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Abstract

Training neural models for named entity
recognition (NER) in a new domain often re-
quires additional human annotations that are
usually expensive and time-consuming to col-
lect. Thus, a crucial research question is how
to obtain supervision in a cost-effective way.
In this paper, we introduce “entity triggers,” an
effective proxy of human explanations for fa-
cilitating label-efficient learning of NER mod-
els. An entity trigger is defined as a group
of words in a sentence that helps to explain
why humans would recognize an entity in the
sentence. We crowd-sourced 14k entity trig-
gers for two well-studied NER datasets1. Our
proposed model, Trigger Matching Network,
jointly learns trigger representations and soft
matching module with self-attention such that
can generalize to unseen sentences easily for
tagging. The framework is significantly more
cost-effective than the traditional frameworks.

1 Introduction

Named entity recognition (NER) is a fundamental
information extraction task that focuses on extract-
ing entities from a given text and classifying them
using pre-defined categories (e.g., persons, loca-
tions, organizations) (Nadeau and Sekine, 2007).
Recent advances in NER have primarily focused
on training neural network models with an abun-
dance of human annotations, yielding state-of-the-
art results (Lample et al., 2016). However, collect-
ing human annotations for NER is expensive and
time-consuming, especially in social media mes-
sages (Lin et al., 2017a) and technical domains
such as biomedical publications, financial docu-
ments, legal reports, etc. As we seek to advance
NER into more domains with less human effort,

∗The first two authors contributed equally.
1The code, data, and a longer version of the paper are at

http://github.com/INK-USC/TriggerNER
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where the food is my favorite .

Figure 1: We show two individual entity triggers: t1
(“had ... lunch at”) and t2 (“where the food”). Both are
associated to the same entity mention “Rumble Fish”
(starting from 7th token) typed as restaurant (RES).

how to learn neural models for NER in a cost-
effective way becomes a crucial research problem.

The standard protocol for obtaining an anno-
tated NER dataset involves an annotator select-
ing token spans in a sentence as mentions of en-
tities, and labeling them with an entity type. How-
ever, such annotation process provides limited su-
pervision per example. Consequently, one would
need large amount of annotations in order to train
high-performing models for a broad range of en-
tity types, which can clearly be cost-prohibitive.
The key question is then how can we learn an ef-
fective NER model in presence of limited quanti-
ties of labeled data?

We, as humans, recognize an entity within a
sentence based on certain words or phrases that act
as cues. For instance, we could infer that ‘Kasd-
frcxzv’ is likely to be a location entity in the sen-
tence “Tom traveled a lot last year in Kasdfrcxzv.”
We recognize this entity because of the cue phrase
“travel ... in,” which suggests there should be a lo-
cation entity following the word ’in’. We call such
phrases “entity triggers.” Similar to the way these
triggers guide our recognition process, we hypoth-
esize that they can also help the model to learn to
generalize efficiently.

Specifically, we define an “entity trigger” (or

http://github.com/INK-USC/TriggerNER
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trigger for simplicity) as a group of words that can
help explain the recognition process of a partic-
ular entity in the same sentence. For example,
in Figure 1, “had ... lunch at”2 and “where the
food” are two distinct triggers associated with the
RESTAURANT entity “Rumble Fish.” An entity
trigger should be a necessary and sufficient cue for
humans to recognize its associated entity even if
we mask the entity with a random word. Thus, un-
necessary words such as “fantastic” should not be
considered part of the entity trigger.

In this paper, we argue that a combination of
entity triggers and standard entity annotations can
enhance the generalization power of NER models.
This approach is more powerful because unlabeled
sentences, such as “Bill enjoyed a great dinner
with Alice at Zcxlbz.”, can be matched with the
existing trigger “had ... lunch at” via their se-
mantic relatedness. This makes it easier for a
model to recognize “Zcxlbz” as a RESTAURANT

entity. In contrast, if we only have the entity anno-
tation itself (i.e., “Rumble Fish”) as supervision,
the model will require many similar examples in
order to learn this simple pattern.

