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Abstract
Context gates are effective to control the con-
tributions from the source and target contexts
in the recurrent neural network (RNN) based
neural machine translation (NMT). However,
it is challenging to extend them into the
advanced Transformer architecture, which is
more complicated than RNN. This paper first
provides a method to identify source and tar-
get contexts and then introduce a gate mecha-
nism to control the source and target contribu-
tions in Transformer. In addition, to further re-
duce the bias problem in the gate mechanism,
this paper proposes a regularization method to
guide the learning of the gates with supervi-
sion automatically generated using pointwise
mutual information. Extensive experiments on
4 translation datasets demonstrate that the pro-
posed model obtains an averaged gain of 1.0
BLEU score over a strong Transformer base-
line.

1 Introduction

An essence to modeling translation is how to learn
an effective context from a sentence pair. Statisti-
cal machine translation (SMT) models the source
context from the source-side of a translation model
and models the target context from a target-side
language model (Koehn et al., 2003; Koehn, 2009;
Chiang, 2005). These two models are trained inde-
pendently. On the contrary, neural machine transla-
tion (NMT) advocates a unified manner to jointly
learn source and target context using an encoder-
decoder framework with an attention mechanism,
leading to substantial gains over SMT in transla-
tion quality (Sutskever et al., 2014; Bahdanau et al.,
2014; Gehring et al., 2017; Vaswani et al., 2017).
Prior work on attention mechanism (Luong et al.,
2015; Liu et al., 2016; Mi et al., 2016; Chen et al.,
2018; Li et al., 2018; Elbayad et al., 2018; Yang
et al., 2020) have shown a better context represen-
tation is helpful to translation performance.

wǒ jīng cháng hé wǒ dè tóng háng mén yì qǐ tī qíu 。
我 经常 和 我的 同行 们 一起 踢 球 。

hAttention

si

golfplayoftenI with my colleagues .

ti +

zi

+
1− zi

I often play golf with my colleagues .

I often play soccer with my colleagues .

Transformer:

Context Gates:

Regularized
Context Gates:

Figure 1: A running example to raise the context con-
trol problem. Both original and context gated Trans-
former obtain an unfaithful translation by wrongly
translate “tī qı́u” into “play golf” because referring too
much target context. By regularizing the context gates,
the purposed method corrects the translation of “tī qı́u”
into “play soccer”. The light font denotes the target
words to be translated in the future. For original Trans-
former, the source and target context are added directly
without any rebalancing.

However, a standard NMT system is incapable
of effectively controlling the contributions from
source and target contexts (He et al., 2018) to de-
liver highly adequate translations as shown in Fig-
ure 1. As a result, Tu et al. (2017) carefully de-
signed context gates to dynamically control the
influence from source and target contexts and
observed significant improvements in the recur-
rent neural network (RNN) based NMT. Although
Transformer (Vaswani et al., 2017) delivers signifi-
cant gains over RNN for translation, there are still
one third translation errors related to context con-
trol problem as described in Section 3.3. Obviously,
it is feasible to extend the context gates in RNN
based NMT into Transformer, but an obstacle to
accomplishing this goal is the complicated archi-
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tecture in Transformer, where the source and target
words are tightly coupled. Thus, it is challenging
to put context gates into practice in Transformer.

In this paper, under the Transformer architecture,
we firstly provide a way to define the source and
target contexts and then obtain our model by com-
bining both source and target contexts with context
gates, which actually induces a probabilistic model
indicating whether the next generated word is con-
tributed from the source or target sentence (Li et al.,
2019). In our preliminary experiments, this model
only achieves modest gains over Transformer be-
cause the context selection error reduction is very
limited as described in Section 3.3. To further ad-
dress this issue, we propose a probabilistic model
whose loss function is derived from external su-
pervision as regularization for the context gates.
This probabilistic model is jointly trained with the
context gates in NMT. As it is too costly to an-
notate this supervision for a large-scale training
corpus manually, we instead propose a simple yet
effective method to automatically generate supervi-
sion using pointwise mutual information, inspired
by word collocation (Bouma, 2009). In this way,
the resulting NMT model is capable of controlling
the contributions from source and target contexts
effectively.

