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Abstract

Extracting structured knowledge from product
profiles is crucial for various applications in
e-Commerce. State-of-the-art approaches for
knowledge extraction were each designed for a
single category of product, and thus do not ap-
ply to real-life e-Commerce scenarios, which
often contain thousands of diverse categories.
This paper proposes TXtract, a taxonomy-
aware knowledge extraction model that applies
to thousands of product categories organized
in a hierarchical taxonomy. Through cate-
gory conditional self-attention and multi-task
learning, our approach is both scalable, as it
trains a single model for thousands of cate-
gories, and effective, as it extracts category-
specific attribute values. Experiments on prod-
ucts from a taxonomy with 4,000 categories
show that TXtract outperforms state-of-the-art
approaches by up to 10% in F1 and 15% in
coverage across all categories.

1 Introduction

Real-world e-Commerce platforms contain bil-
lions of products from thousands of different cat-
egories, organized in hierarchical taxonomies (see
Figure 1). Knowledge about products can be rep-
resented in structured form as a catalog of prod-
uct attributes (e.g., flavor) and their values (e.g.,
“strawberry”). Understanding precise values of
product attributes is crucial for many applica-
tions including product search, recommendation,
and question answering. However, structured at-
tributes in product catalogs are often sparse, lead-
ing to unsatisfactory search results and various
kinds of defects. Thus, it is invaluable if such
structured information can be extracted from prod-
uct profiles such as product titles and descriptions.
Consider for instance the “Ice Cream” product of
Figure 1. The corresponding title can potentially
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Figure 1: A hierarchical taxonomy with various prod-
uct categories and the public webpage of a product as-
signed to “Ice Cream” category.

be used to extract values for attributes, such as
“Ben & Jerry’s” for brand, “Strawberry Cheese-
cake” for flavor, and “16 oz” for capacity.

State-of-the-art approaches for attribute value
extraction (Zheng et al., 2018; Xu et al., 2019;
Rezk et al., 2019) have employed deep learning
to capture features of product attributes effectively
for the extraction purpose. However, they are
all designed without considering the product cat-
egories and thus cannot effectively capture the di-
versity of categories across the product taxonomy.
Categories can be substantially different in terms
of applicable attributes (e.g., a “Camera” product
should not have flavor), attribute values (e.g., “Vi-
tamin” products may have “fruit” flavor but “Ba-
nana” products should not) and more generally,
text patterns used to describe the attribute values
(e.g., the phrase “infused with” is commonly fol-
lowed by a scent value such as “lavender” in “Hair
Care” products but not in “Mattresses” products).

In this paper, we consider attribute value extrac-
tion for real-world hierarchical taxonomies with
thousands of product categories, where directly
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applying previous approaches presents limitations.
On the one extreme, ignoring the hierarchical
structure of categories in the taxonomy and assum-
ing a single “flat” category for all products does
not capture category-specific characteristics and,
as we will show in Section 5, is not effective. On
the other extreme, training a separate deep neu-
ral network for each category in the product tax-
onomy is prohibitively expensive, and can suffer
from lack of training data on small categories.

To address the limitations of previous ap-
proaches under this challenging setting, we pro-
pose a framework for category-specific attribute
value extraction that is both efficient and effective.
Our deep neural network, TXtract, is taxonomy-
aware: it leverages the hierarchical taxonomy of
product categories and extracts attribute values for
a product conditional to its category, such that it
automatically associates categories with specific
attributes, valid attribute values, and category-
specific text patterns. TXtract is trained on all cat-
egories in parallel and thus can be applied even on
small categories with limited labels.

The key question we need to answer is how to
condition deep sequence models on product cat-
egories. Our experiments suggest that following
previous work to append category-specific artifi-
cial tokens to the input sequence, or concatenate
category embeddings to hidden neural network
layers is not adequate. There are two key ideas
behind our solution. First, we use the category in-
formation as context to generate category-specific
token embeddings via conditional self-attention.
Second, we conduct multi-task training by mean-
while predicting product category from profile
texts; this allows us to get token embeddings that
are discriminative of the product categories and
further improve attribute extraction. Multi-task
training also makes our extraction model more ro-
bust towards wrong category assignment, which
occurs often in real e-Commerce websites.1

To the best of our knowledge, TXtract is the
first deep neural network that has been applied
to attribute value extraction for hierarchical tax-
onomies with thousands of product categories. In
particular, we make three contributions.

1Examples: (1) an ethernet cable assigned under the “Hair
Brushes”: https://www.amazon.com/dp/B012AE5EP4; (2)
an eye shadow product assigned under “Travel Cases”:
https://www.amazon.com/dp/B07BBM5B33. Screenshots of
these product profiles are taken in 12/2019 and available at
the Appendix.

1. We develop TXtract, a taxonomy-aware deep
neural network for attribute value extraction
from product profiles for multiple product cat-
egories. In TXtract, we capture the hierarchi-
cal relations between categories into category
embeddings, which in turn we use as context
to generate category-specific token embeddings
via conditional self-attention.

2. We improve attribute value extraction through
multi-task learning: TXtract jointly extracts at-
tribute values and predicts the product’s cate-
gories by sharing representations across tasks.

