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Abstract

While automated essay scoring (AES) can re-
liably grade essays at scale, automated writing
evaluation (AWE) additionally provides forma-
tive feedback to guide essay revision. How-
ever, a neural AES typically does not provide
useful feature representations for supporting
AWE. This paper presents a method for link-
ing AWE and neural AES, by extracting Top-
ical Components (TCs) representing evidence
from a source text using the intermediate out-
put of attention layers. We evaluate perfor-
mance using a feature-based AES requiring
TCs. Results show that performance is compa-
rable whether using automatically or manually
constructed TCs for 1) representing essays as
rubric-based features, 2) grading essays.

1 Introduction

Automated essay scoring (AES) systems reliably
grade essays at scale, while automated writing eval-
uation (AWE) systems additionally provide forma-
tive feedback to guide revision. Although neural
networks currently generate state-of-the-art AES
results (Alikaniotis et al., 2016; Taghipour and Ng,
2016; Dong et al., 2017; Farag et al., 2018; Jin et al.,
2018; Li et al., 2018; Tay et al., 2018; Zhang and
Litman, 2018), non-neural AES create feature rep-
resentations more easily useable by AWE (Roscoe
et al., 2014; Foltz and Rosenstein, 2015; Crossley
and McNamara, 2016; Woods et al., 2017; Madnani
et al., 2018; Zhang et al., 2019). We believe that
neural AES can also provide useful information for
creating feature representations, e.g., by exploiting
information in the intermediate layers.

Our work focuses on a particular source-based
essay writing task called the response-to-text as-
sessment (RTA) (Correnti et al., 2013). Recently,
an RTA AWE system (Zhang et al., 2019) was built
by extracting rubric-based features related to the
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use of Topical Components (TCs) in an essay. How-
ever, manual expert effort was first required to cre-
ate the TCs. For each source, the TCs consist of
a comprehensive list of topics related to evidence
which include: 1) important words indicating the
set of evidence topics in the source, and 2) phrases
representing specific examples for each topic that
students need to find and use in their essays.

To eliminate this expert effort, we propose a
method for using the interpretable output of the
attention layers of a neural AES for source-based
essay writing, with the goal of extracting TCs. We
evaluate this method by using the extracted TCs
to support feature-based AES for two RTA source
texts. Our results show that 1) the feature-based
AES with TCs manually created by humans is
matched by our neural method for generating TCs ,
and 2) the values of the rubric-based essay features
based on automatic TCs are highly correlated with
human Evidence scores.

2 Related Work

Three recent AWE systems have used non-neural
AES to provide rubric-specific feedback. Woods
et al. (2017) developed an influence estimation pro-
cess that used a logistic regresion AES to identify
sentences needing feedback. Shibani et al. (2019)
presented a web-based tool that provides formative
feedback on rhetorical moves in writing. Zhang
et al. (2019) used features created for a random
forest AES to select feedback messages, although
human effort was first needed to create TCs from
a source text. We automatically extract TCs using
neural AES, thereby eliminating this expert effort.

Others have also proposed methods for pre-
processing source information external to an es-
say. Content importance models for AES predict
the parts of a source text that students should in-
clude when writing a summary (Klebanov et al.,
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Source Excerpt: Today, Yala Sub-District Hospital has medicine, free of charge, for all of the most common diseases. Water
is connected to the hospital, which also has a generator for electricity. Bed nets are used in every sleeping site in Sauri...

Essay Prompt: The author provided one specific example of how the quality of life can be improved by the Millennium Villages
Project in Sauri, Kenya. Based on the article, did the author provide a convincing argument that winning the fight against poverty is
achievable in our lifetime? Explain why or why not with 3-4 examples from the text to support your answer.