We conduct extensive experiments on 4 bench-
mark datasets, and experimental results demon-
strate that the proposed gated model obtains an
averaged improvement of 1.0 BLEU point over
corresponding strong Transformer baselines. In
addition, we design a novel analysis to show that
the improvement of translation performance is in-
deed caused by relieving the problem of wrongly
focusing on the source or target context.

2 Methodology

Given a source sentence x = 〈x1, · · · , x|x|〉 and a
target sentence y = 〈y1, · · · , y|y|〉, our proposed
model is defined by the following conditional prob-
ability under the Transformer architecture: 1

P (y | x) =
|y|∏
i=1

P (yi | y<i,x) =
|y|∏
i=1

P
(
yi | cLi

)
,

(1)
where y<i = 〈y1, . . . , yi−1〉 denotes a prefix of
y with length i − 1, and cLi denotes the Lth layer

1Throughout this paper, a variable in bold font such as x
denotes a sequence while regular font such as x denotes an
element which may be a scalar x, vector x or matrix X .

context in the decoder with L layers which is ob-
tained from the representation of y<i and hL, i.e.,
the top layer hidden representation of x, similar
to the original Transformer. To finish the overall
definition of our model in equation 1, we will ex-
pand the definition cLi based on context gates in the
following subsections.

2.1 Context Gated Transformer

To develop context gates for our model, it is nec-
essary to define the source and target contexts at
first. Unlike the case in RNN, the source sentence
x and the target prefix y<i are tightly coupled in
our model, and thus it is not trivial to define the
source and target contexts.

Suppose the source and target contexts at each
layer l are denoted by sli and tli. We recursively
define them from cl−1<i as follows. 2

tli = rn ◦ ln ◦ att
(

cl−1i , cl−1<i

)
,

sli = ln ◦ att
(
tli,h

L
)
,

(2)

where ◦ is functional composition, att (q, kv) de-
notes multiple head attention with q as query, k as
key, v as value, and rn as a residual network (He
et al., 2016), ln is layer normalization (Ba et al.,
2016), and all parameters are removed for simplic-
ity.

In order to control the contributions from source
or target side, we define cli by introducing a context
gate zli to combine sli and tli as following:

cli = rn ◦ ln ◦ ff
(
(1− zli)⊗ tli + zli ⊗ sli

)
(3)

with
zli = σ

(
ff
(
tli‖sli

))
, (4)

where ff denotes a feedforward neural network,
‖ denotes concatenation, σ(·) denotes a sigmoid
function, and ⊗ denotes an element-wise multipli-
cation. zli is a vector (Tu et al. (2017) reported
that a gating vector is better than a gating scalar).
Note that each component in zli actually induces
a probabilistic model indicating whether the next
generated word yi is mainly contributed from the
source (x) or target sentence (y<i) , as shown in
Figure 1.

Remark It is worth mentioning that our proposed
model is similar to the standard Transformer with
boiling down to replacing a residual connection
2For the base case, c0<i is word embedding of y<i.
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with a high way connection (Srivastava et al., 2015;
Zhang et al., 2018): if we replace (1− zli)⊗ tli +
zli⊗ sli in equation 3 by tli+sli, the proposed model
is reduced to Transformer.

2.2 Regularization of Context Gates
In our preliminary experiments, we found learn-
ing context gates from scratch cannot effectively
reduce the context selection errors as described in
Section 3.3.