3. We evaluate TXtract on a taxonomy of 4,000
product categories and show that it substan-
tially outperforms state-of-the-art models by up
to 10% in F1 and 15% in coverage across all
product categories.

Although this work focuses on e-Commerce,
our approach to leverage taxonomies can be ap-
plied to broader domains such as finance, educa-
tion, and biomedical/clinical research. We leave
experiments on these domains for future work.

The rest of this paper is organized as fol-
lows. Section 2 discusses related work. Sec-
tion 3 presents background and formally defines
the problem. Section 4 presents our solution and
Section 5 describes experimental results. Finally,
Section 6 concludes and suggests future work.

2 Related Work

Here, we discuss related work on attribute
value extraction (Section 2.1), and multi-task
learning/meta-learning (Section 2.2).

2.1 Attribute Value Extraction from Product
Profiles

Attribute value extraction was originally ad-
dressed with rule-based techniques (Nadeau and
Sekine, 2007; Vandic et al., 2012; Gopalakrish-
nan et al., 2012) followed by supervised learn-
ing techniques (Ghani et al., 2006; Putthividhya
and Hu, 2011; Ling and Weld, 2012; Petrovski
and Bizer, 2017; Sheth et al., 2017). Most recent
techniques consider open attribute value extrac-
tion: emerging attribute values can be extracted by
sequence tagging, similar to named entity recog-
nition (NER) (Putthividhya and Hu, 2011; Chiu
and Nichols, 2016; Lample et al., 2016; Yadav and
Bethard, 2018). State-of-the-art methods employ
deep learning for sequence tagging (Zheng et al.,

https://www.amazon.com/dp/B012AE5EP4
https://www.amazon.com/dp/B07BBM5B33
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2018; Xu et al., 2019; Rezk et al., 2019). How-
ever, all previous methods can be adapted to a
small number of categories and require many la-
beled datapoints per category.2 Even the Active
Learning method of Zheng et al. (2018) requires
humans to annotate at least hundreds of carefully
selected examples per category. Our work differs
from previous approaches as we consider thou-
sands of product categories organized in a hierar-
chical taxonomy.

2.2 Multi-Task/Meta- Learning

Our framework is related to multi-task learn-
ing (Caruana, 1997) as we train a single model si-
multaneously on all categories (tasks). Traditional
approaches consider a small number of different
tasks, ranging from 2 to 20 and employ hard pa-
rameter sharing (Alonso and Plank, 2017; Yang
et al., 2017; Ruder, 2019): the first layers of neural
networks are shared across all tasks, while the sep-
arate layers (or “heads”) are used for each individ-
ual task. In our setting with thousands of different
categories (tasks), our approach is efficient as we
use a single (instead of thousands) head and effec-
tive as we distinguish between categories through
low-dimensional category embeddings.

Our work is also related to meta-learning ap-
proaches based on task embeddings (Finn et al.,
2017; Achille et al., 2019; Lan et al., 2019): the
target tasks are represented in a low-dimensional
space that captures task similarities. However, we
generate category embeddings that reflect the al-
ready available, hierarchical structure of product
categories in the taxonomy provided by experts.

3 Background and Problem Definition

We now provide background on open attribute
value extraction (Section 3.1) and define our prob-
lem of focus (Section 3.2).

3.1 Open Attribute Value Extraction

Most recent approaches for attribute value extrac-
tion rely on the open-world assumption to discover
attribute values that have never been seen during
training (Zheng et al., 2018). State-of-the-art ap-
proaches address extraction with deep sequence
tagging models (Zheng et al., 2018; Xu et al.,

2Zheng et al. (2018) considered 3 categories: “Dog
Dood,” “Cameras,” and “Detergent.” Xu et al. (2019) con-
sider 1 category: “Sports & Entertainment.” Rezk et al.
(2019) considered 21 categories and trained a separate model
for each category.

Input Ben & Jerry’s black cherry cheesecake ice cream
Output O O O B I E O O

Table 1: Example of input/output tag sequences for the
“flavor” attribute of an ice cream product.

2019; Rezk et al., 2019): each token of the input
sequence x = (x1, . . . , xT ) is assigned a sepa-
rate tag from {B, I, O, E}, where “B,” “I,” “O,”
and “E” represent the beginning, inside, outside,
and end of an attribute, respectively. (Not extract-
ing any values corresponds to a sequence of “O”-
only tags.) Table 1 shows an input/output example
of flavor value extraction from (part of) a prod-
uct title. Given this output tag sequence, “black
cherry cheesecake” is extracted as a flavor for the
ice cream product.

3.2 Problem Definition

We represent the product taxonomy as a tree C,
where the root node is named “Product” and each
taxonomy node corresponds to a distinct product
category: c ∈ C. A directed edge between two
nodes represents the category-to-subcategory re-
lationship. A product is assigned to a category
node in C. In practice, there are often thousands
of nodes in a taxonomy tree and the category as-
signment of a product may be incorrect. We now
formally define our problem as follows.

