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Abstract

Humor plays an important role in human lan-
guages and it is essential to model humor
when building intelligence systems. Among
different forms of humor, puns perform word-
play for humorous effects by employing words
with double entendre and high phonetic sim-
ilarity. However, identifying and modeling
puns are challenging as puns usually involved
implicit semantic or phonological tricks. In
this paper, we propose Pronunciation-attentive
Contextualized Pun Recognition (PCPR) to
perceive human humor, detect if a sentence
contains puns and locate them in the sen-
tence. PCPR derives contextualized represen-
tation for each word in a sentence by captur-
ing the association between the surrounding
context and its corresponding phonetic sym-
bols. Extensive experiments are conducted on
two benchmark datasets. Results demonstrate
that the proposed approach significantly out-
performs the state-of-the-art methods in pun
detection and location tasks. In-depth analy-
ses verify the effectiveness and robustness of
PCPR.

1 Introduction

During the last decades, social media has promoted
the creation of a vast amount of humorous web
contents (Nijholt et al., 2017). Automatic recog-
nition of humor has become an important task in
the area of figurative language processing, which
can benefit various downstream NLP applications
such as dialogue systems, sentiment analysis, and
machine translation (Melby and Warner, 1995;
Augello et al., 2008; Ghosh et al., 2015; Bertero
and Fung, 2016; Blinov et al., 2019). However, hu-
mor is one of the most complicated behaviors in nat-
ural language semantics and sometimes it is even
difficult for humans to interpret. In most cases, un-
derstanding humor requires adequate background
knowledge and a rich context.
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Homographic Puns

1. Did you hear about the guy whose whole left side was cut
off? He’s all right now.

2. TI’dtell you a chemistry joke but I know I wouldn’t get a
reaction.

Heterographic Puns

1. The boating store had its best sail (sale) ever.
1 lift weights only on Saturday and Sunday because Monday
to Friday are weak (week) days.

Table 1: Examples of homographic and heterographic
puns.

Puns are a form of humorous approaches us-
ing the different meanings of identical words or
words with similar pronunciations to explain texts
or utterances. There are two main types of puns.
Homographic puns rely on multiple interpretations
of the same word. As shown in Table 1, the phrase
all right means good condition or opposite to left;
the word reaction means chemical change or ac-
tion. The two meanings of the same expression
are consistent with its context, which creates a hu-
morous pun in both sentences when there is a clear
contrast between two meanings. On the other hand,
heterographic puns take advantage of phonologi-
cally same or similar words. For example, the word
pairs sale and sail, weak and week in Table 1 have
the same or similar pronunciations. The sentences
are funny because both words fit the same context.
Understanding puns is a big fish to fry for deep
comprehension of complex semantics.

These two forms of puns have been studied in
literature from different angles. To recognize puns
in a sentence, word sense disambiguation tech-
niques (WSD) (Navigli, 2009) have been employed
to identify the equitable intention of words in utter-
ances (Pedersen, 2017). External knowledge bases
such as WordNet (Miller, 1998b) have been applied
in determining word senses of pun words (Oele
and Evang, 2017). However, these methods can-
not tackle heterographic puns with distinct word
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spellings and knowledge bases that only contain a
limited vocabulary. To resolve the issues of sparse-
ness and heterographics, the word embedding tech-
niques (Mikolov et al., 2013; Pennington et al.,
2014) provide flexible representations to model
puns (Hurtado et al., 2017; Indurthi and Oota, 2017,
Cai et al., 2018). However, a word may have differ-
ent meanings regarding its contexts. Especially, an
infrequent meaning of the word might be utilized
for creating a pun. Therefore, static word embed-
dings are insufficient to represent words. In addi-
tion, some puns are created by replacing a word
with another word with the same or similar pronun-
ciation as examples shown in Table 1. Therefore,
to recognize puns, it is essential to model the asso-
ciation between words in the sentence and the pro-
nunciation of words. Despite existing approaches
attempt to leverage phonological structures to un-
derstand puns (Doogan et al., 2017; Jaech et al.,
2016), there is a lack of a general framework to
model these two types of signals in a whole.

