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Abstract

Word embedding-based similarity measures
are currently among the top-performing meth-
ods on unsupervised semantic textual similar-
ity (STS) tasks. Recent work has increasingly
adopted a statistical view on these embeddings,
with some of the top approaches being essen-
tially various correlations (which include the
famous cosine similarity). Another excellent
candidate for a similarity measure is mutual
information (MI), which can capture arbitrary
dependencies between the variables and has a
simple and intuitive expression. Unfortunately,
its use in the context of dense word embed-
dings has so far been avoided due to difficul-
ties with estimating MI for continuous data.
In this work we go through a vast literature
on estimating MI in such cases and single out
the most promising methods, yielding a simple
and elegant similarity measure for word em-
beddings. We show that mutual information
is a viable alternative to correlations, gives an
excellent signal that correlates well with hu-
man judgements of similarity and rivals exist-
ing state-of-the-art unsupervised methods.

1 Introduction

Neural text embeddings learned from unlabeled
data are a key component of modern approaches
to semantic textual similarity (STS). Despite the
impressive performance of large pretrained models
(Kiros et al., 2015; Conneau et al., 2017; Subra-
manian et al., 2018; Cer et al., 2018; Peters et al.,
2018; Radford, 2018; Devlin et al., 2018; Dai et al.,
2019; Yang et al., 2019a) on a a plethora of hard
NLP tasks, deep models do not currently offer a
clear advantage over much simpler static word em-
beddings (Bengio et al., 2003; Mikolov et al., 2013;
Pennington et al., 2014; Bojanowski et al., 2017;
Joulin et al., 2017) on standard unsupervised STS
benchmarks (Hill et al., 2016; Arora et al., 2017,
Wieting et al., 2016; Wieting and Gimpel, 2018;

Zhelezniak et al., 2019b,a,c). Instead, the main
sources of improvement here have come from train-
ing on supervised paraphrastic corpora (Wieting
et al., 2015, 2016; Wieting and Gimpel, 2018), de-
signing better composition functions (Mitchell and
Lapata, 2008; De Boom et al., 2016; Arora et al.,
2017; Zhao and Mao, 2017; Riicklé et al., 2018;
Zhelezniak et al., 2019b,c; Yang et al., 2019b) and
exploring novel similarity measures between word
embeddings, in particular those inspired by opti-
mal transport (Kusner et al., 2015; Huang et al.,
2016), soft and fuzzy sets (Jimenez et al., 2010,
2015; Zhelezniak et al., 2019b), and statistics (Lev
et al., 2015; Nikolentzos et al., 2017; Torki, 2018;
Zhelezniak et al., 2019a,c).

Recently, Zhelezniak et al. (2019a,c) advocated
for a new statistical perspective on word embed-
dings where each word embedding itself is viewed
as a sample of (e.g. 300) observations from some
scalar random variable. They conducted a statis-
tical analysis of several popular pretrained word
embeddings and their compositions and estab-
lished that the ubiquitous cosine similarity is prac-
tically equivalent to Pearson correlation. They
also demonstrated significant gains in performance
when one instead uses non-parametric rank cor-
relation coefficients (Spearman’s p, Kendall’s 7)
and cross-covariance operators between reproduc-
ing kernel Hilbert spaces (Hilbert-Schmidt inde-
pendence criterion (HSIC) (Gretton et al., 2005),
Centered Kernel Alignment (CKA)) (Cortes et al.,
2012; Kornblith et al., 2019).

One prominent alternative to those correlation-
based approaches is mutual information (MI),
which is of great importance in information theory
and statistics. In some sense, mutual information
is an excellent candidate for a similarity measure
between word embeddings as it can capture arbi-
trary dependencies between the variables and has
a simple and intuitive expression. Unfortunately,

8361

Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 8361-8371
July 5 - 10, 2020. (©2020 Association for Computational Linguistics



its use in the context of continuous dense word
representations has so far been avoided due to the
difficulties in estimating MI for continuous ran-
dom variables (joint and marginal densities are not
known in practice).