Essay: In my opinion I think that they will achieve it in lifetime. During the years threw 2004 and 2008 they made progress.
People didnt have the money to buy the stuff in 2004. The hospital was packed with patients and they didnt have alot of treatment
in 2004. In 2008 it changed the hospital had medicine, free of charge, and for all the common dieases. Water was connected
to the hospital and has a generator for electricity. Everybody has net in their site. The hunger crisis has been addressed with
fertilizer and seeds, as well as the tools needed to maintain the food. The school has no fees and they serve lunch. To me thats
sounds like it is going achieve it in the lifetime.

Table 1: A source excerpt for the RT A sy p prompt and an essay with score of 3.

Prompt | RT Ayvp RTASpace
Score 1 852 538
(29%) (26%)
Score 2 1197 789
(40%) (38%)
Score 3 616 512
(21%) (25%)
Score 4 305 237
(10%) (11%)
Total 2970 2076

Table 2: The Evidence score distribution of RTA.

2014). Methods for extracting important keywords
or keyphrases also exist, both supervised (unlike
our approach) (Meng et al., 2017; Mahata et al.,
2018; Florescu and Jin, 2018) and unsupervised
(Florescu and Caragea, 2017). Rahimi and Litman
(2016) developed a TC extraction LDA model (Blei
et al., 2003). While the LDA model considers all
words equally, our model takes essay scores into
account by using attention to represent word impor-
tance. Both the unsupervised keyword and LDA
models will serve as baselines in our experiments.

In the computer vision area, attention cropped
images have been used for further image classifi-
cation or object detection (Cao et al., 2015; Yuxin
et al., 2018; Ebrahimpour et al., 2019). In the NLP
area, Lei et al. (2016) proposed to use a genera-
tor to find candidate rationale and these are passed
through the encoder for prediction. Our work is
similar in spirit to this type of work.

3 RTA Corpus and Prior AES Systems

The essays in our corpus were written by students
in grades 4 to 8 in response to two RTA source
texts (Correnti et al., 2013): RT Apvp (2970 es-
says) and RT Agpqce (2076 essays). Table 1 shows
an excerpt from RT Apsy p, the associated essay
writing prompt, and a student essay. The bolding
in the source indicates evidence examples that ex-

perts manually labeled as important for students
to discuss (i.e., TC phrases). Evidence usage in
each essay was manually scored on a scale of 1
to 4 (low to high). The distribution of Evidence
scores is shown in Table 2. The essay in Table 1
received a score of 3, with the bolding indicating
phrases semantically related to the TCs from the
source text.

To date, two approaches to AES have been pro-
posed for the RTA: AES,,pric and AE S, cyrar. TO
support the needs of AWE, AES,. 4 (Zhang and
Litman, 2017) used a traditional supervised learn-
ing framework where rubric-motivated features
were extracted from every essay before model train-
ing - Number of Pieces of Evidence (NPE) !, Con-
centration (CON), Specificity (SPC) 2 'Word Count
(WOC). The two aspects of TCs introduced in Sec-
tion 1 (topic words, specific example phrases) were
used during feature extraction.

Motivated by improving stand-alone AES perfor-
mance (i.e., when an interpretable model was not
needed for subsequent AWE), Zhang and Litman
(2018) developed AES),cural, @ hierarchical neural
model with the co-attention mechanism in the sen-
tence level to capture the relationship between the
essay and the source. Neither feature engineering
nor TC creation were needed before training.

4 Attention-Based TC Extraction: 7°C'y;;,,

In this section we propose a method for extract-
ing TCs based on the AES,,crq; attention level
outputs. Since the self-attention and co-attention
mechanisms were designed to capture sentence
and phrase importance, we hypothesize that the
attention scores can help determine if a sentence or

'An integer feature based on the list of topic words for
each topic.

2A vector of integer values indicating the number of spe-
cific example phrases (semantically) mentioned in the essay
per topic.
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No.| Sentences attnsent | attnphrase

1 People didn’t have the money to | 0.00420 0.23372
buy the stuff in 2004.

2 The hunger crisis has been addressed | 0.08709 0.62848
with fertilizer and seeds, as well as
the tools needed to maintain the food.

3 The school has no fees and they | 0.10686 0.63369
serve lunch.

Table 3: Example attention scores of essay sentences.

phrase has important source-related information.