In this paper, we propose Pronunciation-attentive
Contextualized Pun Recognition (PCPR) to jointly
model the contextualized word embeddings and
phonological word representations for pun recog-
nition. To capture the phonological structures
of words, we break each word into a sequence
of phonemes as its pronunciation so that homo-
phones can have similar phoneme sets. For in-
stance, the phonemes of the word pun are {P, AH,
N}. In PCPR, we construct a pronunciation atten-
tive module to identify important phonemes of each
word, which can be applied in other tasks related to
phonology. We jointly encode the contextual and
phonological features into a self-attentive embed-
ding to tackle both pun detection and location tasks.
We summarize our contributions as following.

e To the best of our knowledge, PCPR is the first
work to jointly model contextualized word em-
beddings and pronunciation embeddings to rec-
ognize puns. Both contexts and phonological
properties are beneficial to pun recognition.

e Extensive experiments are conducted on two
benchmark datasets. PCPR significantly outper-
forms existing methods in both pun detection
and pun location. In-depth analyses also verify
the effectiveness and robustness of PCPR.

o We release our implementations and pre-trained
phoneme embeddings at https://github.com/
joeyl1993/pun-recognition to facilitate future
research.
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2 Related Work

Pun Recognition and Generation To recognize
puns, Miller et al. (2017) summarize several sys-
tems for the SemEval 2017 tasks. To detect the
pun, Pedersen (2017) supposes that if there is one
pun in the sentence, when adopting different Word
Sense Disambiguation (WSD) methods, the sense
assigned to the sentence will be different. To locate
the pun, based on the WSD results for pun detec-
tion, they choose the last word which changes the
senses between different WSD runs. Even though
this method can tackle both homographic and het-
erographic pun detection, it does not use any pre-
trained embedding model. Xiu et al. (2017) detect
the pun in the sentence using similarity features
which are calculated on sense vectors or cluster
center vectors. To locate the pun, they use an un-
supervised system by scoring each word in the
sentence and choosing the word with the small-
est score. However, this model exclusively relies
on semantics to detect the heterographic puns but
ignores the rich information embedded in the pro-
nunciations. Doogan et al. (2017) leverage word
embeddings as well as the phonetic information by
concatenating pronunciation strings, but the con-
catenation has limited expression ability. They
also mention that their systems suffer for short
sentences as word embeddings do not have much
context information.

Besides, Zou and Lu (2019) jointly detect and
locate the pun from a sequence labeling perspective
by employing a new tagging schema. Diao et al.
(2018) expand word embeddings using WordNet to
settle the polysemy of homographic puns, follow-
ing by a neural attention mechanism to extract the
collocation to detect the homographic pun. How-
ever, all these methods only make use of limited
context information. Other than the pun recogni-
tion, Yu et al. (2018) generate homographic puns
without requiring any pun data for training. He
et al. (2019) improve the homographic pun genera-
tion based on the “local-global surprisal principle”
which posits that the pun word and the alternative
word have a strong association with the distant and
immediate context respectively.

Pronunciation Embeddings Word embeddings
assign each word with a vector so that words with
similar semantic meanings are close in the embed-
ding space. Most word embedding models only
make use of text information and omitting the rich
information contained in the pronunciation. How-
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ever, the pronunciation is also an important part
of the language (Zhu et al., 2018). Prior stud-
ies have demonstrated that the phonetic informa-
tion can be used in speech recognition (Bengio
and Heigold, 2014), spell correction (Toutanova
and Moore, 2002) and speech synthesis (Miller,
1998a). By projecting to the embedding space,
words sound alike are nearby to each other (Ben-
gio and Heigold, 2014). Furthermore, Kamper
et al. (2016) make use of word pairs information
to improve the acoustic word embedding. Zhu
et al. (2018) show that combining the pronuncia-
tion with the writing texts can help to improve the
performance of word embeddings. However, these
pronunciation embeddings are word-level features,
while in our approach, we make use of syllabic pro-
nunciations which is phoneme-level and could help
with the out-of-vocabulary (OOV) situation. Luo
et al. (2019) also propose an adversarial generative
network for pun generation, which does not require
any pun corpus.

Contextualized Word Embeddings Traditional
word embeddings assign a fixed vector to one word
even if the word has multiple meanings under dif-
ferent contexts (e.g., “the river bank™” v.s. “the
commercial bank™). McCann et al. (2017) com-
bine the pivot word embeddings as well as the
contextual embeddings generated by an encoder
from a supervised neural machine translation task.
Peters et al. (2017) enrich the word embeddings
by the contextual information extracted from a bi-
directional language model. (Devlin et al., 2018)
learn the language embedding by stacking multiple
transformer layers with masked language model
objective which advances the state-of-the-art for
many NLP tasks. Yang et al. (2019) enable learning
bidirectional contexts by maximizing the expected
likelihood over all permutations of the factorization
order and solve the problem of pretrain-finetune
discrepancy.

