representation using an adversarial
training technique. More recently, three concurrent
works (Clark et al., 2019a; He et al., 2019; Ma-
habadi and Henderson, 2019) introduce a model-
agnostic debiasing method for NLU tasks called
product-of-expert. Clark et al. (2019a) also
propose an adaptive variant of this method called
learned-mixin. These two methods first iden-
tify examples that can be predicted correctly based
only on biased features. This step is done by using
a biased model2, which is a weak classifier that is
trained using only features that are known to be in-
sufficient to perform the task but work well due to
biases. The output of this pre-trained biased model
is then used to adjust the loss function such that it
down-weights the importance of examples that the
biased model can solve. While this approach pre-
vents models from learning the task mainly using
biased features, it also reduces model’s ability to
learn from examples that can be solved using these
features. As a result, models are unable to optimize
accuracy on the original training distribution, and
they possibly become biased in some other ways.

Similar to these methods, our method also uses
a biased model to identify examples that exhibit
biased features. However, instead of using it to
diminish the training signal from these examples,
we use it to scale the confidence of models’ pre-
dictions. This enables the model to receive enough
incentive to learn from all of the training examples.

Confidence Regularization Methods for regu-
larizing the output distribution of neural network
models have been used to improve generalization.
Pereyra et al. (2017) propose to penalize the en-
tropy of the output distribution for encouraging
models to be less confident in their predictions.
Previously, Szegedy et al. (2016) introduce a label
smoothing mechanism to reduce overfitting by pre-

2We follow the terminology used by He et al. (2019).

venting the model from assigning a full probability
to each training example. Our method regularizes
models’ confidence differently: we first perform
an adaptive label smoothing for the training us-
ing knowledge distillation (Hinton et al., 2015),
which, by itself, is known to improve the overall
performance. However, our method involves an ad-
ditional bias-weighted scaling mechanism within
the distillation pipelines. As we will show, our pro-
posed scaling mechanism is crucial in leveraging
the knowledge distillation technique for the pur-
pose of overcoming the targeted bias while main-
taining high accuracy in the training distribution.

Similar to our work, Feng et al. (2018) propose
a regularization method that encourages the model
to be uncertain on specific examples. However,
the objective and the methodology are different:
they apply an entropy penalty term on examples
that appear nonsensical to humans with the goal
of improving models’ interpretability. On the con-
trary, we apply our confidence regularization on
every training example with a varying strength
(i.e., higher uncertainty on more biased examples)
to improve models’ performance on the out-of-
distribution data.

3 Method

Overview We consider the common formulation
of NLU tasks as a multi-class classification prob-
lem. Given a dataset D that consists of n examples
(xi, yi)i∈[1,n], with xi ∈ X as a pair of sentences,
and yi ∈ {1, 2, ...,K} where K is the number of
classes. The goal is to learn a robust classifier Fm,
which computes the probability distribution over
target labels, i.e., Fm(xi) = pi.

The key idea of our method is to explicitly train
Fm to compute lower probability, i.e., less confi-
dence, on the predicted label when the input ex-
ample exhibits a bias. This form of confidence
regularization can be done by computing the loss
function with the “soft” target labels that are ob-
tained through our proposed smoothing mechanism.
The use of soft targets as the training objective is
motivated by the observation that the probability
distribution of labels for each sample provides valu-
able information about the underlying task (Hinton
et al., 2015; Pereyra et al., 2017). When the soft
targets of certain examples have higher entropy,
models can be explicitly taught that some labels
are more likely to be correct than the others. Based
on this intuition, we argue that adjusting the con-
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P: The air defense of America 
began with this call.

H: This call began the air 
defense of America.
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Figure 1: An overview of our debiasing strategy when applied to the MNLI dataset. An input example that contains
lexical-overlap bias is predicted as entailment by the teacher model with a high confidence. When biased model
predicts this example well, the output distribution of the teacher will be re-scaled to indicate higher uncertainty
(lower confidence). The re-scaled output distributions are then used to distill the main model.

fidence on soft labels can better inform the model
about the true conditional distribution of the labels
given the presence of the biased features.