In this work we make the first steps towards the
adoption of MI as a measure of semantic similarity
between dense word embeddings. We begin our
discussion with how to apply MI for this purpose in
principle. Next we carefully summarise the vast lit-
erature on estimation of MI for continuous random
variables and identify approaches most suitable for
our use case. Our chief goal here is to identify the
estimators that yield elegant, almost closed-form
expressions for the resulting similarity measure
as opposed to complicated estimation procedures.
Finally, we show that such estimators of mutual
information give an excellent signal that correlates
very well with human judgements and comfortably
rivals existing state-of-the-art unsupervised STS
approaches.

2 Background: Statistical Approaches to
Word Embeddings

Suppose we are given a word embedding matrix
W € RV*P where N is the vocabulary size
and D is the embedding dimension (commonly
D = 300). Ultimately, the matrix W is simply a
table of some numbers and just like any dataset,
it is subject to a statistical analysis. There are es-
sentially two ways we can proceed: we can either
choose to view W as N observations from D ran-
dom variables or we can instead consider W and
view it as D observations from N random vari-
ables. The first approach allows us to study ‘global’
properties of the word embedding space (e.g. via
PCA, clustering, etc.) and defines ‘global’ similar-
ity structures, such as Mahalanobis distance, Fisher
kernel (Lev et al., 2015), etc.

In the second approach we study the distribution
P(Wy,Ws,...,Wx), where a word embedding
w; is a sample of D (= 300) observations from
some scalar random variable W; corresponding to
the word w; (Zhelezniak et al., 2019a,c). The ‘local’
similarity between two words w; and wj is then en-
coded in the dependencies between the correspond-
ing random variables W;, W;. Since the distribu-
tion P(W;,W;) is unknown, we estimate these
dependencies based on the sample w;, w;. Certain
dependencies can be captured by Pearson, Spear-
man and Kendall correlation coefficients between

word embeddings p(w;, w;), where the choice of
the coefficient depends on the statistics of each
word embedding model (Zhelezniak et al., 2019a).

Conveniently, correlations can also be used to
measure semantic similarity between two sets of
words (e.g. phrases and sentences) if one consid-
ers the correlations between random vectors X =
(Xl, XQ, cee 7Xl1;) and Y = (Yl, YYQ, cee ,Yiy),
where scalar random variables X; correspond to
the words in the first sentence and Y to the
words in the second sentence. This, for exam-
ple, can be done by first pooling (e.g. mean- or
max-pooling) random vectors into scalar variables
Xpool and Y001 and then estimating univariate cor-
relations corr(Xpool, Yy001) as before. Alternatively,
we can measure correlations between random vec-
tors directly using norms of cross-covariance ma-
trices/operators (e.g. the Hilbert-Schmidt inde-
pendence criterion (Gretton et al., 2005)). Both
approaches are known to give excellent results
on standard STS benchmarks (Zhelezniak et al.,
2019c¢). A viable alternative to correlations is mu-
tual information (MI), which can detect any kind of
dependence between random variables, but which
has so far not been explored for this problem.

3 Mutual Information between Dense
Word Embeddings

We operate within the previous setting where we
consider two sentences £ = x1Z2 ..., and y =
Y192 - - - yi,- Our goal now is to estimate the mutual
information I(X;Y) between the corresponding
random vectors X = (X1, Xo,...,X; )and Y =
(Y1,Y2,...,Y,)

YY) — - loe XY (:Y)
10:Y) = [ (o tog 20500 o

where pxy(z,y) is the joint density of X and
Y and px(z) = [y, pxv(z,y)dy and py(y) =
[+ pxy (z,y)dz are the marginal densities. Un-
fortunately, these theoretical quantities are not
available to us and we must somehow esti-
mate fg\X, Y) directly from the word embed-
dil’lgS X = (X(1)7X(2)7 ce 7X(lz)) and Y =
(Y(1):¥(2),---+¥q,))- Luckily, there is a vast lit-
erature on how to estimate mutual information be-
tween continuous random variables based on the
sample. The first class of methods partitions the
supports X', Y into a finite number of bins of equal