3 Pronunciation-attentive
Contextualized Pun Recognition

In this section, we first formally define the problem
and then introduce the proposed method, PCPR.

3.1 Problem Statement

Suppose the input text consists of a sequence of N
words {wy, wa, - -+ ,wy}. For each word w; with
M; phonemes in its pronunciation, the phonemes
are denoted as R(w;) = {ri1,7i2, " ,TiM}
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where r; ; is the j-th phoneme in the pronunciation
of w;. These phonemes are given by a dictionary.
In this paper, we aim to recognize potential puns
in the text with two tasks, including pun detection
and pun location, as described in the following.
Task 1: Pun Detection. The pun detection task
identifies whether a sentence contains a pun. For-
mally, the task is modeled as a classification prob-
lem with binary label y”.

Task 2: Pun Location. Given a sentence contain-
ing at least a pun, the pun location task aims to
unearth the pun word. More precisely, for each
word w;, we would like to predict a binary label yZL
that indicates if w; is a pun word.

In addition to independently solving the above
two tasks, the ultimate goal of pun recognition is
to build a pipeline from scratch to detect and then
locate the puns in texts. Hence, we also evaluate
the end-to-end performance by aggregating the so-
lutions for two tasks.

3.2 Framework Overview

Figure 1 shows the overall framework of the pro-
posed Pronunciation-attentive Contextualized Pun
Recognition (PCPR). For each word in the input
text, we first derive two continuous vectors, includ-
ing contextualized word embedding and pronun-
ciation embedding, as representations in different
aspects. Contextualized word embeddings derive
appropriate word representations with considera-
tion of context words and capture the accurate se-
mantics in the text. To learn the phonological char-
acteristics, each word is divided into phonemes
while each phoneme is projected to a phoneme
embedding space, thereby obtaining pronunciation
embeddings with the attention mechanism (Bah-
danau et al., 2015). Finally, a self-attentive en-
coder blends contextualized word embeddings and
pronunciation embeddings to capture the overall
semantics for both pun detection and location.

3.3 Contextualized Word Embeddings

The context is essential for interpreting a word in
the text. Hence, we propose to apply contextual-
ized word embeddings to derive word representa-
tions. In the framework of PCPR, any contextual-
ized word embedding method, such as BERT (De-
vlin et al., 2018), ELMo (Peters et al., 2018), and
XLNet (Yang et al., 2019), can be utilized. Here,
we choose BERT to derive contextualized word
embeddings without loss of generality.
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Figure 1: The overall framework of PCPR. We leverage the self-attention mechanism to jointly model contextual-
ized embeddings and phonological representations. PCPR can tackle both pun detection and pun location tasks.

BERT deploys a multi-layer bidirectional en-
coder based on transformers with multi-head self-
attention (Vaswani et al., 2017) to model words in
the text after integrating both word and position
embeddings (Sukhbaatar et al., 2015). As a re-
sult, for each word, a representative contextualized
embedding is derived by considering both the spe-
cific word and all contexts in the document. Here
we denote TiC as the do-dimensional contextual-
ized word embedding for the word w;. In addition,
BERT contains a special token [CLS] with an em-
bedding vector in BERT to represent the semantics
of the whole input text.

3.4 Pronunciation Embeddings

To learn the phonological characteristics of words,
PCPR models the word phonemes. For each
phoneme 7; ; of the word w;, we project r; ; to
a d p-dimensional embedding space as a trainable
vector u; ; to represent its phonological properties.
Based on the phoneme embeddings of a word,
we apply the attention mechanism (Bahdanau
et al., 2015) to simultaneously identify important
phonemes and derive the pronunciation embedding
TF. Specifically, the phoneme embeddings are
transformed by a fully-connected hidden layer to
measure the importance scores o} as follows:

’UiJ = tanh(]—"p(ui7j)),

T
v, U
1,7 S
aP _ J

M vl
where Fp(-) is a fully-connected layer with d4
outputs and d4 is the attention size; vg is a da-
dimensional context vector that estimates the im-
portance score of each pronunciation embedding.
Finally, the pronunciation embeddings TZ-P can

be represented as the weighted combination of
phoneme embeddings as follows:

P _ .
I = E :O‘w“lw
J

Moreover, we can further derive the joint em-
bedding Ti] to indicate both word semantics and
phonological knowledge for the word w; by con-
catenating two different embeddings as follows:

T/ = [1°;1"].