We first produce a meaningful softened target
distribution for each training example by perform-
ing knowledge distillation (Hinton et al., 2015).
In this learning framework, a “teacher” model Ft,
which we parameterize identically to the main
model Fm, is trained on the dataset D using a
standard classification loss. We then use Ft to
compute output probability distribution p̂i, where
Ft(xi) = p̂i. In the original knowledge distilla-
tion approach, the output of the teacher model p̂i is
then used to train Fm. We extend this approach by
adding a novel scaling procedure before we distill
the teacher model into Fm. We define a scaling
function S that takes the probability distribution
p̂i and scale it such that the probability assigned
to its predicted label is lowered when the example
can be predicted well by only relying on the biased
features.

Training the biased model For several NLU
tasks, biased features are known a-priori, e.g.,
the word overlapping features in NLI datasets are
highly correlated with the entailment label (McCoy
et al., 2019b). We leverage this a-priori knowledge
to design a measure of how well an example can be
predicted given only the biased features. We refer
to this measure as bias weight, denoted as βi for
every example xi.

Similar to previous debiasing methods (Clark
et al., 2019a), we compute bias weights using
a biased model. This biased model, denoted as
Fb, predicts the probability distribution bi, where
Fb(xi) = bi = 〈bi,1, bi,2, ..., bi,K〉. We define
the bias weight βi as the scalar value of the as-

signed probability by Fb to the ground truth label:
βi = bi,c (c-th label is the ground truth).

Bias-weighted scaling As illustrated in Figure 1,
our method involves scaling the teacher output p̂i
using βi. We do this by defining a scaling function
S : RK → RK :

S(p̂i, βi)j =
ˆpi,j

(1−βi)∑K
k=1 ˆpi,k

(1−βi)

for j = 1, ...,K. The value of βi controls the
strength of the scaling: as βi → 1, the scaled prob-
ability assigned to each label approaches 1

K , which
presents a minimum confidence. Conversely, when
βi → 0, the teacher’s probability distribution re-
mains unchanged, i.e., S(p̂i, 0) = p̂i.

Training the main model The final step is to
train Fm by distilling from the scaled teacher
model’s outputs. Since the main model is parame-
terized identically to the teacher model, we refer to
this step as self-distillation (Furlanello et al., 2018).
Self-distillation is performed by training Fm on
pairs of input and the obtained soft target labels
(xi,S(p̂i, βi)). Specifically, Fm is learned by min-
imizing a standard cross-entropy loss between the
scaled teacher’s output S(p̂i, βi) and the current
prediction of the main model:

L(xi,S(p̂i, βi)) = −S(p̂i, βi) · logFm(xi)

In practice, each S(p̂i, βi) is computed only once
as a preprocessing step. Our method does not re-
quire hyperparameters, which can be an advantage
since most out-of-distribution datasets do not pro-
vide a development set for tuning the hyperparame-
ters.
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4 Experimental Setup

In this section, we describe the datasets, models,
and training details used in our experiments.

4.1 Natural Language Inference

We use the MNLI dataset (Williams et al., 2018) for
training. The dataset consists of pairs of premise
and hypothesis sentences along with their inference
labels (i.e., entailment, neutral, and contradiction).
MNLI has two in-distribution development and test
sets, one that matches domains of the training data
(MNLI-m), and one with mismatching domains
(MNLI-mm). We consider two out-of-distribution
datasets for NLI: HANS (Heuristic Analysis for
NLI Systems) (McCoy et al., 2019b) and MNLI-
hard test sets (Gururangan et al., 2018).