We hypothesize that using triggers as additional
supervision is a more cost-effective way to train
models. We crowd-sourced annotations of 14,708
triggers on two well-studied NER datasets to study
their usefulness for the NER task. Also, we pro-
pose a novel framework named Trigger Match-
ing Network that learns trigger representations in-
dicative of entity types during the training phase,
and identifies triggers in an unlabeled sentence at
inference time to guide a traditional entity tag-
ger for delivering better overall NER performance.
Different from conventional training, our learn-
ing process has two stages, where the first stage
comprises jointly training a trigger classifier and
the semantic trigger matcher, followed by a sec-
ond stage that leverages the trigger representation
and the encoding of the given sentence using an at-
tention mechanism to learn a tagger. Experiments
show that the proposed model using only 20% of
the trigger-annotated sentences results in a compa-
rable performance as using 70% of conventional
annotated sentences.

2 Problem Formulation

We consider the problem of how to cost-effectively
learn a model for NER using entity triggers. In this

2Note that a trigger can be a discontinuous phrase.

section, we introduce basic concepts and their no-
tations, present the conventional data annotation
process for NER, and provide a formal task defini-
tion for learning using entity triggers.

In the conventional setup for supervised learn-
ing for NER, we let x = [x(1), x(2), · · · , x(n)] de-
note a sentence in the labeled training corpus DL.
Each labeled sentence has a NER-tag sequence
y = [y(1), y(2), · · · , y(n)], where y(i) ∈ Y and Y
can be {O, B-PER, · · · }. Thus, we have DL =
{(xi,yi)}, and an unlabeled corpus DU = {xi}.

We propose to annotate entity triggers in sen-
tences. We use T (x,y) to represent the set of
annotated entity triggers, where each trigger ti ∈
T (x,y) is associated with an entity index e and a
set of word indices {wi}. Note that we use the in-
dex of the first word of an entity as its entity index.
That is, t = ({w1, w2, · · · } → e), where e and wi

are integers in the range of [1, |x|].
Adding triggers creates a new form of data
DT = {(xi,yi, T (xi,yi)}. Our goal is to learn a
model for NER from a trigger-labeled dataset DT ,
such that we can achieve comparable learning per-
formance to a model with a much larger DL.

3 Trigger Matching Networks

We propose a straightforward yet effective frame-
work, named Trigger Matching Networks (TMN),
consisting of a trigger encoder (TrigEncoder),
a semantic-based trigger matching module
(TrigMatcher), and a base sequence tagger
(SeqTagger). We have two learning stages for
the framework: the first stage (Section 3.1) jointly
learns the TrigEncoder and TrigMatcher,
and the second stage (Section 3.2) uses the trigger
vectors to learn NER tag labels.

3.1 Trigger Encoding & Semantic Matching

Learning trigger representations and semantically
matching them with sentences are inseparable
tasks. Desired trigger vectors capture the seman-
tics in a shared embedding space with token hid-
den states, such that sentences and triggers can
be semantically matched. Learning an attention-
based matching module between entity triggers
and sentences is necessary so that triggers and sen-
tences can be semantically matched.

Specifically, for a sentence x with multiple en-
tities {e1, e2, · · · }, for each entity ei we assume
that there is a set of triggers Ti = {t(i)1 , t

(i)
2 , · · · }

without loss of generality. To enable more efficient
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Bidirectional LSTM Networks

Sent. Rep. Trigger Rep.
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②: Learning for Sequence Tagging
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Global Attention
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CRF
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Figure 2: Two-stage training in Trigger Matching Network (Left). We first jointly train TrigEncoder (via
trigger classification) and TrigMatcher (via contrastive loss). Then, we reuse the training data trigger vectors
as attention queries in SeqTagger. The inference process (Right). It uses the TrigMatcher to retrieve the
k nearest triggers and average their trigger vectors as the attention query for the trained SeqTagger. Thus, an
unseen cue phrase (e.g., “head of ... team”) can be matched with a seen trigger (e.g., “leader of ... group”).

batch-based training, we reformat the trigger-
based annotated dataset DT such that each new
sequence contains only one entity and one trigger.
We then create a training instance by pairing each
entity with one of its triggers, denoted (x, ei, t

(i)
j ).

For each reformed training instance (x, e, t), we
first apply a bidirectional LSTM (BLSTM) on the
sequence of word vectors of x, obtaining a se-
quence of hidden states that are the contextualized
word representations hi for each token xi in the
sentence. We use H to denote the matrix contain-
ing the hidden vectors of all of the tokens, and we
use Z to denote the matrix containing the hidden
vectors of all trigger tokens inside the trigger t.