Note that the joint embeddings are d y-dimensional
vectors, where dj = do + dp.

3.5 Pronunciation-attentive Contextualized
Embedding with Self-attention

For the task of pun detection, understanding the
meaning of input text is essential. Due to its advan-
tages of interpretability over convolutional neural
network (LeCun et al., 1995) and recurrent neu-
ral network (Schuster and Paliwal, 1997), we de-
ploy the self-attention mechanism (Vaswani et al.,
2017) to capture the overall semantics represented
in the joint embeddings. For each word w;, the
self-attention mechanism estimates an importance
vector af :

T

Fs(T) = Softmax
(T) ( 7
S _ exp(Fs(TY))

> exp(Fs(T))
where Fg(-) is the function to estimate the atten-
tion for queries, and d is a scaling factor to avoid
extremely small gradients. Hence, the self-attentive
embedding vector is computed by aggregating joint
embeddings:

TT

)T,

J _ S J
Tiar) —Zai T
%
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Note that the knowledge of pronunciations is
considered by the self-attentive encoder but not
the contextualized word encoder. Finally, the
pronunciation-attentive contextualized representa-
tion for the whole input text can be derived by con-
catenating the overall contextualized embedding
and the self-attentive embedding:

J_pC
Ticrs) = [Tiersy; Tiarry ] -

Moreover, each word w; is benefited from the self-
attentive encoder and is represented by a joint em-
bedding:
J _ S 7
1Y, (arry) = o - 15

3.6 Inference and Optimization

Based on the joint embedding for each word and the
pronunciation-attentive contextualized embedding
for the whole input text, both tasks can be tackled
with simple fully-connected layers.

Pun Detection. Pun detection is modeled as a
binary classification task. Given the overall em-
bedding for the input text TEJCLS] , the prediction
§P is generated by a fully-connected layer and the
softmax function:

gP = argmax Fp(Ters ks

ke{0,1}

where Fp(-) derives the logits of two classes in
binary classification.
Pun Location. For each word wj, the correspond-
ing self-attentive joint embedding Ti], (aTT) 18 ap-
plied as features for pun location. Similar to pun
detection, the prediction QZL is generated by:

L

U, = argmax]:L(Ti‘], [ATT] ks
ke{0,1}

where F,(-) derives two logits for classifying if a
word is a pun word.

Since both tasks focus on binary classification,
we optimize the model with cross-entropy loss.

4 Experiments

In this section, we describe our experimental set-
tings and explain the results and interpretations. We
will verify some basic assumptions of this paper:
(1) the contextualized word embeddings and pro-
nunciation embeddings are both beneficial to the
pun detection and location tasks; (2) the attention
mechanism can improve the performance.
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SemEval
Dataset Homo Hetero PTD
Examples w/ Puns | 1,607 1,271 | 2,423
Examples w/o Puns 643 509 2,403
Total Examples 2,250 1,780 | 4,826

Table 2: Data statistics. “Homo” and “Hetero” denote
homographic and heterographic puns. Pun detection
employs all of the examples in the two datasets while
pun location only exploits the examples with puns in
SemEval due to the limitation of annotations.

4.1 Experiment settings

Experimental Datasets. We conducted exper-
iments on the SemEval 2017 shared task 7
dataset! (SemEval) (Miller et al., 2017) and the
Pun of The Day dataset (PTD) (Yang et al., 2015).
For pun detection, the SemEval dataset consists of
4,030 and 2, 878 examples for pun detection and
location while each example with a pun can be a
homographic or heterographic pun. In contrast, the
PTD dataset contains 4, 826 examples without la-
bels of pun types. Table 2 further shows the data
statistics. The two experimental datasets are the
largest publicly available benchmarks that are used
in the existing studies. SemEval-2017 dataset con-
tains punning and non-punning jokes, aphorisms,
and other short texts composed by professional hu-
morists and online collections. Hence, we assume
the genres of positive and negative examples should
be identical or extremely similar.