~

or unequal (adaptive) size and estimates I(X;Y)
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based on discrete counts in each bin (Moddemei-
jer, 1989; Fraser and Swinney, 1986; Darbellay
and Vajda, 1999; Reshef et al., 2011; Ince et al.,
2016). While such methods are easy to understand
conceptually, they might suffer from the curse of di-
mensionality (especially when sentences are long)
and in some sense violate our desire for an elegant
closed-form similarity measure. The next class of
methods constructs kernel density estimates (KDE)
and then numerically integrates such approximate
densities to obtain MI (Moon et al., 1995; Steuer
et al., 2002). These methods might require a care-
ful choice of kernels and the bandwidth parameters
and also violate our simplicity requirement. The
third class of methods that has recently gained pop-
ularity in the deep learning community is based on
neural-network-based estimation of various bounds
on mutual information (e.g. by training a critic to es-
timate the density ratio in (1)) (Suzuki et al., 2008;
Alemi et al., 2017; Belghazi et al., 2018; Hjelm
etal., 2019; Poole et al., 2019). Such estimators are
usually differentiable and scale well to high dimen-
sions and large sample sizes (Belghazi et al., 2018).
However, in our case the sample size (e.g. 300) and
dimensionality are not too large (at least for short
phrases and sentences), and thus training a separate
neural network for a simple similarity computation
is hardly justified. This leaves us with the last class
of methods that estimates mutual information from
the k-nearest neighbour statistics (Kraskov et al.,
2004; Ver Steeg and Galstyan, 2013; Ver Steeg,
2014; Ross, 2014; Gao et al., 2015; Gao et al.,
2018). These approaches are not without problems
(Gao et al., 2015) and inherit the weaknesses of
kNN in large dimensions but are very simple to
implement. In particular, we focus on the Kraskov—
Stogbauer—Grassberger (KSG) estimator (Kraskov
et al., 2004) which admits a particularly elegant
expression for the resulting similarity measure.

3.1 The KSG Similarity Measure

It can be verified that the mutual information is
given by I(X;Y) = H(X) + H(Y) — H(X,Y),
i.e. the difference between the sum of marginal
entropies and the joint entropy. Thus, in order to
estimate MI, it is sufficient to be able to estimate
various entropies in the above equation. In their
seminal work, Kozachenko and Leonenko (1987)
show how to estimate such differential entropies
based on the nearest neighbour statistics. Con-
cretely, these methods approximate the log-density

Algorithm 1 Kraskov—Stogbauer—Grassberger
(KSG) Similarity Measure

Require: Word embeddings for the first sentence
X € RlzXD
Require: Word embeddings for the second sen-
tence Y € Rlv*P
Require: The number of nearest neighbours k <
D (default k£ = 3)
Ensure: Similarity measure K SG
Z + STACK_ROWS(X,Y)
2t — 27]| 2  max(|x' — x|, Iy’ - y7]ly)
i,j=1,...,D
# < set cardinality
forz’.d=1,...,D do
eld] « ||z¢ — z%||,z% = k-NN of z¢
neld) = #{x : [|x? — x| x < €[d]}
nyld)  #{y? : lly? = y? lly < eld]}
de{l,...D}\ {d}
end for
¥ (x) < digamma function
S Yy (V(ngld] + 1) + v(nyld) + 1))
KSG « ¢(D) + (k) — S

at a point by a uniform density in a e.g. Euclidean
or Chebyshev norm ball containing its k-nearest
neighbours. Kraskov et al. (2004) modify this idea
to construct their famous KSG estimator of mutual
information given by

KSG(X;Y) = (D) + ¢ (k)—

D )
> ((nald] + 1) + ¢(nyld] + 1)),

d=1

where D is the embedding dimension, & is the num-
ber of nearest neighbours, ¢(z) = I''(x) /T'(x) is
the digamma function and n,[d], n,[d] are certain
nearest neighbour statistics. These statistics are
obtained by counting the number of neighbours
that fall within less than €[d] from x% and y< in
the marginal spaces X and Y respectively, where
€[d] is the distance from z¢ = (x4, y?) to its k-
nearest neighbour in the joint space (X,Y). We
illustrate how the estimator can be applied to mea-
sure similarity between sets of word embeddings in
Algorithm 1 and refer the reader to Kraskov et al.
(2004) for its full derivation and justification as
well as an alternative version.
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Similarity STS 12 13 14 15 16

Popular approaches

USE (Transf.) 63.8 63.1 660 77.1 764
BERT Small 50.8 504 540 629 638
BERT Large 51.0 472 51.8 580 627
WMD 548 470 577 658 632
SoftCard 548 50.6 58.1 665 659
DynaMax 61.3 61.7 669 765 747
MeanPool+COS 588 58.8 634 69.1 68.3
SIF+PCA 58.1 672 665 738 73.0
Correlation-based Approaches