HANS The dataset is constructed based on the
finding that the word overlapping between premise
and hypothesis in NLI datasets is strongly corre-
lated with the entailment label. HANS consists of
examples in which such correlation does not ex-
ist, i.e., hypotheses are not entailed by their word-
overlapping premises. HANS is split into three
test cases: (a) Lexical overlap (e.g., “The doctor
was paid by the actor” ; “The doctor paid the
actor”), (b) Subsequence (e.g., “The doctor near
the actor danced” ; “The actor danced”), and (c)
Constituent (e.g., “If the artist slept, the actor ran”
; “The artist slept”). Each category contains both
entailment and non-entailment examples.

MNLI-hard Hypothesis sentences in NLI
datasets often contain words that are highly
indicative of target labels (Gururangan et al., 2018;
Poliak et al., 2018). It allows a simple model that
predicts based on the hypothesis-only input to
perform much better than the random baseline.
Gururangan et al. (2018) presents a “hard” split of
the MNLI test sets, in which examples cannot be
predicted correctly by the simple hypothesis-only
model.

4.2 Fact Verification

For this task, we use the training dataset provided
by the FEVER challenge (Thorne et al., 2018).
The task concerns about assessing the validity of a
claim sentence in the context of a given evidence
sentence, which can be labeled as either support,
refutes, and not enough information. We use the
Fever-Symmetric dataset (Schuster et al., 2019) for
the out-of-distribution evaluation.

Fever-Symmetric Schuster et al. (2019) intro-
duce this dataset to demonstrate that FEVER mod-
els mostly rely on the claim-only bias, i.e., the
occurrence of words and phrases in the claim that
are biased toward certain labels. The dataset is
manually constructed such that relying on cues of
the claim can lead to incorrect predictions. We
evaluate the models on the two versions (version 1
and 2) of their test sets.3

4.3 Paraphrase Identification
We use the Quora Question Pairs (QQP) dataset
for training. QQP consists of pairs of questions
which are labeled as duplicate if they are para-
phrased, and non-duplicate otherwise. We evaluate
the out-of-distribution performance of QQP models
on the QQP subset of PAWS (Paraphrase Adver-
saries from Word Scrambling) (Zhang et al., 2019).

PAWS The QQP subset of PAWS consists of
question pairs that are highly overlapping in words.
The majority of these question pairs are labeled as
non-duplicate. Models trained on QQP are shown
to perform worse than the random baseline on this
dataset. This partly indicates that models largely
rely on lexical-overlap features to perform well
on QQP. We report models’ performance on the
duplicate and non-duplicate examples separately.

4.4 Models
Baseline Model We apply all of the debiasing
methods across our experiments on the BERT base
model (Devlin et al., 2019), which has shown im-
pressive in-distribution performance on the three
tasks. In our method, BERT base is used for both
Ft and Fm. We follow the standard setup for sen-
tence pair classification tasks, in which the two
sentences are concatenated into a single input and
the special token [CLF] is used for classification.

Biased Model (Fb) We consider the biased fea-
tures of each of the examined out-of-distribution
datasets to train the biased models. For HANS
and PAWS, we use hand-crafted features that indi-
cate how words are shared between the two input
sentences. Following Clark et al. (2019a), these
features include the percentage of hypothesis words
that also occur in the premise and the average of
cosine distances between word embedding in the
premise and hypothesis.4 We then train a simple

3https://github.com/TalSchuster/
FeverSymmetric

4We include the detailed description in the appendix.

https://github.com/TalSchuster/FeverSymmetric
https://github.com/TalSchuster/FeverSymmetric
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Method MNLI-m MNLI-mm HANS Hard subset
dev test dev test lex. subseq. const. avg. MNLI-m MNLI-mm

BERT-base 84.3 ± 0.3 84.6 84.7 ± 0.1 83.3 72.4 52.7 57.9 61.1 ± 1.1 76.8 75.9

Learned-mixin hans 84.0 ± 0.2 84.3 84.4 ± 0.3 83.3 77.5 54.1 63.2 64.9 ± 2.4 - -
Product-of-expert hans 82.8 ± 0.2 83.0 83.1 ± 0.3 82.1 72.9 65.3 69.6 69.2 ± 2.6 - -