Evaluation Metrics. We adopt precision (P), re-
call (R), and F'1-score (Schiitze et al., 2007; Pow-
ers, 2011) to compare the performance of PCPR
with previous studies in both pun detection and
location. More specifically, we apply 10-fold cross-
validation to conduct evaluation. For each fold,
we randomly select 10% of the instances from the
training set for development. To conduct fair com-
parisons, we strictly follow the experimental set-
tings in previous studies (Zou and Lu, 2019; Cai
et al., 2018) and include their reported numbers in
the comparisons.

Implementation Details. For data pre-processing,
all of the numbers and punctuation marks are re-
moved. The phonemes of each word are derived
by the CMU Pronouncing Dictionary?. We initial-
ize the phoneme embeddings by using the fastText

"http://alt.qcri.org/semeval2017/
task7/

http://svn.code.sf.net/p/cmusphinx/
code/trunk/cmudict/
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Figure 2: Pun location performance over different
phoneme embedding sizes dp and attention sizes d 4
on the SemEval dataset.

word embedding (Mikolov et al., 2018) trained on
Wikipedia articles® crawled in December, 2017.
The PCPR is implemented in PyTorch while the
fused Adam optimizer (Kingma and Ba, 2014) op-
timizes the parameters with an initial learning rate
of 5 x 107°. The dropout and batch size are set
as 10! and 32. We follow BERT (BASE) (De-
vlin et al., 2018) to use 12 Transformer layers and
self-attention heads. To clarify, in PCPR, tokens
and phonemes are independently processed, so the
tokens processed with WordPiece tokenizer (Wu
et al., 2016) in BERT are not required to line up
with phonemes for computations. To deal with the
out-of-vocabulary words, we use the output embed-
dings of the first WordPiece tokens as the represen-
tatives, which is consistent with many state-of-the-
art named entity recognition approaches (Devlin
et al., 2018; Lee et al., 2019). We also create a
variant of PCPR called CPR by exploiting only the
contextualized word encoder without considering
phonemes to demonstrate the effectiveness of pro-
nunciation embeddings.

To tune the hyperparameters, we search the
phoneme embedding size dp and the attention size
d 4 from {8, 16, 32,64, 128,256, 512} as shown in
Figure 2. For the SemEval dataset, the best setting
is (dp = 64, d4 = 256) for the homographic puns
while heterographic puns favor (dp = 64,d4 =
32). For the PTD dataset, (dp = 64,d4 = 32) can
reach the best performance.

Baseline Methods. We compare PCPR with sev-
eral baseline methods.

For the SemEval dataset, nine baseline methods
are compared in the experiments, including
Duluth (Pedersen, 2017), JU_CES_NLP (Pra-
manick and Das, 2017), PunF ields (Mikhalkova
and Karyakin, 2017), UWAV (Vadehra, 2017),
Fermi (Indurthi and Oota, 2017), and

*https://dumps.wikimedia.org/enwiki/
latest/
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UWaterloo (Vechtomova, 2017). While
most of them extract complicated linguistic
features to train rule based and machine learning
based classifiers. In addition to task participants,
Sense (Cai et al.,, 2018) incorporates word
sense representations into RNNs to tackle the
homographic pun location task. The CRF (Zou
and Lu, 2019) captures linguistic features such as
POS tags, n-grams, and word suffix to model puns.
Moreover, the Joint (Zou and Lu, 2019) jointly
models two tasks with RNNs and a CRF tagger.

For the PTD dataset, four baseline methods
with reported performance are selected for com-
parisons. MCL (Mihalcea and Strapparava, 2005)
exploits word representations with multiple stylis-
tic features while HAE (Yang et al., 2015) applies a
random forest model with Word2Vec and human-
centric features. PAL (Chen and Lee, 2017) trains a
convolutional neural network (CNN) to learn essen-
tial feature automatically. Based on existing CNN
models, HUR (Chen and Soo, 2018) improves the
performance by adjusting the filter size and adding
a highway layer.

4.2 Experimental Results

Pun Detection. Table 3 presents the pun detection
performance of methods for both homographic and
heterographic puns on the SemEval dataset while
Table 4 shows the detection performance on the
PTD dataset. For the SemEval dataset, compared to
the nine baseline models, PCPR achieves the high-
est performance with 3.0% and 6.1% improvements
of F against the best among the baselines (i.e.
Joint) for the homographic and heterographic
datasets, respectively. For the PTD dataset, PCPR
improves against HUR by 9.6%. Moreover, the
variant CPR beats all of the baseline methods and
shows the effectiveness of contextualized word em-
beddings. In addition, PCPR further improves the
performances by 2.3% and 1.1% with the attentive
pronunciation feature for detecting homographic
and heterographic puns, respectively. An interest-
ing observation is that pronunciation embeddings
also facilitate homographic pun detection, imply-
ing the potential of pronunciation for enhancing
general language modeling.