To provide intuition, Table 3 shows examples
sentences from the student essay in Table 1. Bolded
are phrases with the highest self-attention score
within the sentence. Italics are specific example
phrases that refer to the manually constructed TCs
for the source. Attng.n; is the text to essay atten-
tion score that measures which essay sentences
have the closest meaning to a source sentence.
Attnpnrase 18 the self-attention score of the bolded
phrase that measures phrase importance. A sen-
tence with a high attention score tends to include at
least one specific example phrase, and vice versa.
The phrase with the highest attention score tends
to include at least one specific example phrase if
the sentence has a high attention score.

Based on these observations, we first extract the
output of two layers from the neural network: 1)
the attnsen: of each sentence, and 2) the output of
the convolutional layer as the representation of the
phrase with the highest attn,x,qse in €ach sentence
(denoted by cnnpyprese). We also extract the plain
text of the phrase with the highest atin,p,qse in
each sentence (denoted by textpp,qse). Then, our
T'Cattrn, method uses the extracted information in
3 main steps: 1) filtering out text,prqse from sen-
tences with low attngens, 2) clustering all remain-
ing textpprqase based on cnnpprqse, and 3) generat-
ing TCs from clusters.

The first filtering step keeps all textpp,.qsc Where
the original sentences have attnge,; higher than
a threshold. The intuition is that lower attngent
indicates less source-related information.

The second step clusters these textpp,qse based
on their corresponding representations cnnpprqse-
We use k-medoids to cluster textyprqse into M
clusters, where M is the number of topics in the
source text. Then, for textpn,qsc in each topic
cluster, we use k-medoids to cluster them into N
clusters, where N is the number of the specific
example phrases we want to extract from each topic.
The outputs of this step are M * N clusters.

The third step uses the topic and example clus-

Layer Parameter Name Value
Embedding | Embedding dimension | 50
Word-CNN Kernel size 5

Number of filters 100
Sent-LSTM Hidden units 100
Modeling Hidden units 100
Dropout Dropout rate 0.5
Others Epochs 100
Batch size 100
Initial learning rate 0.001
Momentum 0.9

Table 4: Hyper-parameters for neural training.
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Figure 1: An overview of four TC extraction systems.

tering to extract TCs. As noted earlier, TCs in-
clude two parts: topic words, and specific example
phrases. Since our method is data-driven and stu-
dents introduce their vocabulary into the corpus,
essay text is noisy. To make the TC output cleaner,
we filter out words that are not in the source text.
To obtain topic words, we combine all text,pn,qse
from each topic cluster to calculate the word fre-
quency per topic. To make topics unique, we assign
each word to the topic cluster in which it has the
highest normalized word frequency. We then in-
clude the top Ky.pic words based on their frequency
in each topic cluster. To obtain example phrases,
we combine all text,p,qse from each example clus-
ter to calculate the word frequency per example,
then include the top K¢yqmpre Words based on their
frequency in each example cluster.

5 Experimental Setup and Results

Figure 1 shows an overview of four TC extraction
methods to be evaluated. T'C},qnuq; (Upper bound)
uses a human expert to extract TCs from a source
text. T'Cygstn, is our proposed method and automat-
ically extracts TCs using both a source text and
student essays. 7'Cy4, (Rahimi and Litman, 2016)
(baseline) builds on LDA to extract TCs from stu-
dent essays only, while T'C),, (baseline) builds on
PositionRank (Florescu and Caragea, 2017) to in-
stead extract TCs from only the source text.