In order to learn an attention-based representa-
tion of both triggers and sentences, we follow the
self-attention method introduced by (Lin et al.,
2017b) as follows:

~asent = SoftMax
(
W2 tanh

(
W1H

T
))

gs = ~asentH

~atrig = SoftMax
(
W2 tanh

(
W1Z

T
))

gt = ~atrigZ

W1 andW2 are two trainable parameters for com-
puting self-attention score vectors ~asent and ~atrig.
We obtain a vector representing the weighted sum
of the token vectors in the entire sentence as the
final sentence vector gs. Similarly, gt is the final
trigger vector, representing the weighted sum of
the token vectors in the trigger.

We want to use the type of the associated en-
tity as supervision to guide the trigger representa-
tion. Thus, the trigger vector gt is further fed into
a multi-class classifier to predict the type of the
associated entity e (such as PER, LOC, etc) which
we use type(e) to denote. The loss of the trigger

classification is as follows:

LTC = −
∑

log P (type(e) | gt; θTC) ,

where θTC is a model parameter to learn.
Towards learning to match triggers and sen-

tences based on attention-based representations,
we use contrastive loss (Hadsell et al., 2006).
The intuition is that similar triggers and sentences
should have close representations (i.e., have a
small distance between them, d). We create neg-
ative examples (i.e., mismatches) for training by
randomly mixing the triggers and sentences, be-
cause TrigMatcher needs to be trained with
both positive and negative examples of the form
(sentence, trigger, label). For the negative exam-
ples, we expect a margin m between their embed-
dings. The contrastive loss of soft matching is as
follows, where 1matched is 1 if the trigger was orig-
inally in this sentence and 0 if they are not:

d = ‖gs − gt‖2

LSM = (1− 1matched)
1

2
(d)2

+1matched
1

2
{max (0,m− d)}2

The joint loss of the first stage is thus L = LTC+
λLSM , where λ is a hyper-parameter to tune.

3.2 Trigger-Enhanced Sequence Tagging
The learning objective in this stage is to output
the tag sequence y. Following the most com-
mon design of neural NER architecture, BLSTM-
CRF (Ma and Hovy, 2016), we incorporate the en-
tity triggers as attention queries to train a trigger-
enhanced sequence tagger for NER. Note that
the BLSTM used in the the TrigEncoder and
TrigMatcher modules is the same BLSTM we
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use in the SeqTagger to obtain H, the matrix
containing the hidden vectors of all of the tokens.
Given a sentence x, we use the previously trained
TrigMatcher to compute the mean of all the
trigger vectors ĝt associated with this sentence.
Following the conventional attention method (Lu-
ong et al., 2015), we incorporate the mean trig-
ger vector as the query, creating a sequence of
attention-based token representations, H′.

~α = SoftMax

(
v> tanh

(
U1H

T + U2ĝt
T
)>)

H′ = ~αH

U1, U2, and v are trainable parameters for comput-
ing the trigger-enhanced attention scores for each
token. Finally, we concatenate the original token
representation H with the trigger-enhanced one
H′ as the input ([H;H′]) to the final CRF tagger.
Note that in this stage, our learning objective is the
same as conventional NER, which is to correctly
predict the tag for each token.

3.3 Inference on Unlabeled Sentences

When inferencing tags on unlabeled sentences, we
do not know the sentence’s triggers. Instead, we
use the TrigMatcher to compute the similari-
ties between the self-attended sentence represen-
tations and the trigger representations, using the
most suitable triggers as additional inputs to the
SeqTagger. Specifically, we have a trigger dic-
tionary from our training data, T = {t|(·, ·, t) ∈
DT }. Recall that we have learned a trigger vec-
tor for each of them, and we can load these trig-
ger vectors as a look-up table in memory. For
each unlabeled sentence x, we first compute its
self-attended vector gs as we do when training
the TrigMatcher. Using L2-norm distances
to compute the contrastive loss, we efficiently re-
trieve the most similar triggers in the shared em-
bedding space of the sentence and trigger vectors.