DEFINITION: Consider a product from a cat-
egory c and the sequence of tokens x =
(x1, . . . , xT ) from its profile, where T is the se-
quence length. Let a be a target attribute for
extraction. Attribute extraction identifies sub-
sequences of tokens from x, each sub-sequence
representing a value for a.

For instance, given (1) a product title x =“Ben
& Jerry’s Strawberry Cheesecake Ice Cream 16
oz,” (2) a product category c = “Ice Cream,” and
(3) a target attribute α = flavor, we would like
to extract “Strawberry Cheesecake” as a flavor for
this product. Note that we may not see all valid
attribute values during training.

4 TXtract Model: Taxonomy-Aware
Knowledge Extraction

In this paper, we address open attribute value ex-
traction using a taxonomy-aware deep sequence
tagging model, TXtract. Figure 2 shows the model
architecture, which contains two key components:
attribute value extraction and product category
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Figure 2: TXtract architecture: tokens (x1, . . . , xT ) are classified to BIOE attribute tags (y1, . . . , yT ) by condi-
tioning to the product’s category embedding ec. TXtract is jointly trained to extract attribute values and assign a
product to taxonomy nodes.

prediction, accounting for the two tasks in multi-
task training. Both components are taxonomy
aware, as we describe next in detail.

4.1 Taxonomy-Aware Attribute Value
Extraction

TXtract leverages the product taxonomy for at-
tribute value extraction. The underlying intuition
is that knowing the product category may help in-
fer attribute applicability and associate the product
with a certain range of valid attribute values. Our
model uses the category embedding in conditional
self-attention to guide the extraction of category-
specific attribute values.

4.1.1 Product Encoder
The product encoder (“ProductEnc”) represents
the text tokens of the product profile (x1, . . . , xT )
as low-dimensional, real-valued vectors:

h1, . . . hT = ProductEnc(x1, . . . , xT) ∈ Rd.
(1)

To effectively capture long-range dependencies
between the input tokens, we use word embed-
dings followed by bidirectional LSTMs (BiL-
STMs), similar to previous state-of-the-art ap-
proaches (Zheng et al., 2018; Xu et al., 2019).

4.1.2 Category Encoder
Our category encoder (“CategoryEnc”) encodes
the hierarchical structure of product categories

such that TXtract understands expert-defined re-
lations across categories, such as “Lager” is a sub-
category of “Beer”. In particular, we embed each
product category c (taxonomy node) into a low-
dimensional latent space:

ec = CategoryEnc(c) ∈ Rm. (2)

To capture the hierarchical structure of the product
taxonomy, we embed product categories into the
m-dimensional Poincaré ball (Nickel and Kiela,
2017), because its underlying geometry has been
shown to be appropriate for capturing both simi-
larity and hierarchy.

4.1.3 Category Conditional Self-Attention
The key component for taxonomy-aware
value extraction is category conditional self-
attention (“CondSelfAtt”). CondSelfAtt generates
category-specific token embeddings (h̃i ∈ Rd) by
conditioning on the category embedding ec:

h̃1, . . . h̃T = CondSelfAtt((h1, . . . , hT ), ec).
(3)

To leverage the mutual interaction between all
pairs of token embeddings ht, ht′ and the category
embedding ec we use self-attention and compute
pairwise sigmoid attention weights:

αt,t′ = σ(wTαgt,t′ + bα), t, t′ = 1..T. (4)

We compute scores gt,t′ using both the token em-
beddings ht, ht′ and the category embedding ec:
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gt,t′ = tanh(W1ht +W2ht′ +W3ec + bg), (5)

where W1 ∈ Rp×d, W2 ∈ Rp×d, W3 ∈ Rp×m,
wα ∈ Rp are trainable attention matrices and
bg ∈ Rp, bα ∈ R, are trainable biases. The T × T
attention matrix A = at,t′ stores the pairwise at-
tention weights. The contextualized token embed-
dings are computed as:

h̃t =
T∑
t′=1

αt,t′ · ht′ . (6)

4.1.4 CRF Layer
We feed the contextualized token representations
h̃ = (h̃1, . . . , h̃T ) to CRFs to get the sequence of
BIOE tags with the highest probability:

y1, . . . , yT = CRF(h̃1, . . . , h̃t). (7)

We then extract attribute values as valid sub-
sequences of the input tokens (x1, . . . , xT ) with
B/I/E tags (see Section 3.1).

4.1.5 Training for Attribute Value Extraction
Our training objective for attribute value extrac-
tion is to minimize the negative conditional log-
likelihood of the model parameters on N training
products xi with ground truth labels ŷi1 . . . , ŷiT :

La = −
N∑
i=1

logPr(ŷi1, . . . , ŷiT | xi, ci) (8)

We train our model on all categories in parallel,
thus leveraging for a given category products from
related categories. To generate training sequence
labels from the corresponding attribute values, we
use the distant supervision framework of Mintz
et al. (2009), similar to Xu et al. (2019), by gener-
ating tagging labels according to existing (sparse)
values in the Catalog.