Regularized-conf hans 84.3 ± 0.1 84.7 84.8 ± 0.2 83.4 73.3 66.5 67.2 69.1 ± 1.2 - -

Learned-mixin hypo 80.5 ± 0.4 79.5 81.2 ± 0.4 80.4 - - - - 79.2 78.2
Product-of-expert hypo 83.5 ± 0.4 82.8 83.8 ± 0.2 84.1 - - - - 79.8 78.7

Regularized-conf hypo 84.6 ± 0.2 84.1 85.0 ± 0.2 84.2 - - - - 78.3 77.3

Table 2: The in-distribution accuracy (in percentage point) of the NLI models along with their accuracy on out-
of-distribution test sets: HANS and MNLI hard subsets. Models are only evaluated against their targeted out-of-
distribution dataset.

nonlinear classifier using these features. We refer
to this biased model as the hans model.

For MNLI-hard and Fever-Symmetric, we train
a biased model on only hypothesis sentences and
claim sentences for MNLI and FEVER, respec-
tively. The biased model is a nonlinear classifier
trained on top of the vector representation of the in-
put sentence. We obtain this vector representation
by max-pooling word embeddings into a single vec-
tor for FEVER, and by learning an LSTM-based
sentence encoder for MNLI.

State-of-the-art Debiasing Models We com-
pare our method against existing state-of-the-art
debiasing methods: product-of-expert (He et al.,
2019; Mahabadi and Henderson, 2019) and its vari-
ant learned-mixin (Clark et al., 2019a). product-of-
expert ensembles the prediction of the main model
(pi) with the prediction of the biased model (bi)
using p′i = softmax(log pi + log bi), where p′i
is the ensembled output distribution. This ensem-
bling enables the main model to focus on learning
from examples that are not predicted well by the bi-
ased model. Learned-mixin improves this method
by parameterizing the ensembling operation to let
the model learn when to incorporate or ignore the
output of the biased model for the ensembled pre-
diction.

On FEVER, we also compare our method against
the example-reweighting method by Schuster et al.
(2019). They compute the importance weight of
each example based on the correlation of the n-
grams within the claim sentences with the target
labels. These weights are then used to compute the
loss of each training batch.

Training Details As observed by McCoy et al.
(2019a), models can show high variance in their

out-of-distribution performance. Therefore, we
run each experiment five times and report both
average and standard deviation of the scores.5 We
also use training configurations that are known to
work well for each task.6 For each experiment, we
train our confidence regularization method as well
as product-of-expert and learned-mixin using the
same biased-model. Since the challenge datasets
often do not provide a development set, we could
not tune the hyperparameter of learned-mixin. We,
therefore, use their default weight for the entropy
penalty term.7

5 Results

The results for the tasks of NLI, fact verification,
and paraphrase identification are reported in Ta-
ble 2, Table 3, and Table 4, respectively.

5.1 In-distribution Performance

The results on the original development and test
sets of each task represent the in-distribution per-
formance. Since we examine two types of bi-
ases in NLI, we have two debiased NLI mod-
els, i.e., Regularized-conf hans and Regularized-
conf hypo which are trained for debiasing HANS
and hypothesis-only biases, respectively.

We make the following observations from the
results: (1) Our method outperforms product-of-
expert and learned-mixin when evaluated on the
corresponding in-distribution data of all the three
tasks; (2) Product-of-expert and learned-mixin
drop the original BERT baseline accuracy on most

5Due to the limited number of possible submissions, we
report the MNLI test scores only from a model that holds the
median out-of-distribution performance.

6We set a learning rate of 5e−5 for MNLI and 2e−5 for
FEVER and QQP.

7E.g., w = 0.03 for training on MNLI.