Then, we calculate ĝt, the mean of the top
k nearest semantically matched triggers, as this
serves a proxy to triggers mentioned for the entity
type in the labeled data. We then use it as the atten-
tion query for SeqTagger, similarly in Sec. 3.2.

4 Experiments

In this section, we first discuss how to collect
entity triggers, and empirically study the data-
efficiency of our proposed framework.

CONLL 03 PER ORG MISC LOC Total

# of Entities 1,608 958 787 1,781 5,134
# of Triggers 3,445 1,970 2,057 3,456 10,938

Avg. # of Trig. / Ent. 2.14 2.05 2.61 1.94 2.13
Avg. Trig. Length 1.41 1.46 1.4 1.44 1.43

BC5CDR DISEASE CHEMICAL Total

# of Entities 906 1,085 1,991
# of Triggers 2,130 1,640 3,770

Avg. # of Trig. / Ent. 2.35 1.51 1.89
Avg. Trig. Length 2.00 1.99 2.00

Table 1: Statistics of the crowd-sourced triggers.

4.1 Annotating Entity Triggers

We use a general domain dataset
CoNLL2003 (Tjong Kim Sang and De Meul-
der, 2003) and a bio-medical domain dataset
BC5CDR (Li et al., 2016). Both datasets are well-
studied and popular in evaluating the performance
of neural named entity recognition models such
as BLSTM-CRF (Ma and Hovy, 2016).

In order to collect the entity triggers from
human annotators, we use Amazon SageMaker
Ground Truth3 to crowd-source entity triggers.
More recently, Lee et al. (2020) developed an an-
notation framework, named LEAN-LIFE, which
supports our proposed trigger annotating. Specif-
ically, we sample 20% of each training set as our
inputs, and then reform them (Section 2). Anno-
tators are asked to annotate a group of words that
would be helpful in typing and/or detecting the oc-
currence of a particular entity in the sentence. We
masked the entity tokens with their types so that
human annotators are more focused on the non-
entity words in the sentence when considering the
triggers. We consolidate multiple triggers for each
entity by taking the intersection of the three anno-
tators’ results. Statistics of the final curated trig-
gers are summarized in Table 1.

4.2 Base model

We require a base model to compare with our pro-
posed TMN model in order to validate whether
the TMN model effectively uses triggers to im-
prove model performance in a limited label set-
ting. We choose the CNN-BLSTM-CRF (Ma and
Hovy, 2016) as our base model for its wide us-
age in research of neural NER models and appli-
cations. Our TMNs are implemented within the
same codebase and use the same external word

3An advanced version of Amazon Mechanical Turk.
https://aws.amazon.com/sagemaker/

https://aws.amazon.com/sagemaker/
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CONLL 2003
BLSTM-CRF TMN TMN + S.T.

sent. F1 trig. F1 F1

5% 69.04 3% 75.33 77.68
10% 76.83 5% 80.2 81.57
20% 81.3 7% 82.02 82.43
30% 83.23 10% 83.53 83.53
40% 84.18 13% 84.22 84.33
50% 84.27 15% 85.03 85.38
60% 85.24 17% 85.36 85.52
70% 86.08 20% 86.01 86.5

Table 2: Labor-efficiency study on BLSTM-CRF
and TMN. “sent.” means the percentage of the
sentences (labeled only with entity tags) we use for
BLSTM-CRF, while “trig.” denotes the percentage of
the sentences (labeled with both entity tags and trigger
tags) we use for TMN. ‘S.T.’ stands for self-training.

vectors from GloVE (Pennington et al., 2014).
The hyper-parameters of the CNNs, BLSTMs, and
CRFs are also the same. This ensures a fair com-
parison between a typical non-trigger NER model
and our trigger-enhanced framework.

4.3 Results and analysis

Labeled data efficiency. We first seek to study
the cost-effectiveness of using triggers as an addi-
tional source of supervision. Accordingly, we ex-
plore the performance of our model and the base-
line for different fractions of the training data.
The results on the two datasets are shown in Ta-
ble 2. The full results are shown in Table 3. We
can see that by using only 20% of the trigger-
annotated data, TMN model delivers comparable
performance as the baseline model using 50-70%
traditional training data. The drastic improvement
in the model performance obtained using triggers
thus justifies the slightly additional cost incurred
in annotating triggers.
Self-training with triggers. We also do
a preliminary investigation of adopting self-
training (Rosenberg et al., 2005) with triggers.
We make inferences on unlabeled data and take
the predictions with high confidences as the weak
training examples for continually training the
model. The confidence is computed following the
MNLP metric (Shen et al., 2017), and we take top
20% every epoch. With the self-training method,
we further improve the TMN model’s F-1 scores
by about 0.5∼1.0%.
Annotation time vs. performance. Although it
is hard to accurately study the time cost on the
crowd-sourcing platform we use, based on our of-