4.2 Taxonomy-Aware Product Category
Prediction

We now describe how we train TXtract for
the auxiliary task of product category prediction
through multi-task learning. Our main idea is that
by encouraging TXtract to predict the product cat-
egories using only the product profile, the model
will learn token embeddings that are discrimina-
tive of the product categories. Thus, we intro-
duce an inductive bias for more effective category-
specific attribute value extraction.

4.2.1 Attention Layer
Our attention component (“Att”) represents the
product profile (x1, . . . , xT ) as a single vector h ∈
Rn computed through the weighted combination
of the ProductEnc’s embeddings (h1, . . . , hT ):

h =

T∑
t=1

βt · ht. (9)

This weighted combination allows tokens that are
more informative for a product’s category to get
higher “attention weights” β1, . . . , βT ∈ [0, 1].
For example, we expect xt = “frozen” to receive
a relatively high βt for the classification of a prod-
uct to the “Ice Cream” category. We compute the
attention weights as:

βt = softmax(uTc tanh(Wcht + bc)), (10)

where Wc ∈ Rq×d, bc ∈ Rq, uc ∈ Rq are trainable
attention parameters.

4.2.2 Category Classifier
Our category classifier (“CategoryCLF”) classifies
the product embedding h to the taxonomy nodes.
In particular, we use a sigmoid classification layer
to predict the probabilities of the taxonomy nodes:

p1, . . . , p|C| = sigmoid(Wdh+ bd), (11)

where Wd ∈ R|C|×d and bd ∈ R|C| are trainable
parameters. We compute sigmoid (instead of soft-
max) node probabilities because we treat category
prediction as multi-label classification, as we de-
scribe next.

4.2.3 Training for Category Prediction
Training for “flat” classification of products to
thousands of categories is not effective because
the model is fully penalized if it does not predict
the exact true category ĉ while at the same time
ignores parent-children category relations. Here,
we conduct “hierarchical” classification by incor-
porating the hierarchical structure of the product
taxonomy into a taxonomy-aware loss function.

The insight behind our loss function is that
a product assigned under ĉ could also be as-
signed under any of the ancestors of ĉ. Thus,
we consider hierarchical multi-label classification
and encourage TXtract to assign a product to all
nodes in the path from ĉ to the root, denoted by
(ĉK , ĉK−1, . . . , ĉ1), where K is the level of the
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node ĉ in the taxonomy tree. The model is thus
encouraged to learn the hierarchical taxonomy re-
lations and will be penalized less if it predicts high
probabilities for ancestor nodes (e.g., "Beer" in-
stead of “Lager” in Figure 1).

Our minimization objective is the weighted ver-
sion of the binary cross-entropy (instead of un-
weighted categorical cross-entropy) loss:3

Lb =
∑
c∈C

wc(yc · log pc + (1− yc) · log(1− pc)),

(12)
For the nodes in the path from ĉ to the root
(ĉK , ĉK−1, . . . , ĉ1), we define positive labels yc =
1 and weights wc that are exponentially decreas-
ing (w0, w1, . . . , wK−1), where 0 < w ≤ 1 is a
tunable hyper-parameter. The remaining nodes in
C receive negative labels yc = 0 and fixed weight
wc = wK−1.

4.3 Multi-task Training
We jointly train TXtract for attribute value extrac-
tion and product category prediction by combining
the loss functions of Eq. (8) and Eq. (12):

L = γ · La + (1− γ) · Lb, (13)

where γ ∈ [0, 1] is a tunable hyper-parameter.
Here, we employ multi-task learning, and share
ProductEnc across both tasks.

5 Experiments

We empirically evaluated TXtract and compared it
with state-of-the-art models and strong baselines
for attribute value extraction on 4000 product cat-
egories. TXtract leads to substantial improvement
across all categories, showing the advantages of
leveraging the product taxonomy.

5.1 Experimental Settings
Dataset: We trained and evaluated TXtract on
products from public web pages of Amazon.com.
We randomly selected 2 million products from
4000 categories under 4 general domains (sub-
trees) in the product taxonomy: Grocery, Baby
product, Beauty product, and Health product.

Experimental Setup: We split our dataset into
training (60%), validation (20%), and test (20%)
sets. We experimented with extraction of flavor,
scent, and brand values from product titles, and

3For simplicitly in notation, we define Eq 12 for a single
product. Defining for all training products is straightforward.

with ingredient values from product titles and de-
scriptions. For each attribute, we trained TXtract
on the training set and evaluated the performance
on the held-out test set.

Evaluation Metrics: For a robust evaluation of
attribute value extraction, we report several met-
rics. For a test product, we consider as true pos-
itive the case where the extracted values match at
least one of the ground truth values (as some of the
ground truth values may not exist in the text) and
do not contain any wrong values.4 We compute
Precision (Prec) as the number of “matched” prod-
ucts divided by the number of products for which
the model extracts at least one attribute value; Re-
call (Rec) as the number of “matched” products
divided by the number of products associated with
attribute values; and F1 score as the harmony
mean of Prec and Rec. To get a global picture
of the model’s performance, we consider micro-
average scores (Mi*), which first aggregates prod-
ucts across categories and computes Prec/Rec/F1
globally. To evaluate per-category performance
we consider macro-average scores (Ma*), which
first computes Prec/Rec/F1 for each category and
then aggregates per-category scores. To evaluate
the capability of our model to discover (potentially
new) attribute values, we also report the Value vo-
cabulary (Vocab) as the total number of unique at-
tribute values extracted from the test set (higher
number is often better); and Coverage (Cov), as
the number of products for which the model ex-
tracted at least one attribute value, divided by the
total number of products.