8723

Method FEVER dev Symm. v1 Symm. v2

BERT-base 85.8 ± 0.1 57.9 ± 1.1 64.4 ± 0.6

Learned-mixin claim 83.1 ± 0.7 60.4 ± 2.4 64.9 ± 1.6

Product-of-expert claim 83.3 ± 0.3 61.7 ± 1.5 65.5 ± 0.7

Reweighting bigrams 85.5 ± 0.3 61.7 ± 1.1 66.5 ± 1.3

Regularized-conf claim 86.4 ± 0.2 60.5 ± 0.4 66.2 ± 0.6

Table 3: Accuracy on the FEVER dataset and the cor-
responding challenge datasets.

of the in-distribution experiments; (3) Regardless
of the type of bias, our method preserves the in-
distribution performance. However, it is not the
case for the other two methods, e.g., learned-mixin
only results in a mild decrease in the accuracy
when it is debiased for HANS, but suffers from
substantial drop when it is used to address the
hypothesis-only bias; (4) Our method results in
a slight in-distribution improvement in some cases,
e.g., on FEVER, it gains 0.6pp over BERT baseline.
The models produced by Regularized-conf hans also
gain 0.1 points to both MNLI-m and MNLI-mm
test sets; (5) All methods, including ours decrease
the in-distribution performance on QQP, particu-
larly on its duplicate examples subset. We will
discuss this performance drop in Section 6.

5.2 Out-of-distribution Performance
The rightmost columns of each table report the eval-
uation results on the out-of-distribution datasets for
each task. Based on our out-of-distribution evalua-
tions, we observe that: (1) Our method minimizes
the trade-off between the in-distribution and out-
of-distribution performance compared to the other
methods. For example, on HANS, learned-mixin
maintains the in-distribution performance but only
improves the average HANS accuracy from 61.1%
to 64.9%. product-of-expert gains 7 points improve-
ment over the BERT baseline while reducing the
MNLI-m test accuracy by 1.6 points. On the other
hand, our method achieves the competitive 7 points
gain without dropping the in-distribution perfor-
mance; (2) The performance trade-off is stronger
on some datasets. On PAWS, the two compared
methods improve the accuracy on the non-duplicate
subset while reducing models’ ability to detect the
duplicate examples. Our method, on the other hand,
finds a balance point, in which the non-duplicate ac-
curacy can no longer be improved without reducing
the duplicate accuracy; (3) depending on the use of
hyperparameters, learned-mixin can make a lower

Method
QQP dev PAWS test

dupl ¬dupl dupl ¬dupl

BERT-base 88.4 ± 0.3 92.5 ± 0.3 96.9 ± 0.3 9.8 ± 0.4

LMixin hans 77.5 ± 0.7 91.9 ± 0.2 69.7 ± 4.3 51.7 ± 4.3

Prod-exp hans 80.8 ± 0.2 93.5 ± 0.1 71.0 ± 2.3 49.9 ± 2.3

Reg-conf hans 85.0 ± 0.7 91.5 ± 0.4 91.0 ± 1.8 19.8 ± 1.3

Table 4: Results of the evaluation on the QQP task.

out-of-distribution improvement compared to ours,
even after substantially degrading in-distribution
performance, e.g., on FEVER-symmetricv2, it only
gains 0.5 points while dropping 3 points on the
FEVER development set.

6 Discussions and Analysis

Ablation studies In this section, we show that
the resulting improvements from our method come
from the combination of both self-distillation and
our scaling mechanism. We perform ablation
studies to examine the impact of each of the
components including (1) self-distillation: we
train a model using the standard self-distillation
without bias-weighted scaling, and (2) example-
reweighting: we train a model with the standard
cross-entropy loss with an example reweighting
method to adjust the importance of individual ex-
amples to the loss. The weight of each example
is obtained from the (scaled) probability that is as-
signed by the teacher model to the ground truth
label.8 The aim of the second setting is to exclude
the effect of self-distillation while keeping the ef-
fect of our scaling mechanism.