Figure 3: The cost-effectiveness study.

fline simulation we argue that annotating both trig-
gers and entities are about 1.5 times (“BLSTM-
CRF (x1.5)”) longer than only annotating entities.
our offline simulation. In Figure 3, The x-axis for
BLSTM-CRF means the number of sentences an-
notated with only entities, while for TMN means
the number of sentences tagged with both entities
and triggers. In order to reflect human annotators
spending 1.5 to 2 times as long annotating triggers
and entities as they spend annotating only entities,
we stretch the x-axis for BLSTM-CRF. We can
clearly see that the proposed TMN outperforms
the BLSTM-CRF model by a large margin. Even
if we consider the extreme case that tagging trig-
gers requires twice the human effort (“BLSTM-
CRF (x2)”), the TMN is still significantly more
labor-efficient in terms of F1 scores.

5 Conclusion

We introduce “entity trigger” as a complemen-
tary annotation. We crowdsourced triggers on
two mainstream datasets and will release them to
the community, and proposed a novel framework
TMN which can generalize to unseen sentences
easily for tagging named entities.
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Ré. 2018. Training classifiers with natural lan-
guage explanations. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1884–
1895, Melbourne, Australia. Association for Com-
putational Linguistics.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 260–270, San Diego, California. Association
for Computational Linguistics.

Ouyu Lan, Xiao Huang, Bill Yuchen Lin, He Jiang,
Liyuan Liu, and Xiang Ren. 2020. Learning to con-
textually aggregate multi-source supervision for se-
quence labeling. In Proceedings of Association for
Computational Linguistics. (to appear).

Dong-Ho Lee, Rahul Khanna, Bill Yuchen Lin, Jamin
Chen, Seyeon Lee, Qinyuan Ye, Elizabeth Boschee,
Leonardo Neves, and Xiang Ren. 2020. Lean-
life: A label-efficient annotation framework towards
learning from explanation. In Proceedings of Asso-
ciation for Computational Linguistics. (to appear).

Jiao Li, Yueping Sun, Robin J. Johnson, Daniela Sci-
aky, Chih-Hsuan Wei, Robert Leaman, Allan Peter
Davis, Carolyn J. Mattingly, Thomas C. Wiegers,
and Zhiyong Lu. 2016. Biocreative v cdr task cor-
pus: a resource for chemical disease relation extrac-
tion. Database : the journal of biological databases
and curation, 2016.

Shen Li, Hengru Xu, and Zhengdong Lu. 2018. Gen-
eralize symbolic knowledge with neural rule engine.
ArXiv, abs/1808.10326.

Bill Y. Lin, Frank Xu, Zhiyi Luo, and Kenny Zhu.
2017a. Multi-channel BiLSTM-CRF model for
emerging named entity recognition in social media.
In Proceedings of the 3rd Workshop on Noisy User-
generated Text, pages 160–165, Copenhagen, Den-
mark. Association for Computational Linguistics.

Bill Yuchen Lin, Dong-Ho Lee, Frank F. Xu, Ouyu
Lan, and Xiang Ren. 2019. AlpacaTag: An active
learning-based crowd annotation framework for se-
quence tagging. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics: System Demonstrations, pages 58–63, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Bill Yuchen Lin and Wei Lu. 2018. Neural adapta-
tion layers for cross-domain named entity recogni-
tion. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Process-
ing, pages 2012–2022, Brussels, Belgium. Associ-
ation for Computational Linguistics.

Zhouhan Lin, Minwei Feng, Cicero Nogueira dos San-
tos, Mo Yu, Bing Xiang, Bowen Zhou, and Yoshua
Bengio. 2017b. A structured self-attentive sentence
embedding. In International Conference on Learn-
ing Representations.