For product category (multi-label) classification
we reported the area under Precision-Recall curve
(AUPR), Precision, Recall, and F1 score.

Model Configuration: We implemented our
model in Tensorflow (Abadi et al., 2016) and
Keras.5 For a fair comparison, we consider
the same configuration as OpenTag for the Pro-
ductEnc (BiLSTM)6 and CRF components. For
model configuration details see the appendix.

Model Comparison: We compared our model
with state-of-the-art models in the literature and

4For example, if the ground-truth is [v1] but the system
extracts [v1, v2, v3], the extraction is considered as incorrect.

5https://keras.io/
6We expect to see further performance improvement by

considering pre-trained language models (Radford et al.,
2018; Devlin et al., 2019) for ProductEnc, which we leave
for future work.
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Attr. Model Vocab Cov Micro F1 Micro Prec Micro Rec Macro F1 Macro Prec Macro Rec

Flavor
OpenTag 6,756 73.2 57.5 70.3 49.6 54.6 68.0 47.3
TXtract 13,093 83.9 ↑14.6% 63.3 ↑10.1% 70.9 ↑0.9% 57.8 ↑16.5% 59.3 ↑8.6% 68.4 ↑0.6% 53.8 ↑13.7%

Scent
OpenTag 10,525 75.8 70.6 87.6 60.2 59.3 79.7 50.8
TXtract 13,525 83.2 ↑9.8% 73.7 ↑4.4% 86.1 ↓1.7% 65.7 ↑9.1% 59.9 ↑10.1% 78.3 ↓1.8% 52.1 ↑2.6%

Brand
OpenTag 48,943 73.1 63.4 81.6 51.9 51.7 75.1 41.5
TXtract 64,704 82.9 ↑13.4% 67.5 ↑6.5% 82.7 ↑1.3% 56.5 ↑8.1% 55.3 ↑7.0% 75.2 ↑0.1% 46.8 ↑12.8%

Ingred.
OpenTag 9,910 70.0 35.7 46.6 29.1 20.9 34.6 16.7
TXtract 18,980 76.4 ↑9.1% 37.1 ↑3.9% 48.3 ↑3.6% 30.1 ↑3.3% 24.2 ↑15.8% 37.4 ↑8.1% 19.8 ↑18.6%

Average relative increase ↑11.7% ↑6.2% ↑1.0% ↑9.3% ↑10.4% ↑6.8% ↑11.9%

Table 2: Extraction results for flavor, scent, brand, and ingredients across 4,000 categories. Across all attributes,
TXtract improves OpenTag by 11.7% in coverage, 6.2% in micro-average F1, and 10.4% in macro-average F1.

introduced additional strong baselines:

1. “OpenTag”: the model of Zheng et al. (2018).
It is a special case of our system that consists of
the ProductEnc and CRF components without
leveraging the taxonomy.

2. “Title+*”: a class of models for conditional
attribute value extraction, where the taxonomy
is introduced by artificially appending extra
tokens x′1, . . . , x

′
T ′ and a special separator

token (<SEP>) to the beginning of a product’s
text, similar to Johnson et al. (2017):

x′ = (x′1, . . . , x
′
T ′ , <SEP>, x1, . . . , xT )

Tokens x′1, . . . , x
′
T ′ contain category informa-

tion such as unique category id (“Title+id”),
category name (“Title+name”), or the names
of all categories in the path from the root to
the category node, separated by an extra token
<SEP2> (“Title+path”).

3. “Concat-*”: a class of models for taxonomy-
aware attribute value extraction that concate-
nate the category embedding to the word
embedding (-wemb) or hidden BiLSTM em-
bedding layer (-LSTM) instead of using con-
ditional self-attention. We evaluate Euclidean
embeddings (“Concat-*-Euclidean”) and
Poincaré embeddings (“Concat-*-Poincaré”).

4. “Gate”: a model that leverages category em-
beddings ec in a gating layer (Cho et al., 2014;
Ma et al., 2019): h̃t = ht ⊗ σ(W4ht +W5ec),
where W4 ∈ Rp×d, W5 ∈ Rp×m are trainable
matrices, and⊗ denotes element-wise multipli-
cation. Our conditional self-attention is differ-
ent as it leverages pairwise instead of single-
token interactions with category embeddings.

5. “CondSelfAtt”: the model with our condi-
tional self-attention mechanism (Section 4.1.3).
CondSelfAtt extracts attribute values but does
not predict the product category.

6. “MT-*”: a multi-task learning model that
jointly performs (not taxonomy-aware) at-
tribute value extraction and category predic-
tion. “MT-flat” assumes “flat” categories,
whereas “MT-hier” considers the hierarchical
structure of the taxonomy (Section 4.2.3).