To address this issue, we propose a regulariza-
tion method to guide the learning of context gates
by external supervision z∗i which is a binary num-
ber representing whether yi is contributed from
either source (z∗i = 1) or target sentence (z∗i = 0).
Formally, the training objective is defined as fol-
lows:

` = − logP (y | x)+λ
∑
l,i

(
z∗i max(0.5−zli,0)

+ (1− z∗i ) max(zli − 0.5,0)

)
, (5)

where zli is a context gate defined in equation 4 and
λ is a hyperparameter to be tuned in experiments.
Note that we only regularize the gates during the
training, but we skip the regularization during in-
ference.

Because golden z∗i are inaccessible for each
word yi in the training corpus, we ideally have
to annotate it manually. However, it is costly for
human to label such a large scale dataset. Instead,
we propose an automatic method to generate its
value in practice in the next subsection.

2.3 Generating Supervision z∗i
To decide whether yi is contributed from the source
(x) or target sentence (y<i) (Li et al., 2019), a met-
ric to measure the correlation between a pair of
words (〈yi, xj〉 or 〈yi, yk〉 for k < i) is first re-
quired. This is closely related to a well-studied
problem, i.e., word collocation (Liu et al., 2009),
and we simply employ the pointwise mutual infor-
mation (PMI) to measure the correlation between a
word pair 〈µ, ν〉 following Bouma (2009):

pmi (µ, ν) = log P (µ,ν)
P (µ)P (ν)

= logZ + log C(µ,ν)
C(µ)C(ν) ,

(6)

where C (µ) and C (ν) are word counts, C (µ, ν)
is the co-occurrence count of words µ and ν, and
Z is the normalizer, i.e., the total number of all

possible (µ, ν) pairs. To obtain the context gates,
we define two types of PMI according to different
C (µ, ν) including two scenarios as follows.

PMI in the Bilingual Scenario For each parallel
sentence pair 〈x,y〉 in training set, C (yi, xj) is
added by one if both yi ∈ y and xj ∈ x.

PMI in the Monolingual Scenario In the trans-
lation scenario, only the words in the preceding con-
text of a target word should be considered. So for
any target sentence y in the training set, C (yi, yk)
is added by one if both yi ∈ y and yk ∈ y<i.

Given the two kinds of PMI for a bilingual sen-
tence 〈x,y〉, each z∗i for each yi is defined as fol-
lows,

z∗i = 1maxj pmi(yi,xj)>maxk<i pmi(yi,yk), (7)

where 1b is a binary function valued by 1 if b is
true and 0 otherwise. In equation 7, we employ
max strategy to measure the correlation between
yi and a sentence (x or y<i). Indeed, it is similar
to use the average strategy, but we did not find its
gains over max in our experiments.

3 Experiments

The proposed methods are evaluated on NIST
ZH⇒EN 3, WMT14 EN⇒DE 4, IWSLT14
DE⇒EN 5 and IWSLT17 FR⇒EN 6 tasks. To
make our NMT models capable of open-vocabulary
translation, all datasets are preprocessed with Byte
Pair Encoding (Sennrich et al., 2015). All proposed
methods are implemented on top of Transformer
(Vaswani et al., 2017) which is the state-of-the-art
NMT system. Case-insensitive BLEU score (Pa-
pineni et al., 2002) is used to evaluate translation
quality of ZH⇒EN, DE⇒EN and FR⇒EN. For
the fair comparison with the related work, EN⇒DE
is evaluated with case-sensitive BLEU score. Setup
details are described in Appendix A.

3.1 Tuning Regularization Coefficient

In the beginning of our experiments, we tune the
regularization coefficient λ on the DE⇒EN task.
Table 2 shows the robustness of λ, because the
translation performance only fluctuates slightly
over various λ. In particular, the best performance
3LDC2000T50, LDC2002L27, LDC2002T01, LDC2002E18,
LDC2003E07, LDC2003E14, LDC2003T17, LDC2004T07

4WMT14: http://www.statmt.org/wmt14/
5IWSLT14: http://workshop2014.iwslt.org/
6IWSLT17: http://workshop2017.iwslt.org/
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Models params
×106