Since PositionRank is not designed for TC ex-
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Prompt Component Parameter TCl4a TCp TCaptn Prompt ‘ TCranuat (1) TCiyo 2) TCpr (3) TCuyin (4)
Topic Words Number of Topics | 9 9 16 RTAyvp | 0.643(23)  0.614(3) 0525 0.648 (1,2,3)
RTA,, Number of Words | 30 20 25 RT Agpace | 0.609 (3) 0.6153) 0.559 0.622 (1,3)
MVE Example Phrases Number of Topics 20 1 18
Xample PSS | Number of Phrases | 15 20 15
Topic Words | \UTPCrOTopies 1 ?8 ;8 Table 6: The performance (QWK) of AES,.,pic Us-
RT Aspace Example Phrases | Nmber of Topies |10 1 9 ing different TC extraction methods for feature cre-
Number of Phrases | 20 30 20 ation. The numbers in the parentheses show the model

Table 5: Parameters for different models.

traction, we needed to further process its output to
create T'Cy,. To extract topic words, we extract
all keywords from the output. Next, we map each
word to a higher dimension with word embedding.
Lastly, we cluster all keywords using k-medoids
into P Ryopic topics. To extract example phrases,
we put them into only one topic and remove all
redundant example phrases if they are subsets of
other example phrases.

We configure experiments to test two hypotheses:
H1) the AES, pric model for scoring Evidence
(Zhang and Litman, 2017) will perform compara-
bly when extracting features using either T'Cl,
or TChranual, and will perform worse when us-
ing T'Cyqq or T'Cp,; H2) the correlation between
the human Evidence score and the feature values
(NPE and sum of SPC features)® will be compa-
rable when extracted using T'Clttr, and T'Chanuals
and will be stronger than when using 7'C}4, and
TCyy. The experiment for H1 tests the impact of
using our proposed TC extraction method on the
downstream AFES,. 4 task, while the H2 experi-
ment examines the impact on the essay representa-
tion itself.

Following Zhang and Litman (2017), we stratify
essay corpora: 40% for training word embeddings
and extracting TCs, 20% for selecting the best em-
bedding and parameters, and 40% for testing. We
use the hyper-parameters from Zhang and Litman
(2018) for neural training as shown in Table 4. Ta-
ble 5 shows all other parameters selected using the
development set.

Results for H1. H1 is supported by the results in
Table 6, which compares the Quadratic Weighted
Kappa (QWK) between human and AFES,.pic Ev-
idence scores (values 1-4) when AE S, pric USES
TCranual Versus each of the automatic methods.
T Clyyr, always yields better performance, and even
significantly better than T'C},,qnual-

Results for H2. The results in Table 7 support
H2. T'Cyty, outperforms the two automated base-

3These features are extracted based on TCs.

numbers over which the current model performs signif-
icantly better (p < 0.05). The best results between
automated methods in each row are in bold.

Prompt Feature TCranual TClaa TCp  TCuiin
RT Ay p NPE 0.542 0.482 0.587 0.639
’ SPC (sum) 0.689 0.585 0.365 0.679
RTAgone NPE 0.484 0.513 0494  0.625
’ pace SPC (sum) 0.601 0.574 0.533  0.598

Table 7: Pearson’s r comparing feature values com-
puted using each TC extraction method with human
(gold-standard) Evidence essay scores. All correlation
values are significant (p < 0.05). The best results be-
tween automated methods in each row are in bold.

lines, and for NPE even yields stronger correlations
than the manual TC method.

Qualitative Analysis. The manually-created
topic words for RT Ap;vp represent 4 topics,
which are “hospital”, “malaria”, “farming” and
“school™*. Although Table 5 shows that the au-
tomated list has more topics for topic words and
might have broken one topic into separate topics,
a good automated list should have more topics re-
lated to the 4 topics above. We manually assign a
topic for each of the topic words from the different
automated methods. T'Cyy, has 4 related topics out
of 9 (44.44%), T'C), has 6 related topics out of 19
(31.58%), and T'Clyy1y, has 10 related topics out of
16 (62.50%). Obviously, T'C s+, preserves more
related topics than our baselines.