Tianyu Liu, Jin-Ge Yao, and Chin-Yew Lin. 2019. To-
wards improving neural named entity recognition
with gazetteers. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 5301–5307, Florence, Italy. Associa-
tion for Computational Linguistics.

David Lowell, Zachary C. Lipton, and Byron C. Wal-
lace. 2019. Practical obstacles to deploying active
learning. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
21–30, Hong Kong, China. Association for Compu-
tational Linguistics.

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015. Effective approaches to attention-based
neural machine translation. In Proceedings of the
2015 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1412–1421, Lis-
bon, Portugal. Association for Computational Lin-
guistics.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end
sequence labeling via bi-directional LSTM-CNNs-
CRF. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1064–1074, Berlin,
Germany. Association for Computational Linguis-
tics.

David Nadeau and Satoshi Sekine. 2007. A sur-
vey of named entity recognition and classification.
Lingvisticae Investigationes, 30(1):3–26.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543, Doha,
Qatar. Association for Computational Linguistics.

https://doi.org/10.18653/v1/D19-1025
https://doi.org/10.18653/v1/D19-1025
https://ieeexplore.ieee.org/document/1640964
https://ieeexplore.ieee.org/document/1640964
https://ieeexplore.ieee.org/document/1640964
https://doi.org/10.18653/v1/P18-1175
https://doi.org/10.18653/v1/P18-1175
https://doi.org/10.18653/v1/N16-1030
https://arxiv.org/abs/1910.04289
https://arxiv.org/abs/1910.04289
https://arxiv.org/abs/1910.04289
https://arxiv.org/abs/2004.07499
https://arxiv.org/abs/2004.07499
https://arxiv.org/abs/2004.07499
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4860626/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4860626/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4860626/
https://arxiv.org/abs/1808.10326
https://arxiv.org/abs/1808.10326
https://doi.org/10.18653/v1/W17-4421
https://doi.org/10.18653/v1/W17-4421
https://doi.org/10.18653/v1/P19-3010
https://doi.org/10.18653/v1/P19-3010
https://doi.org/10.18653/v1/P19-3010
https://doi.org/10.18653/v1/D18-1226
https://doi.org/10.18653/v1/D18-1226
https://doi.org/10.18653/v1/D18-1226
https://openreview.net/forum?id=BJC_jUqxe
https://openreview.net/forum?id=BJC_jUqxe
https://doi.org/10.18653/v1/P19-1524
https://doi.org/10.18653/v1/P19-1524
https://doi.org/10.18653/v1/P19-1524
https://doi.org/10.18653/v1/D19-1003
https://doi.org/10.18653/v1/D19-1003
https://doi.org/10.18653/v1/D15-1166
https://doi.org/10.18653/v1/D15-1166
https://doi.org/10.18653/v1/P16-1101
https://doi.org/10.18653/v1/P16-1101
https://doi.org/10.18653/v1/P16-1101
https://doi.org/https://doi.org/10.1075/li.30.1.03nad
https://doi.org/https://doi.org/10.1075/li.30.1.03nad
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162


8509

Chuck Rosenberg, Martial Hebert, and Henry Schnei-
derman. 2005. Semi-supervised self-training of
object detection models. 2005 Seventh IEEE
Workshops on Applications of Computer Vision
(WACV/MOTION’05) - Volume 1, 1:29–36.

Esteban Safranchik, Shiying Luo, and Stephen H.
Bach. 2020. Weakly supervised sequence tagging
from noisy rules. In AAAI Conference on Artificial
Intelligence (AAAI).

Jingbo Shang, Liyuan Liu, Xiaotao Gu, Xiang Ren,
Teng Ren, and Jiawei Han. 2018. Learning named
entity tagger using domain-specific dictionary. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages
2054–2064, Brussels, Belgium. Association for
Computational Linguistics.

Yanyao Shen, Hyokun Yun, Zachary Lipton, Yakov
Kronrod, and Animashree Anandkumar. 2017.
Deep active learning for named entity recognition.
In Proceedings of the 2nd Workshop on Representa-
tion Learning for NLP, pages 252–256, Vancouver,
Canada. Association for Computational Linguistics.

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In
Proceedings of the Seventh Conference on Natu-
ral Language Learning at HLT-NAACL 2003, pages
142–147.