ZH⇒EN
EN⇒DE DE⇒EN FR⇒EN

MT05 MT06 MT08
RNN based NMT 84 30.6 31.1 23.2 – – –
Tu et al. (2017) 88 34.1 34.8 26.2 – – –

Vaswani et al. (2017) 65 – – – 27.3 – –
Ma et al. (2018) – 36.8 35.9 27.6 – – –

Zhao et al. (2018) – 43.9 44.0 33.3 – – –
Cheng et al. (2018) – 44.0 44.4 34.9 – – –

Transformer 74 46.9 47.4 38.3 27.4 32.2 36.8

This Work
Context Gates 92 47.1 47.6 39.1 27.9 32.5 37.7

Regularized Context Gates 92 47.7 48.3 39.7 28.1 33.0 38.3

Table 1: Translation performances (BLEU). The RNN based NMT (Bahdanau et al., 2014) is reported from the
baseline model in Tu et al. (2017). “params” shows the number of parameters of models when training ZH⇒EN
except Vaswani et al. (2017) is for EN⇒DE tasks.

λ 0.1 0.5 1 2 10
BLEU 32.7 32.6 33.0 32.7 32.6
* Results are measured on DE⇒EN task.

Table 2: Translation performance over different regu-
larization coefficient λ.

is achieved when λ = 1, which is the default set-
ting throughout this paper.

3.2 Translation Performance

Table 1 shows the translation quality of our meth-
ods in BLEU. Our observations are as follows:

1) The performance of our implementation of the
Transformer is slightly higher than Vaswani et al.
(2017), which indicates we are in a fair comparison.

2) The proposed Context Gates achieves modest
improvement over the baseline. As we mentioned
in Section 2.1, the structure of RNN based NMT
is quite different from the Transformer. There-
fore, naively introducing the gate mechanism to
the Transformer without adaptation does not obtain
similar gains as it does in RNN based NMT.

3) The proposed Regularized Context Gates im-
proves nearly 1.0 BLEU score over the baseline
and outperforms all existing related work. This
indicates that the regularization can make context
gates more effective in relieving the context control
problem as discussed following.

3.3 Error Analysis

To explain the success of Regularized Context
Gates, we analyze the error rates of translation
and context selection. Given a sentence pair x
and y, the forced decoding translation error is de-
fined as P (yi | y<i,x) < P (ŷi | y<i,x), where
ŷi , arg maxv P (v | y<i,x) and v denotes any to-

ken in the vocabulary. The context selection error is
defined as z∗i (yi) 6= z∗i (ŷi), where z∗i is defined in
equation 7. Note that a context selection error must
be a translation error but the opposite is not true.
The example shown in Figure 1 also demonstrates
a context selection error indicating the translation
error is related with the bad context selection.

Models FER CER CE/FE
Transformer 40.5 13.8 33.9

Context Gates 40.5 13.7 33.7
Regularized Context Gates 40.0 13.4 33.4
* Results are measured on MT08 of ZH⇒EN task.

Table 3: Forced decoding translation error rate (FER),
context selection error rate (CER) and the proportion
of context selection errors over forced decoding trans-
lation errors (CE/FE) of the original and context gated
Transformer with or without regularization.

As shown in Table 3, the Regularized Context
Gates significantly reduce the translation error by
avoiding the context selection error. The Context
Gates are also able to avoid few context selection
error but cannot make a notable improvement in
translation performance. It is worth to note that
there is approximately one third translation error is
related to context selection error. The Regularized
Context Gates indeed alleviate this severe prob-
lem by effectively rebalancing of source and target
context for translation.

3.4 Statistics of Context Gates

Table 4 summarizes the mean and variance of each
context gate (every dimension of the context gate
vectors) over the MT08 test set. It shows that learn-
ing context gates freely from scratch tends to pay
more attention to target context (0.38< 0.5), which
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Models Mean Variance
Context Gates 0.38 0.10

Regularized Context Gates 0.51 0.13
* Results are measured on MT08 of ZH⇒EN task.