Moving to the second aspect of TCs (specific
example phrases), Table 8 shows the first 10 spe-
cific example phrases for a manually-created cat-
egory that introduces the changes made by the
MVP project®. This category is a mixture of dif-
ferent topics because it talks about the “hospital”,
“malaria”, “school”, and “farming” at the same time.
T Cytin, has overlap with T'Cl,qnuq On different
topics. However, T'Cj4, mainly talks about “hospi-
tal”, because the nature of the LDA model doesn’t
allow mixing specific example phrases about dif-
ferent topics in one category. Unfortunately, T°C),.

*All Topic Words generated by different models can be
found in the Appendix A.1.

5 All Specific Example Phrases generated by different mod-
els can be found in the Appendix A.2.
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T Crnanual TClaa

TCpr TCattn

progress just four years
medicine most common diseases
water connected hospital
hospital generator electricity
bed nets used every sleeping site
hunger crisis addressed fertilizer seeds
tools needed maintain food supply
no school fees
school attendance rate way up
kids go school now

running water electricity
patients afford

share beds
recieve treatment

doctors clinical
water fertilizer knowledge
receive treatment

water connected hospital generator electricity

rooms packed patients probably

doctor clinical officer running hospital

brighter future hannah electricity running water irrigation set
millennium villages project poor showed treatment school supplies

unpaved dirt road farmers could crops afford bed

bar sauri primary school electricity hospital
future hannah better fertilizer medicine enough also
sauri primary school rooms packed patients
villages project food fertilizer crops get supply
millennium development goals five net costs 5
village leaders nets net bed free

dirt road running water supplies schools almost

Table 8: Specific example phrases for the RT Ay p progress topic.

does not include any overlapped specific phrase in
the first 10 items; they all refer to some general
example phrases from the beginning of the source
article. Although there are some related specific
example phrases in the full list, they are mainly
about school. This is because the PositionRank
algorithm tends to assign higher scores to words
that appear early in the text.

6 Conclusion and Future Work

This paper proposes T'Cyy4r, a method for using the
attention scores in a neural AES model to automat-
ically extract the Topical Components of a source
text. Evaluations show the potential of T'Clyy,
for eliminating expert effort without degrading
AES,pric performance or the feature represen-
tations themselves. T'Cl;+y, outperforms baselines
and generates comparable or even better results
than a manual approach.

Although T'Cly44,, outperforms all baselines and
requires no human effort on TC extraction, annota-
tion of essay evidence scores is still needed. This
leads to an interesting future investigation direc-
tion, which is training the AFES),cyrq using the
gold standard that can be extracted automatically.

One of our next steps is to investigate the im-
pact of TC extraction methods on a corresponding
AWE system (Zhang et al., 2019), which uses the
feature values produced by AFES;. i to generate
formative feedback to guide essay revision.

Currently, the T'C}q, are trained on student es-
says, while the T'C),. only works on the source
article. However, T'Cy, uses both student essays
and the source article for TC generation. It might
be hard to say that the superior performance of
T'Cattn 1s due to the neural architecture and atten-
tion scores rather than the richer training resources.
Therefore, a comparison between T'Cly, and a
model that uses both student essays and the source
article is needed.

Acknowledgments

We would like to show our appreciation to every
member of the RTA group for sharing their pearls
of wisdom with us. We are also immensely grateful
to all members of the PETAL group and reviewers
for their comments on an earlier version of the
paper.

The research reported here was supported, in
whole or in part, by the Institute of Education
Sciences, U.S. Department of Education, through
Grant R305A160245 to the University of Pitts-
burgh. The opinions expressed are those of the
authors and do not represent the views of the Insti-
tute or the U.S. Department of Education.

References

Dimitrios Alikaniotis, Helen Yannakoudakis, and
Marek Rei. 2016. Automatic text scoring using neu-
ral networks. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), volume 1, pages
715-725.

David M Blei, Andrew Y Ng, and Michael I Jordan.
2003. Latent dirichlet allocation. Journal of ma-
chine Learning research, 3(Jan):993-1022.