Ziqi Wang*, Yujia Qin*, Wenxuan Zhou, Jun Yan,
Qinyuan Ye, Leonardo Neves, Zhiyuan Liu, and Xi-
ang Ren. 2020. Learning from explanations with
neural execution tree. In International Conference
on Learning Representations.

Yaosheng Yang, Wenliang Chen, Zhenghua Li,
Zhengqiu He, and Min Zhang. 2018. Distantly su-
pervised NER with partial annotation learning and
reinforcement learning. In Proceedings of the 27th
International Conference on Computational Lin-
guistics, pages 2159–2169, Santa Fe, New Mexico,
USA. Association for Computational Linguistics.

Wenxuan Zhou, Hongtao Lin, Bill Yuchen Lin, Ziqi
Wang, Junyi Du, Leonardo Neves, and Xiang Ren.
2020. Nero: A neural rule grounding framework
for label-efficient relation extraction. In Proceed-
ings of The Web Conference 2020, WWW ’20, page
2166–2176, New York, NY, USA. Association for
Computing Machinery.

https://ieeexplore.ieee.org/document/4129456
https://ieeexplore.ieee.org/document/4129456
http://cs.brown.edu/people/sbach/files/safranchik-aaai20.pdf
http://cs.brown.edu/people/sbach/files/safranchik-aaai20.pdf
https://doi.org/10.18653/v1/D18-1230
https://doi.org/10.18653/v1/D18-1230
https://doi.org/10.18653/v1/W17-2630
https://www.aclweb.org/anthology/W03-0419
https://www.aclweb.org/anthology/W03-0419
https://openreview.net/forum?id=rJlUt0EYwS
https://openreview.net/forum?id=rJlUt0EYwS
https://www.aclweb.org/anthology/C18-1183
https://www.aclweb.org/anthology/C18-1183
https://www.aclweb.org/anthology/C18-1183
https://doi.org/10.1145/3366423.3380282
https://doi.org/10.1145/3366423.3380282


8510

A Interpretibility

Figure 4 shows two examples illustrating that the
trigger attention scores help the TMN model rec-
ognize entities. The training data has ‘per day’
as a trigger phrase for chemical-type entities, and
this trigger matches the phrase ‘once daily’ in
an unseen sentence during the inference phase
of TrigMatcher. Similarly, in CoNLL03 the
training data trigger phrase ‘said it’ matches with
the phrase ‘was quoted as saying’ in an unlabeled
sentence. These results not only support our argu-
ment that trigger-enhanced models such as TMN
can effectively learn, but they also demonstrate
that trigger-enhanced models can provide reason-
able interpretation, something that lacks in other
neural NER models.

B Related Work

Towards low-resource learning for NER, recent
works have mainly focused on dictionary-based
distantly supervision (Shang et al., 2018; Yang
et al., 2018; Liu et al., 2019). These approaches
create an external large dictionary of entities, and
then regard hard-matched sentences as additional,
noisy-labeled data for learning a NER model. Al-
though these approaches largely reduce human ef-
forts in annotating, the quality of matched sen-
tences is highly dependent on the coverage of the
dictionary and the quality of the corpus. The
learned models tend to have a bias towards enti-
ties with similar surface forms as the ones in dic-
tionary. Without further tuning under better super-
vision, these models have low recall (Cao et al.,
2019). Linking rules (Safranchik et al., 2020) fo-
cuses on the votes on whether adjacent elements
in the sequence belong to the same class. Unlike
these works aiming to get rid of training data or
human annotations, our work focuses on how to
more cost-effectively utilize human efforts.

Another line of research which also aims to use
human efforts more cost-effectively is active learn-
ing (Shen et al., 2017; Lin et al., 2019). This ap-
proach focuses on instance sampling and the hu-
man annotation UI, asking workers to annotate
the most useful instances first. However, a re-
cent study (Lowell et al., 2019) argues that ac-
tively annotated data barely helps when training
new models. Transfer learning approaches (Lin
and Lu, 2018) and aggregating multi-source super-
vision (Lan et al., 2020) are also studied for using
less expensive supervision for NER, while these

methods usually lack clear rationales to advise an-
notation process unlike the trigger annotations.