Table 4: Mean and variance of context gates

means the model tends to trust its language model
more than the source context, and we call this con-
text imbalance bias of the freely learned context
gate. Specifically, this bias will make the transla-
tion unfaithful for some source tokens. As shown
in Table 4, the Regularized Context Gates demon-
strates more balanced behavior (0.51≈0.5) over the
source and target context with similar variance.

3.5 Regularization in Different Layers

To investigate the sensitivity of choosing different
layers for regularization, we only regularize the
context gate in every single layer. Table 5 shows
that there is no significant performance difference,
but all single layer regularized context gate mod-
els are slightly inferior to the model, which reg-
ularizes all the gates. Moreover, since nearly no
computation overhead is introduced and for design
simplicity, we adopt regularizing all the layers.

Layers N/A 1 2 3 4 ALL
BLEU 32.5 32.8 32.7 32.5 32.3 33.0
* Results are measured on DE⇒EN task.

Table 5: Regularize context gates on different lay-
ers.“N/A” indicates regularization is not added. “ALL”
indicates regularization is added to all the layers.

3.6 Effects on Long Sentences

In Tu et al. (2017), context gates alleviate the prob-
lem of long sentence translation of attentional RNN
based system (Bahdanau et al., 2014). We follow
Tu et al. (2017) and compare the translation perfor-
mances according to different lengths of the sen-
tences. As shown in Figure 2, we find Context
Gates does not improve the translation of long sen-
tences but translate short sentences better. Fortu-
nately, the Regularized Context Gates indeed sig-
nificantly improves the translation for both short
sentences and long sentences.

4 Conclusions

This paper transplants context gates from the RNN
based NMT to the Transformer to control the
source and target context for translation. We find

[0,10) [10,20) [20,30) [30,40) [40,50) [50,60) [60,130)
Length of Source Sentence

34
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e
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Regularized Context Gates

Figure 2: Translation performance on MT08 test set
with respect to different lengths of source sentence.
Regularized Context Gates significantly improves the
translation of short and long sentences.

that context gates only modestly improve the trans-
lation quality of the Transformer, because learn-
ing context gates freely from scratch is more chal-
lenging for the Transformer with the complicated
structure than for RNN. Based on this observation,
we propose a regularization method to guide the
learning of context gates with an effective way to
generate supervision from training data. Experi-
mental results show the regularized context gates
can significantly improve translation performances
over different translation tasks even though the con-
text control problem is only slightly relieved. In the
future, we believe more work on alleviating con-
text control problem has the potential to improve
translation performance as quantified in Table 3.
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A Details of Data and Implementation

The training data for ZH⇒EN task consists of
1.8M sentence pairs. The development set is cho-
sen as NIST02 and test sets are NIST05, 06, 08.
For EN⇒DE task, its training data contains 4.6M
sentences pairs. Both FR⇒EN and DE⇒EN tasks
contain around 0.2M sentence pairs. For ZH⇒EN
and EN⇒DE tasks, the joint vocabulary is built
with 32K BPE merge operations, and for DE⇒EN
and FR⇒EN tasks it is built with 16K merge oper-
ations.

Our implementation of context gates and the reg-
ularization are based on Transformer, implemented
by THUMT (Zhang et al., 2017). For ZH⇒EN
and EN⇒DE tasks, only the sentences of length
up to 256 tokens are used with no more than 215

tokens in a batch. The dimension of both word
embeddings and hidden size are 512. Both encoder
and decoder have 6 layers and adopt multi-head
attention with 8 heads. For FR⇒EN and DE⇒EN
tasks, we use a smaller model with 4 layers and 4
heads, and both the embedding size and the hidden
size is 256. The training batch contains no more
than 212 tokens. For all tasks, the beam size for de-
coding is 4, and the loss function is optimized with
Adam, where β1 = 0.9, β2 = 0.98 and ε = 10−9.