Pun Location. Table 3 shows that the proposed
PCPR model achieves highest Fi-scores on both
homographic and heterographic pun location tasks
with 10.9% and 15.9% incredible increment against
the best baseline method. The improvement is
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Homographic Puns Heterographic Puns

Model Pun Detection Pun Location Pun Detection Pun Location

P R F1q P R F1q P R F1q P R F1q
Duluth 7832 87.24 82.54 | 44.00 44.00 44.00 | 73.99 86.62 68.71 - - -
JU_CSENLP | 72.51 90.79 68.84 | 33.48 33.48 33.48 | 73.67 94.02 71.74 | 37.92 3792 37.92
PunFields | 7993 73.37 67.82 | 3279 32779 3279 | 75.80 59.40 57.47 | 35.01 35.01 35.01
UWAV 68.38 4723 46.71 | 34.10 34.10 34.10 | 65.23 41.78 42.53 | 42.80 42.80 42.80
Fermi 90.24 89.70 85.33 | 52.15 52.15 52.15 - - - - - -
UWaterloo - - - 6526 65.21 65.23 - - - 79.73  79.54 79.64
Sense - - - 81.50 74.70 78.00 - - - - - -
CRF 87.21 64.09 73.89 | 86.31 55.32 6743 | 89.56 7094 79.17 | 88.46 62.76 73.42
Joint 91.25 93.28 92.19 | 83.55 77.10 80.19 | 86.67 93.08 89.76 | 81.41 77.50 79.40
CPR 9142 9421 92.79 | 88.80 85.65 87.20 | 93.35 95.04 94.19 | 92.31 88.24 90.23
PCPR 94.18 95.70 9494 | 90.43 87.50 88.94 | 94.84 95.59 95.22 | 94.23 90.41 92.28

Table 3: Performance of detecting and locating puns on the SemEval dataset. All improvements of PCPR and CPR
over baseline methods are statistically significant at a 95% confidence level in paired ¢-tests. Comparing to PCPR,
CPR does not model word pronunciations. Results show that both PCPR and CPR outperform baselines. With

modeling pronunciations, PCPR performs the best.

[ Model | P R F |
MCL [ 8380 6550 73.50
HAE | 8340 88380 85.90
PAL | 8640 8540 85.70
HUR | 86.60 94.00 90.10
CPR [ 98.12 99.34 9873
PCPR | 9844 99.13 98.79

Table 4: Performance of pun detection on the PTD
dataset.

Homographic Puns Heterographic Puns
Model =% F | P R F
Joint | 67.70 67.70 67.70 | 68.84 68.84 68.84
PCPR | 87.21 81.72 84.38 | 85.16 80.15 82.58

Table 5: Performance of pipeline recognition in the Se-
mEval dastaset.

much larger than that on pun detection task. We
posit the reason is that predicting pun locations re-
lies much more on the comparative relations among
different tokens in one sentence. As a result, con-
textualized word embeddings acquire an enormous
advantage. By applying the pronunciation-attentive
representations, different words with similar pro-
nunciations are linked, leading to a much better
pinpoint of pun word for the heterographic dataset.
We notice that some of the baseline models such as
UWaterloo, UNAV and PunFields have poor
performances. These methods consider the word
position in a sentence or calculate the inverse doc-
ument frequency of words. We suppose such rule-
based recognition techniques can hardly capture the
deep semantic and syntactic properties of words.

Pipeline Recognition. The ultimate goal of pun

Model | P R Fi |
PCPR 90.43 87.50 88.94
w/o Pre-trained Phoneme Emb. | 89.37 85.65 87.47
w/o Self-attention Encoder 89.17 86.42 87.70
w/o Phonological Attention 89.56 87.35 88.44

Table 6: Ablation study on different features of PCPR
for homographic pun detection on the SemEval dataset.

recognition is to establish a pipeline to detect and
then locate puns. Table 5 shows the pipeline per-
formances of PCPR and Joint, which is the only
baseline with reported pipeline performance for
recognizing the homographic and heterographic
puns in the SemEval dataset. Joint achieves sub-
optimal performance and the authors of Joint
attribute the performance drop to error propagation.
In contrast, PCPR improves the F';-scores against
Joint by 24.6% and 20.0% on two pun types.