7. “TXtract”: our model that jointly per-
forms taxonomy-aware attribute value extrac-
tion (same as CondSelfAtt) and hierarchical
category prediction (same as MT-hier).

Here, we do not report previous models (e.g.,
BiLSTM-CRF) for sequence tagging (Huang
et al., 2015; Kozareva et al., 2016; Lample et al.,
2016), as OpenTag has been shown to outperform
these models in Zheng et al. (2018). Moreover,
when considering attributes separately, the model
of Xu et al. (2019) is the same as OpenTag, but
with a different ProductEnc component; since we
use the same ProductEnc for all alternatives, we
expect/observe the same trend and do not report
its performance.

5.2 Experimental Results

Table 2 reports the results across all categories.
For detailed results see Figure 6 in Appendix.
Over all categories, our taxonomy-aware TXtract
substantially improves over the state-of-the-art
OpenTag by up to 10.1% in Micro F1, 14.6% in
coverage, and 93.8% in vocabulary (for flavor).

Table 3 shows results for the four domains of
our taxonomy under different training granulari-
ties: training on all domains versus training only
on the target domain. Regardless of the config-
uration, TXtract substantially outperforms Open-
Tag, showing the general advantages of our ap-
proach. Interestingly, although training a single
model on all of the four domains obtains lower
F1 for Flavor, it obtains better results for Scent:
training fewer models does not necessarily lead to
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Domain OpenTag/TXtract
Train Test Attr. Micro F1

all Grocery
Flavor

60.3 / 64.9 ↑7.6%

Grocery Grocery 65.4 / 70.5 ↑7.8%

all Baby
Flavor

54.4 / 63.0 ↑15.8%

Baby Baby 69.2 / 71.8 ↑3.8%

all Beauty
Scent

76.9 / 79.5 ↑3.4%

Beauty Beauty 76.9 / 79.0 ↑2.7%

all Health
Scent

63.0 / 69.1 ↑9.7%

Health Health 60.9 / 63.5 ↑4.3%

Table 3: Evaluation results for each domain under
training configurations of different granularity. TXtract
outperforms OpenTag under all configurations.

lower quality and may actually improve extraction
by learning from neighboring taxonomy trees.

5.3 Ablation Study

Table 4 reports the performance of several alterna-
tive approaches for flavor value extraction across
all categories. OpenTag does not leverage the
product taxonomy, so it is outperformed by most
approaches that we consider in this work.

Implicit vs. explicit conditioning on categories.
“Title+*” baselines fail to leverage the taxonomy,
thus leading to lower F1 score than OpenTag: im-
plicitly leveraging categories as artificial tokens
appended to the title is not effective in our setting.

Representing the taxonomy with category em-
beddings leads to significant improvement over
OpenTag and “Title+*” baselines: even simpler
approaches such as “Concat-*-Euclidean” out-
perform OpenTag across all metrics. However,
“Concat-*” and “Gate-*” do not leverage category
embeddings as effectively as “CondSelfAtt”: con-
ditioning on the category embedding for the com-
putation of the pair-wise attention weights in the
self-attention layer appears to be the most effective
approach for leveraging the product taxonomy.

Multi-task Learning. In Table 4, both MT-flat
and MT-hier, which do not condition on the prod-
uct taxonomy, outperform OpenTag on attribute
value extraction: by learning to predict the prod-
uct category, our model implicitly learns to condi-
tion on the product category for effective attribute
value extraction. MT-hier outperforms MT-flat:
leveraging the hierarchical structure of the tax-
onomy is more effective than assuming flat cat-
egories. Table 5 shows that category prediction
is more effective when considering the hierarchi-

Model TX MT Micro F1
OpenTag - - 57.5
Title+id X - 55.7 ↓3.1%

Title+name X - 56.9 ↓1.0%

Title+path X - 54.3 ↓5.6%

Concat-wemb-Euclidean X - 60.1 ↑4.5%

Concat-wemb-Poincaré X - 60.6 ↑5.4%

Concat-LSTM-Euclidean X - 60.1 ↑4.5%

Concat-LSTM-Poincaré X - 60.8 ↑5.7%

Gate-Poincaré X - 60.6 ↑5.4%

CondSelfAtt-Poincaré X - 61.9 ↑7.7

MT-flat - X 60.9 ↑5.9%

MT-hier - X 61.5 ↑7.0%

Concat & MT-hier X X 62.3 ↑8.3%

Gate & MT-hier X X 61.1 ↑6.3%

CondSelfAtt & MT-hier X X 63.3 ↑10.1%

Table 4: Ablation study for flavor extraction across
4,000 categories. “TX” column indicates whether the
taxonomy is leveraged for attribute value extraction
(Section 4.1). “MT” column indicates whether multi-
task learning is used (Section 4.2).

Category Prediction AUPR F1 Prec Rec
Flat 0.61 53.9 74.2 48.0

Hierarchical 0.68 62.7 80.4 56.9

Table 5: Performance of product classification to the
4,000 nodes in the taxonomy using flat versus hierar-
chical multi-task learning.

cal structure of the categories into our taxonomy-
aware loss function than assuming flat categories.