MaxPool+SPR 614 638 68.0 758 759
CKA Gaussian 60.8 64.6 68.0 764 738
CKA dCorr 60.9 634 678 762 734
Mutual Information (KSG)

KSGEk =3 599 61.6 678 767 747
KSG k=10 604 61.5 683 77.0 75.1

MaxPool+KSG 10 59.5 60.2 675 750 74.1

Table 1: Average Spearman correlation between sys-
tem and human scores on STS 12-16 tasks. FastText
is used for all methods that rely on word embed-
dings. Similarity measures based on Mutual Informa-
tion (KSG) perform on par with correlation-based mea-
sures and other popular methods from the literature.

4 Experiments

We now explore the empirical performance of
the KSG similarity measure on a standard suite
of Semantic Textual Similarity (STS) bench-
marks (Agirre et al., 2012, 2013, 2014, 2015, 2016)
and report Spearman correlation between the sys-
tem and human scores. Our focus here is on
fastText vectors (Bojanowski et al., 2017) trained
on Common Crawl (600B tokens), as previous lit-
erature suggests that among unsupervised vectors
fastText yields the best performance for all tasks
and similarity measures (Conneau et al., 2017; Per-
one et al., 2018; Zhelezniak et al., 2019a,b,c). We
defer evaluations and significance analysis on all
24 STS subtasks for other word vectors (word2vec
and GloVe) to the Appendix. Our evaluations are
run in the SentEval toolkit (Conneau and Kiela,
2018) and our code is available on GitHub'. Note
that we do not report results on the STS13 SMT
subtask as it is no longer publicly available.

'https://github.com/babylonhealth/
corrsim

Similarity Time complexity
WMD O(m?*D + m?logm)
WMD (relaxed) O(m?>D)

SoftCard O(m?D)

DynaMax O(m?D)
MaxPool+SPR  O(mD + D log D)
MaxPool+KSG ~ O(mD + D3/?)
CKA O(mD?)

KSG O(mD?)

Table 2: Computational complexity of some word
embedding-based methods, where m is the length of
the longer sentence and D is the word embedding di-
mension.

The number of nearest neighbours for KSG that
is known to work well in practice on a variety of
datasets is k = 3 (Kraskov et al., 2004; Khan
et al., 2007). This value seems to strike a good
balance between the bias and variance of the es-
timator. We also run experiments for £ = 10 to
show that KSG is not very sensitive to this hy-
perparameter, at least in our setting. As an in-
teresting addition, we also run KSG (kK = 10)
for max-pooled scalar random variables (Max-
Pool+KSG 10). We compare KSG to the follow-
ing approaches from the literature: Universal Sen-
tence Encoder (Transformer) (Cer et al., 2018),
BERT (penultimate layer, mean-pooling) (Devlin
et al., 2018), Word Mover’s Distance (WMD) (Kus-
ner et al., 2015), soft cardinality (Jimenez et al.,
2010, 2015) with cosine similarity and the soft-
ness parameter p = 1, DynaMax-Jaccard (Zhelez-
niak et al., 2019b), mean-pooling with cosine simi-
larity (MeanPool+COS) and Smooth Inverse Fre-
quency (SIF) + PCA (Arora et al., 2017). Next we
compare KSG with the following top-performing
correlations: max-pooling with Spearman correla-
tion (MaxPool+SPR), Centered Kernel Alignment
(Gaussian kernel with median estimation for 2)
and distance correlation (Zhelezniak et al., 2019¢).
The evaluation results are given in Table 1.

In summary, we can see that similarity measures
based on mutual information (KSG) perform on
par with top correlation-based measures and other
leading methods from the literature. Moreover,
KSG between pooled variables (MaxPool) is faster
and performs only slightly worse than multivariate
KSG.
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5 Conclusion

In this work we explored how to apply mutual in-
formation (MI) as a semantic similarity measure
for continuous dense word embeddings. We have
summarised the vast literature on estimating MI for
continuous random variables from the sample and
singled out a simple and elegant KSG estimator
which is based on elementary nearest-neighbour
statistics. We showed empirically that this estima-
tor and mutual information in general can be an ex-
cellent candidate for a similarity measure between
dense word embeddings.
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