Chunshui Cao, Xianming Liu, Yi Yang, Yinan Yu,
Jiang Wang, Zilei Wang, Yongzhen Huang, Liang
Wang, Chang Huang, Wei Xu, et al. 2015. Look
and think twice: Capturing top-down visual atten-
tion with feedback convolutional neural networks.
In Proceedings of the IEEE International Confer-
ence on Computer Vision, pages 2956-2964.

Richard Correnti, Lindsay Clare Matsumura, Laura
Hamilton, and Elaine Wang. 2013. Assessing stu-
dents’ skills at writing analytically in response to
texts. The Elementary School Journal, 114(2):142—
177.

Scott A Crossley and Danielle S McNamara. 2016.
Adaptive educational technologies for literacy in-
struction. Routledge.

8573



Fei Dong, Yue Zhang, and Jie Yang. 2017. Attention-
based recurrent convolutional neural network for au-
tomatic essay scoring. In Proceedings of the 21st
Conference on Computational Natural Language
Learning (CoNLL 2017), pages 153-162.

Mohammad K Ebrahimpour, Jiayun Li, Yen-Yun Yu,
Jackson Reesee, Azadeh Moghtaderi, Ming-Hsuan
Yang, and David C Noelle. 2019. Ventral-dorsal neu-
ral networks: Object detection via selective attention.
In 2019 IEEE Winter Conference on Applications of
Computer Vision (WACV), pages 986-994. IEEE.

Youmna Farag, Helen Yannakoudakis, and Ted Briscoe.
2018. Neural automated essay scoring and coher-
ence modeling for adversarially crafted input. In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume I (Long Papers), pages 263-271.

Corina Florescu and Cornelia Caragea. 2017. Position-
rank: An unsupervised approach to keyphrase ex-
traction from scholarly documents. In Proceedings
of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 1105-1115.

Corina Florescu and Wei Jin. 2018. Learning feature
representations for keyphrase extraction. In Thirty-
Second AAAI Conference on Artificial Intelligence.

Peter W Foltz and Mark Rosenstein. 2015. Analysis
of a large-scale formative writing assessment system
with automated feedback. In Proceedings of the Sec-
ond (2015) ACM Conference on Learning@ Scale,
pages 339-342. ACM.

Cancan Jin, Ben He, Kai Hui, and Le Sun. 2018.
Tdnn: a two-stage deep neural network for prompt-
independent automated essay scoring. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 1088—1097.

Beata Beigman Klebanov, Nitin Madnani, Jill Burstein,
and Swapna Somasundaran. 2014. Content impor-
tance models for scoring writing from sources. In
Proceedings of the 52nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2:
Short Papers), pages 247-252.

Tao Lei, Regina Barzilay, and Tommi Jaakkola. 2016.
Rationalizing neural predictions. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 107-117.

Xia Li, Minping Chen, Jianyun Nie, Zhenxing Liu,
Ziheng Feng, and Yingdan Cai. 2018. Coherence-
based automated essay scoring using self-attention.
In Chinese Computational Linguistics and Natural
Language Processing Based on Naturally Annotated
Big Data, pages 386-397. Springer.

Nitin Madnani, Jill Burstein, Norbert Elliot,
Beata Beigman Klebanov, Diane Napolitano,
Slava Andreyev, and Maxwell Schwartz. 2018.
Writing mentor: Self-regulated writing feedback for
struggling writers. In Proceedings of the 27th Inter-
national Conference on Computational Linguistics:
System Demonstrations, pages 113-117.

Debanjan Mahata, John Kuriakose, Rajiv Ratn Shah,
and Roger Zimmermann. 2018. Key2vec: Auto-
matic ranked keyphrase extraction from scientific ar-
ticles using phrase embeddings. In Proceedings of
the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 2 (Short Pa-
pers), pages 634—639.

Rui Meng, Sangiang Zhao, Shuguang Han, Daqing
He, Peter Brusilovsky, and Yu Chi. 2017. Deep
keyphrase generation. In Proceedings of the 55th
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages
582-592.

Zahra Rahimi and Diane Litman. 2016. Automati-
cally extracting topical components for a response-
to-text writing assessment. In Proceedings of the
11th Workshop on Innovative Use of NLP for Build-
ing Educational Applications, pages 277-282.