5.4 Visualization of Poincaré Embeddings
Poincaré embeddings effectively capture the hier-
archical structure of the product taxonomy: Fig-
ure 3a plots the embeddings of product cate-
gories in the 2-dimensional Poincaré disk.7 Fig-
ure 3b plots the embeddings trained in the
50-dimensional Poincaré ball and projected to
the 2-dimensional Euclidean space through t-
SNE (Maaten and Hinton, 2008).

5.5 Examples of Extracted Attribute Values
Figure 4 shows examples of product titles and at-
tribute values extracted by OpenTag or TXtract.
TXtract is able to detect category-specific values:
in Figure 4a, “Purple Lemonade” is a valid fla-
vor for “Vitamin Pills” but not for most of other
categories. OpenTag, which ignores product cat-
egories, fails to detect this value while TXtract

7We train 2-dimensional Poincaré embeddings only for
visualization. In our experiments we use d = 50 dimensions.
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(a) Taxonomy embeddings in the 2-dimensional Poincaré disk,
where the distance of points grows exponentially to the radius.
Leaf nodes are placed close to the boundary of the disk.

(b) Taxonomy embeddings projected from the 50-dimensional
Poincaré ball to the 2-dimensional Euclidean space using t-
SNE. Small clusters correspond to taxonomy sub-trees.

Figure 3: Poincaré embeddings of taxonomy nodes (product categories). Each point is a product category. Cat-
egories are colored based on the first-level taxonomy where they belong (green: Grocery products, blue: Baby
products, red: Beauty products, yellow: Health products). Related categories in the taxonomy (e.g., categories
belonging to the same sub-tree) have similar embeddings.

Category = Vitamins & Dietary Supplements
ASIN = B00CX96KTQ

Title = Controlled Labs Purple Wraath 90 Servings - Purple Lemonade

OpenTag (flavor) = (empty)
TXtract (flavor) = “purple lemonade”

(a)

Category = Sports Nutrition
ASIN = B005P0LKTU

Title = Click - Espresso Protein Drink Vanilla Latte - 16 oz.

OpenTag (flavor) = “espresso”
TXtract (flavor) = “vanilla latte”

(b)

Category = Vitamins & Dietary Supplements
ASIN = B015K3Y728

Title = Mason Vitamins Melatonin 500 mcg Fast Meltz Tablets, Fruit, 60 Count

OpenTag (flavor) = (empty)
TXtract (flavor) = “fruit”

(c)

Category = Eyeshadow
ASIN = B07BBM5B33

Title = HP95(TM) Fashion Glitter Matte Eye Shadow Powder  
            Palette Single Shimmer Eyeshadow (10#)

OpenTag (scent) = palette
TXtract (scent) = (empty)

(d)

Figure 4: Examples of extracted attribute values from OpenTag and TXtract.

successfully extracts it as a flavor. TXtract also
learns attribute applicability: in Figure 4d, Open-
Tag erroneously extracts “palette” as scent for an
“Eyeshadow” product, while this product should
not have scent; on the other hand, TXtract, which
considers category embeddings, does not extract
any scent values for this product.

6 Conclusions and Future Work

We present a novel method for large-scale attribute
value extraction for products from a taxonomy
with thousands of product categories. Our pro-
posed model, TXtract, is both efficient and effec-
tive: it leverages the taxonomy into a deep neural
network to improve extraction quality and can ex-
tract attribute values on all categories in parallel.

TXtract significantly outperforms state-of-the-art
approaches and strong baselines under a taxonomy
with thousands of product categories. Interesting
future work includes applying our techniques to
different taxonomies (e.g., biomedical) and train-
ing a model for different attributes.
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A Appendix

For reproducibility, we provide details on TXtract
configuration (Section A.1). We also report de-
tailed evaluation results (Section A.2).

A.1 TXtract Configuration
We implemented our model in Tensorflow (Abadi
et al., 2016) and Keras.8 To achieve a fair
comparison with OpenTag (Zheng et al., 2018),
and to ensure that performance improvements
stem from leveraging the product taxonomy, we
use exactly the same components and configura-
tion as OpenTag for ProductEnc: We initialize
the word embedding layer using 100-dimensional
pre-trained Glove embeddings (Pennington et al.,
2014). We use masking to support variable-length
input. Each of the LSTM layers has a hidden size
of 100 dimensions, leading to a BiLSTM layer
with d = 200 dimensional embeddings. We set
the dropout rate to 0.4. For CategoryEnc, we train
m = 50-dimensional Poincaré embeddings.9 For
CondSelfAtt, we use p = 50 dimensions. For Att,
we use q = 50 dimensions. For multi-task train-
ing, we obtain satisfactory performance with de-
fault hyper-parameters γ = 0.5, w = 1, while
we leave fine-tuning for future work. For param-
eter optimization, we use Adam (Kingma and Ba,
2014) with a batch size of 32. We train our model
for up to 30 epochs and quit training if the valida-
tion loss does not decrease for more than 3 epochs.

A.2 Extra Results
Table 6 reports extraction results (of TXtract
trained on all domains) for each domain sepa-
rately. Table 7 reports category classification re-
sults for each domain separately. Table 8 reports
several evaluation metrics for our ablation study.