Table 5 presents the results of these experiments
on MNLI and HANS. We observe that each com-
ponent individually still gains substantial improve-
ments on HANS over the baseline, albeit not as
strong as the full method. The results from the
self-distillation suggest that the improvement from
our method partly comes from the regularization
effect of the distillation objective (Clark et al.,
2019b; Furlanello et al., 2018). In the example-
reweighting experiment, we exclude the effect of all
the scaled teacher’s output except for the probabil-
ity assigned to the ground truth label. Compared to
self-distillation, the proposed example-reweighting
has a higher impact on improving the performance
in both in-distribution and out-of-distribution eval-

8Details of the ablation experiments are included in the
supplementary materials.
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Figure 2: Distribution of models’ confidence on their predicted labels. The blue areas indicate the fraction of each
bin that are correct. (a) Distribution on MNLI-m dev by models trained using hypothesis-only biased model. (b)
Distribution on non-entailment subsequence subset of HANS by models trained using hans biased-model.

Method MNLI HANS

BERT-base 84.3 61.1

Full method 84.3 69.1

self-distillation 84.6 64.4
example-reweighting 84.7 65.3

Table 5: Results of the ablation experiments. The
MNLI column refers to the MNLI-m dev set.

BERT-
baseline

product-of-
expert

learned-
mixin

conf-reg
(our)

MNLI-m 9.0 7.7 9.9 5.4
MNLI-mm 8.5 7.6 9.5 5.6

Table 6: The calibration scores of models measured by
ECE (lower is better).

uations. However, both components are necessary
for the overall improvements.

In-distribution performance drop of product-
of-expert The difference between our method
with product-of-expert and its variants is the use
of biased examples during training. Product-of-
expert in practice scales down the gradients on the
biased training examples to allow the model to fo-
cus on learning from the harder examples (He et al.,
2019). As a result, models often receive little to no
incentive to solve these examples throughout the
training, which can effectively reduce the training
data size. Our further examination on a product-of-
expert model (trained on MNLI for HANS) shows
that its degradation of in-distribution performance
largely comes from the aforementioned examples.
Ensembling back the biased-model to the main

model can indeed bring the in-distribution accu-
racy back to the BERT baseline. However, this also
leads to the original poor performance on HANS,
which is counterproductive to the goal of improving
the out-of-distribution generalization.

Impact on Models’ Calibration We expect the
training objective used in our method to discour-
age models from making overconfident predictions,
i.e., assigning high probability to the predicted la-
bels even when they are incorrect. We investigate
the changes in models’ behavior in terms of their
confidence using the measure of calibration, which
quantifies how aligned the confidence of the pre-
dicted labels with their actual accuracy are (Guo
et al., 2017). We compute the expected calibra-
tion error (ECE) (Naeini et al., 2015) as a scalar
summary statistic of calibration. Results in Table 6
show that our method improves model’s calibra-
tion on MNLI-m and MNLI-mm dev sets, with the
reduction of ECE ranging from 3.0 to 3.6. The his-
tograms in figure 2 show the distribution of mod-
els’ confidences in their predictions. Figure 2a
demonstrates that the prediction confidences of our
resulting model on MNLI-m are more smoothly
distributed. In figure 2b, we observe that our debi-
ased model predicts examples that contain lexical
overlap features with lower confidence, and when
the confidence is higher, the prediction is more
likely to be correct.

Impact of biased examples ratio To investigate
the slight in-distribution drop by our method in
QQP (Table 4), we examine the ratio of biased ex-
amples in the QQP training data by evaluating the



8725

0 100 250 500 1000 1500 2000 2500

40

60

80

d
u

p
l.

a
cc

.

20

40

60

80

¬d
u

p
l.

a
cc

.