4.3 Ablation Study and Analysis

Ablation Study. To better understand the effec-
tiveness of each component in PCPR, we conduct
an ablation study on the homographic puns of the
SemEval dataset. Table 6 shows the results on
taking out different features of PCPR, including
pre-trained phoneme embeddings, the self-attentive
encoder, and phonological attention. Note that we
use the average pooling as an alternative when we
remove the phonological attention module. As a re-
sult, we can see the drop after removing each of the
three features. It shows that all these components
are essential for PCPR to recognize puns.

Attentive Weights Interpretation. Figure 3 illus-
trates the self-attention weights ais of three ex-
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A busy barber is quiet harried.

A busy barber is quiet harried.

I phoned the zoo but the lion was busy. | The boating store had its best sail ever.

I phoned the zoo but the lion was busy. | The boating store had its best sail ever.

Figure 3: Visualization of attention weights of each pun word (marked in pink) in the sentences. A deeper color

indicates a higher attention weight.

‘ Sentence

| Pun | CPR [ PCPR |

In the dark? Follow the son.

He stole an invention and then told patent lies.
A thief who stole a calendar got twelve months.

son - son
patent | patent | lies
got - -

Table 7: A case study of the model predictions for the pun location task of SemEval 2017.

1.00 e 1.0 e e
b, “/“‘,.w““»\
[
o | o
g 0.75 praaenertee, $os ]
& H @ /
{10.50 ,.A' —— homographic 'y 06 [ —s— homographic
heterographic . heterographic
0.25 L)
0 10 20 30 40 0 10 20 30 40

Number of words Number of words

(a) Pun Detection (b) Pun Location

Figure 4: Pun recognition performance over different
text lengths for homographic and heterographic puns
on the SemEval dataset.

amples from heterographic puns in the SemEval
dataset. The word highlighted in the upper sentence
(marked in pink) is a pun while we also color each
word of the lower sentence in blue according to
the magnitude of its attention weights. The deeper
colors indicate higher attention weights. In the first
example, busy has the largest weight because it has
the most similar semantic meaning as harried. The
barber also has relatively high weights. We sup-
pose it is related to hairy which should be the other
word of this double entendre. Similar, the zoo is
corresponded to lion while phone and busy indicate
line for the pun. Moreover, boating confirms sail
while store supports sale. Interpreting the weights
out of our self-attentive encoder explains the sig-
nificance of each token when the model detects the
pun in the context. The phonemes are essential in
these cases because they strengthen the relationship
among words with distant semantic meanings but
similar phonological expressions.

Sensitivity to Text Lengths. Figure 4 shows the
performance of pun detection and location over
different text lengths for homographic and hetero-
graphic puns in the SemEval dataset. For both
tasks, the performance gets higher when the text
lengths are longer because the context informa-

tion is richer. Especially in the pun detection task,
we observe that our model requires longer con-
texts (more than 20 words) to detect the homo-
graphic puns. However, shorter contexts (less than
10 words) are adequate for heterographic pun detec-
tion, which indicates the contribution from phono-
logical features. In short, the results verify the
importance of contextualized embeddings and pro-
nunciation representations for pun recognition.

Case Study and Error Analysis. Table 7 shows
the results of a case study with the outputs of CPR
and PCPR. In the first case, the heterographic pun
comes from the words son and sun. CPR fails to
recognize the pun word with limited context infor-
mation while the phonological attention in PCPR
helps to locate it. However, the pronunciation fea-
tures in some cases can mislead the model to make
wrong predictions. For example, patent in the sec-
ond sentence is a homographic pun word and has
several meanings, which can be found with the con-
textual features. Besides, the phonemes in lies are
ubiquitous in many other words like laws, thereby
confusing the model. In the last case, got is a
widely used causative with dozens of meanings so
that the word is hard to be recognized as a pun
word with its contextual and phonological features.

5 Conclusions

In this paper, we propose a novel approach, PCPR,
for pun detection and location by leveraging a con-
textualized word encoder and modeling phonemes
as word pronunciations. Moreover, we would love
to apply the proposed model to other problems,
such as general humor recognition, irony discovery,
and sarcasm detection, as the future work.
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