8https://keras.io/
9We use the public code in provided by Nickel and

Kiela (2017): https://github.com/facebookresearch/poincare-
embeddings

https://github.com/facebookresearch/poincare-embeddings
https://github.com/facebookresearch/poincare-embeddings


8501

Figure 5: Snapshot of https://www.amazon.com/dp/B012AE5EP4. This ethernet cable has been erroneously as-
signed under “Hair Brushes” category. (The assignment can be seen on the top left part of the screenshot.)

Figure 6: Snapshot of https://www.amazon.com/dp/B07BBM5B33. This eye shadow product has been erroneously
assigned under “Travel Cases” category. (The assignment can be seen on the top left part of the screenshot.)

https://www.amazon.com/dp/B012AE5EP4
https://www.amazon.com/dp/B07BBM5B33
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Grocery Products Baby Products Beauty Products Health Products
Attr. Model Vocab Cov miF1 maF1 Vocab Cov miF1 maF1 Vocab Cov miF1 maF1 Vocab Cov miF1 maF1

Flavor
OpenTag 4364 79.6 60.3 59.0 264 53.1 54.4 45.0 832 45.8 41.1 32.0 1296 58.2 53.9 47.0
TXtract 8607 89.1 64.9 62.8 414 72.8 63.0 56.1 1684 61.3 46.5 35.6 2388 71.5 67.3 57.5

Scent
OpenTag 446 75.5 56.8 48.4 593 69.7 35.7 20.3 7007 78.5 76.9 67.9 2479 68.1 63.0 47.5
TXtract 565 87.4 61.2 51.4 589 72.1 38.1 22.0 9048 85.6 79.5 68.4 3322 79.9 69.1 48.2

Brand
OpenTag 5150 68.8 62.9 52.7 11166 72.2 66.0 54.0 15394 77.2 68.8 54.7 17233 71.2 57.8 45.9
TXtract 6944 78.9 67.4 55.1 14965 81.0 72.9 56.2 19821 85.1 72.7 57.2 22974 82.9 60.5 52.4

Ingred.
OpenTag 3402 82.5 40.5 30.1 490 50.7 27.7 22.4 2767 65.1 33.6 26.8 3251 66.7 34.6 29.9
TXtract 6155 87.3 43.1 36.5 835 59.7 30.5 24.3 5539 70.6 32.9 26.6 6451 74.2 36.5 31.2

Table 6: Extraction results for flavor, scent, brand, and ingredients for each of our 4 domains (sub-trees).

Grocery Products Baby Products Beauty Products Health Products
MT type AUPR F1 Prec Rec AUPR F1 Prec Rec AUPR F1 Prec Rec AUPR F1 Prec Rec

flat 45.9 21.4 63.3 13.7 65.9 23.7 68.4 17.4 63.7 62.4 78.8 56.5 49.8 38.8 60.7 32.7
hierarchical 47.3 29.7 68.4 19.9 68.5 29.4 72.6 22.9 72.1 71.5 83.1 66.4 56.3 47.7 74.6 39.8

Table 7: Product category classification results

Micro-average Macro-average
Model TX MT Vocab Cov (%) F1 Prec Rec F1 Prec Rec
OpenTag - - 6,756 73.2 57.5 70.3 49.6 54.6 68.0 47.3
Title+id X - 6,400 69.1 55.7 70.6 46.9 53.3 68.9 45.1
Title+name X - 5,328 70.6 56.9 71.2 48.4 54.2 69.1 46.3
Title+path X - 4,608 64.6 54.3 72.0 44.6 51.9 69.1 43.2
Concat-wemb-Euclidean X - 9,768 76.3 60.1 71.6 52.9 57.4 69.0 50.6
Concat-wemb-Poincaré X - 8,684 74.3 60.6 73.4 52.7 57.7 70.2 50.6
Concat-LSTM-Euclidean X - 9,255 75.9 60.1 71.9 52.8 57.5 69.4 50.6
Concat-LSTM-Poincaré X - 8,893 75.2 60.8 72.9 53.2 57.9 70.3 50.9
Gate-Poincaré X - 9,690 77.1 60.6 71.5 53.5 57.7 69.3 51.0
CondSelfAtt-Poincaré X - 12,558 83.1 61.9 68.8 57.0 58.3 66.5 53.1
MT-flat - X 8,699 72.2 60.9 74.7 52.4 57.8 70.3 50.5
MT-hier - X 9,528 73.4 61.5 74.5 53.2 58.3 70.9 51.1
Concat & MT-hier X X 9,316 74.6 62.3 75.0 54.3 59.0 70.8 52.1
Gate & MT-hier X X 10,845 80.0 61.1 70.7 54.8 57.9 67.9 51.8
CondSelfAtt & MT-hier (TXtract) X X 13,093 83.9 63.3 70.9 57.8 59.3 68.4 53.8

Table 8: Results for flavor extraction across all categories. “TX” column indicates whether the taxonomy is
leveraged for attribute value extraction (Section 4.1). “MT” column indicates whether multi-task learning is used
(Section 4.2).