QQP bert-base

PAWS bert-base

QQP prod-exp

PAWS prod-exp

QQP reg-conf

PAWS reg-conf

Figure 3: Results on the PAWS-augmented QQP
dataset.

performance of the biased model on the dataset.
We find that almost 80% of the training examples
can be solved using the lexical overlap features
alone, which indicates a severe lexical overlap bias
in QQP.9 Moreover, in 53% of all examples, the
biased model makes correct predictions with a very
high confidence (βi > 0.8). For comparison, the
same biased model predicts only 12% of the MNLI
examples with confidence above 0.8 (more com-
parisons are shown in the supplementary material.
As a result, there are not enough unbiased exam-
ples in QQP and the resulting soft target labels
in this dataset are mostly close to a uniform dis-
tribution, which in turn may provide insufficient
training signal to maximize the accuracy on the
training distribution.

Impact of adding bias-free examples Finally,
we investigate how changing the ratio of biased
examples affects the behavior of debiasing meth-
ods. To this end, we split PAWS data into training
and test sets. The training set consists of 2500 ex-
amples, and we use the remaining 10K examples
as a test set. We train the model on QQP that is
gradually augmented with fractions of this PAWS
training split and evaluate on a constant PAWS
test set. Figure 3 shows the results of this experi-
ment. When more PAWS examples are added to
the training data, the accuracy of the BERT base-
line gradually improves on the non-duplicate subset
while its accuracy slowly drops on the duplicate
subset. We observe that product-of-expert exagger-
ates this effect: it reduces the duplicate accuracy up

9The random baseline is 50% for QQP.

to 40% to obtain the 93% non-duplicate accuracy.
We note that our method is the most effective when
the entire 2500 PAWS examples are included in the
training, obtaining the overall accuracy of 77.05%
compared to the 71.63% from the baseline BERT.

7 Conclusion

Existing debiasing methods improve the perfor-
mance of NLU models on out-of-distribution
datasets. However, this improvement comes at
the cost of strongly diminishing the training sig-
nal from a subset of the original dataset, which
in turn reduces the in-distribution accuracy. In
this paper, we address this issue by introducing a
novel method that regularizes models’ confidence
on biased examples. This method allows models
to still learn from all training examples without
exploiting the biases. Our experiments on four
out-of-distribution datasets across three NLU tasks
show that our method provides a competitive out-
of-distribution performance while preserves the
original accuracy.

Our debiasing framework is general and can be
extended to other task setups where the biases lever-
aged by models are correctly identified. Several
challenges in this direction of research may include
extending the debiasing methods to overcome mul-
tiple biases at once or to automatically identify the
format of those biases which simulate a setting
where the prior knowledge is unavailable.
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A Ablation Details

For the second setting of our ablation studies, we
perform an example reweighting using the scaled
probability of the teacher model Ft on the ground
truth label. Specifically, the cross entropy loss as-
signed to each batch of size m is computed by the
following:

−
b∑

s=1

ˆps,c∑b
u=1 ˆpu,c

· log(ps,c)

where we assume that cth label is the ground truth
label. The probability assigned to the correct label
by the teacher model is then denoted as ˆps,c. The
currect predicted probability of the main model is
denoted as ps,c.

B Bias Weights Distribution

Figure 4 shows the performance of biased models
on QQP, MNLI, and FEVER. For QQP and MNLI
we show the results of biased model trained using
lexical overlap features. For FEVER, the biased
model is trained with claim-only partial input. We
show that on PAWS (figure 4a), a large portion of
examples can be predicted with a very high confi-
dence by the biased model.

C HANS Biased Model

We use the hand-crafted HANS-based features pro-
posed by Clark et al. (2019a). These features in-
clude: (1) whether all words in the hypothesis exist
in the premise; (2) whether the hypothesis is a con-
tiguous subsequence of the premise; (3) the frac-
tion of hypothesis words that exist in the premise;
(4) the average and the max of cosine distances
between word vectors in the premise and the hy-
pothesis.
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Figure 4: The distribution of biased model confidence on three training datasets of QQP, MNLI, and FEVER.