Inspired by recent advances in learning sen-
tence classification tasks (e.g., relation extraction
and sentiment classification) with explanations or
human-written rules (Li et al., 2018; Hancock
et al., 2018; Wang* et al., 2020; Zhou et al., 2020),
we propose the concept of an “entity trigger” for
the task of named entity recognition. These prior
works primarily focused on sentence classifica-
tion, in which the rules (parsed from natural lan-
guage explanations) are usually continuous token
sequences and there is a single label for each input
sentence. The unique challenge in NER is that we
have to deal with rules which are discontinuous
token sequences and there may be multiple rules
applied at the same time for an input instance. We
address this problem in TMN by jointly learning
trigger representations and creating a soft match-
ing module that works in the inference time.

We argue that either dictionary-based distant su-
pervision or active learning can be used in the
context of trigger-enhanced NER learning via our
framework. For example, one could create a dic-
tionary using a high-quality corpus and then ap-
ply active learning by asking human annotators
to annotate the triggers chosen by an active sam-
pling algorithm designed for TMN. We believe our
work sheds light on future research for more cost-
effectively using human to learn NER models.

C Future Directions

We believe future directions with TriggerNER in-
cludes: 1) developing models for automatically
extracting novel triggers, 2) transferring existing
entity triggers to low-resource languages, and 3)
improving trigger modeling with better structured
inductive bias (e.g., OpenIE).
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CONLL 2003
BLSTM-CRF TMN TMN + SELF-TRAINING

sent. Precision Recall F1 trig. Precision Recall F1 Precision Recall F1

5% 70.85 67.32 69.04 3% 76.36 74.33 75.33 80.36 75.18 77.68
10% 76.57 77.09 76.83 5% 81.28 79.16 80.2 81.96 81.18 81.57
20% 82.17 80.35 81.3 7% 82.93 81.13 82.02 82.92 81.94 82.43
30% 83.71 82.76 83.23 10% 84.47 82.61 83.53 84.47 82.61 83.53
40% 85.31 83.1 84.18 13% 84.76 83.69 84.22 84.64 84.01 84.33
50% 85.07 83.49 84.27 15% 85.61 84.45 85.03 86.53 84.26 85.38
60% 85.58 84.54 85.24 17% 85.25 85.46 85.36 86.42 84.63 85.52
70% 86.87 85.3 86.08 20% 86.04 85.98 86.01 87.09 85.91 86.5

BC5CDR
BLSTM-CRF TMN TMN + SELF-TRAINING

sent. Precision Recall F1 trig. Precision Recall F1 Precision Recall F1

5% 63.37 43.23 51.39 3% 66.47 57.11 61.44 65.23 59.18 62.06
10% 68.83 60.37 64.32 5% 69.17 73.31 66.11 68.02 66.76 67.38
20% 79.09 62.66 69.92 7% 64.81 69.82 67.22 69.87 66.03 67.9
30% 80.13 65.3 71.87 10% 71.89 69.57 70.71 69.75 72.75 71.22
40% 82.05 65.5 72.71 13% 73.36 70.44 71.87 75.11 69.31 72.1
50% 82.56 66.58 73.71 15% 70.91 72.89 71.89 71.23 73.31 72.26
60% 81.73 70.74 75.84 17% 75.67 70.6 73.05 77.47 70.47 73.97
70% 81.16 75.29 76.12 20% 77.47 70.47 73.97 75.23 73.83 74.52

Table 3: Labor-efficiency study on BLSTM-CRF and TMN. “sent.” means the percentage of the sentences
(labeled only with entity tags) we use for BLSTM-CRF, while “trig.” denotes the percentage of the sentences
(labeled with both entity tags and trigger tags) we use for TMN.

ap
om

orp
hin

e -

ind
uce

d (
0.0 mg / kg s.c

.
on

ce
da

ily )

ag
gre

ssi
ve

be
ha

vio
r of

ad
ult male an

d
fem

ale
Wista

r
rat

s

Trigger : 'per day' - Entity type : Chemical

" I
will

ha
ve to

ha
ve a

go
odloo

k at
giv

ing

som
eo

neels
e a go , "

New
com

bewas

qu
ote

d as
say

ing in

Sy
dn

ey 's
Daily

Te
leg

rap
h .

Trigger : 'said it' - Entity type : PER

Figure 4: Two case studies of trigger attention during inference. The darker cells have higher attention weights.