Rod D Roscoe, Laura K Allen, Jennifer L Weston,
Scott A Crossley, and Danielle S McNamara. 2014.
The writing pal intelligent tutoring system: Usability
testing and development. Computers and Composi-
tion, 34:39-59.

Antonette Shibani, Simon Knight, and Simon Bucking-
ham Shum. 2019. Contextualizable learning ana-
lytics design: A generic model and writing analyt-
ics evaluations. In Proceedings of the 9th Interna-
tional Conference on Learning Analytics & Knowl-
edge, pages 210-219. ACM.

Kaveh Taghipour and Hwee Tou Ng. 2016. A neural
approach to automated essay scoring. In Proceed-
ings of the 2016 Conference on Empirical Methods
in Natural Language Processing, pages 1882—1891.

Yi Tay, Minh C Phan, Luu Anh Tuan, and Siu Che-
ung Hui. 2018. Skipflow: incorporating neural co-
herence features for end-to-end automatic text scor-
ing. In Thirty-Second AAAI Conference on Artificial
Intelligence.

Bronwyn Woods, David Adamson, Shayne Miel, and
Elijah Mayfield. 2017. Formative essay feedback
using predictive scoring models. In Proceedings of
the 23rd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages
2071-2080. ACM.

Peng Yuxin, He Xiangteng, and Zhao Junjie. 2018.
Object-part attention model for fine-grained image
classification. IEEE transactions on image process-
ing: a publication of the IEEE Signal Processing So-
ciety, 27(3):1487-1500.

8574



Haoran Zhang and Diane Litman. 2017. Word embed-
ding for response-to-text assessment of evidence. In
Proceedings of ACL 2017, Student Research Work-
shop, pages 75-81.

Haoran Zhang and Diane Litman. 2018. Co-attention
based neural network for source-dependent essay
scoring. In Proceedings of the Thirteenth Workshop
on Innovative Use of NLP for Building Educational
Applications, pages 399-400.

Haoran Zhang, Ahmed Magooda, Diane Litman,
Richard Correnti, Elaine Wang, LC Matsmura,
Emily Howe, and Rafael Quintana. 2019. erevise:
Using natural language processing to provide forma-
tive feedback on text evidence usage in student writ-
ing. In Proceedings of the AAAI Conference on Arti-
ficial Intelligence, volume 33, pages 9619-9625.

8575



A Appendices

A.1 Topic Words Results

Table 9 shows all topic words for the RT Apsyp
from T'Canuai- Table 10 shows all topic words
for the RT Ay p from TCy,. Table 11 shows
all topic words for the RT Apry p from T'Cp,.. Ta-
ble 12 shows all topic words for the RT Ay p
from T'Clyitn,.

A.2 Specific Example Phrases Results

Table 13 shows all specific example phrases for
the RT Ay p from T'Chanuar- Table 14 shows all
specific example phrases for the RT Ay p from
T'C}4q- Table 15 shows all specific example phrases
for the RT' Ay p from T'Cy,.. Table 16 shows all
specific example phrases for the RT Ay p from
TCattn-
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Topic 1 Topic 2 Topic 3  Topic 4
care bed farmer school
health net fertilizer  supplies
hospital malaria  irrigation fee
treatment infect dying student
doctor bednet crop midday
electricity mosquito seed meal
disease bug water lunch
water sleeping  harvest supply
sick die hungry book
medicine cheap feed paper
generator infect food pencil
no biting energy
die free
kid children
bed kid
patient go
clinical attend
officer
running

Table 9: Topic words of T'Ci,anuai-
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Category 1
brighter future hannah
millennium villages project
unpaved dirt road
bar sauri primary school
future hannah
sauri primary school
villages project
millennium development goals
village leaders
dirt road
car jump
little kids
preventable diseases people
many kids
diseases people
kids die
school supplies
primary school
school fees
infect people
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