
Improving Chinese Word Segmentation
with Wordhood Memory Networks

Yuanhe Tian♥∗ , Yan Song♠† , Fei Xia♥, Tong Zhang♦, Yonggang Wang♠
♥University of Washington, ♠Sinovation Ventures
♦The Hong Kong University of Science and Technology

♥{yhtian, fxia}@uw.edu ♠clksong@gmail.com
♦tongzhang@ust.hk ♠wangyonggang@chuangxin.com

Abstract

Contextual features always play an important
role in Chinese word segmentation (CWS).
Wordhood information, being one of the
contextual features, is proved to be useful
in many conventional character-based seg-
menters. However, this feature receives less
attention in recent neural models and it is
also challenging to design a framework that
can properly integrate wordhood information
from different wordhood measures to existing
neural frameworks. In this paper, we there-
fore propose a neural framework, WMSEG,
which uses memory networks to incorporate
wordhood information with several popular
encoder-decoder combinations for CWS. Ex-
perimental results on five benchmark datasets
indicate the memory mechanism successfully
models wordhood information for neural seg-
menters and helps WMSEG achieve state-of-
the-art performance on all those datasets. Fur-
ther experiments and analyses also demon-
strate the robustness of our proposed frame-
work with respect to different wordhood mea-
sures and the efficiency of wordhood informa-
tion in cross-domain experiments.1

1 Introduction
Unlike most written languages in the world, the
Chinese writing system does not use explicit de-
limiters (e.g., white space) to separate words in
written text. Therefore, Chinese word segmenta-
tion (CWS) conventionally serves as the first step in
Chinese language processing, especially for many
downstream tasks such as text classification (Zeng
et al., 2018), question answering (Liu et al., 2018),
machine translation (Yang et al., 2018), etc.

In the past two decades, the mainstream method-
ology of CWS treated CWS as a character-based
∗Partially done as an intern at Sinovation Ventures.
†Corresponding author.
1WMSEG (code and the best performing models) is re-

leased at https://github.com/SVAIGBA/WMSeg.

sequence labeling task (Tseng et al., 2005; Song
et al., 2006; Sun and Xu, 2011; Pei et al., 2014;
Chen et al., 2015; Zhang et al., 2016; Chen et al.,
2017; Ma et al., 2018; Higashiyama et al., 2019;
Qiu et al., 2019), where various studies were pro-
posed to effectively extract contextual features to
help better predicting segmentation labels for each
character (Zhang et al., 2013; Zhou et al., 2017;
Higashiyama et al., 2019). Among all the contex-
tual features, the ones measuring wordhood for
n-grams illustrate their helpfulness in many non-
neural CWS models (Sun et al., 1998; Xue and
Shen, 2003; Feng et al., 2004; Song and Xia, 2012).

Later, following the track of the sequence label-
ing methodology, recent approaches with neural
networks are proved to be powerful in this task
(Chen et al., 2015; Ma et al., 2018; Higashiyama
et al., 2019). However, since neural networks (e.g.,
LSTM) is considered to be able to provide a good
modeling of contextual dependencies, less attention
is paid to the idea of explicitly leveraging word-
hood information of n-grams in the context as what
had previously been done in non-neural models. Al-
though some studies sidestepped the idea by incor-
porating contextual n-grams (Pei et al., 2014; Zhou
et al., 2017) or word attention (Higashiyama et al.,
2019) into the sequence labeling process, they are
limited in either concatenating word and character
embeddings or requiring a well-defined word lexi-
con. Therefore, it has not been fully explored what
would be the best way of representing contextual
information such as wordhood features in neural
CWS models. Moreover, consider there are various
choices of wordhood measures, it is also a chal-
lenge to design a framework that can incorporate
different wordhood features so that the entire CWS
approach can be general while being effective in
accommodating the input from any measures.

In this paper, we propose WMSEG, a neural
framework with a memory mechanism, to improve

https://github.com/SVAIGBA/WMSeg


Figure 1: The architecture of WMSEG. “N ” denotes a lexicon constructed by wordhood measures. N-grams
(keys) appearing in the input sentence “部分居民生活水平” (some residents’ living standard) and the wordhood
information (values) of those n-grams are extracted from the lexicon. Then, together with the output from the text
encoder, n-grams (keys) and their wordhood information (values) are fed into the memory module, whose output
passes through a decoder to get final predictions of segmentation labels for every character in the input sentence.

CWS by leveraging wordhood information. In de-
tail, we utilize key-value memory networks (Miller
et al., 2016) to incorporate character n-grams with
their wordhood measurements in a general se-
quence labeling paradigm, where the memory mod-
ule can be incorporated with different prevailing
encoders (e.g., BiLSTM and BERT) and decoders
(e.g., softmax and CRF). For the memory, we map
n-grams and their wordhood information to keys
and values in it, respectively, and one can use dif-
ferent wordhood measures to generate such infor-
mation. Then for each input character, the memory
module addresses all the n-grams in the key list that
contain the character and uses their corresponding
values to generate an output vector to enhance the
decoder for assigning a segmentation label to the
character. Experimental results from five widely
used benchmark datasets confirm that WMSEG

with wordhood information can improve CWS over
powerful baseline segmenters and ourperform pre-
vious studies, where state-of-the-art performance
is observed on all the datasets. Further experiments
and analyses are also performed to investigate dif-
ferent factors affecting WMSEG’s performance.

2 The Proposed Framework
Following previous studies, we regard CWS as a
character-based sequence labeling task. The archi-
tecture of WMSEG is illustrated in Figure 1, where

the general sequence labeling paradigm is the top
part with a memory module inserted between the
encoder and the decoder. The model predicts a tag
(e.g., tag B for the 1st character in a word) for each
character, and the predicted tag sequence is then
converted to word boundary in the system output.
The bottom part of the figure starts with a lexicon
N , which is simply a list of n-grams and can be
built by various methods (see Section 2.1). Given
an input sentence X = x1x2...xi...xl, for each
character xi in X , our approach uses the lexiconN
to generate (keys, values) for xi and send it to the
memory module. In all, the process of WMSEG to
perform CWS can be formalized as

Ŷ = argmax
Y∈T l

p(Y|X ,M(X ,N )) (1)

where T denotes the set of all types of segmen-
tation labels, and l stands for the length of the
input sentence X . The output Y is the correspond-
ing label sequence for X with Ŷ representing the
best label sequence according to the model. M
is the memory module proposed in this paper that
consumes X and N and provides corresponding
wordhood information for X to maximize p.

In the rest of this section, we describe the con-
struction of the n-gram lexicon, the proposed word-
hood memory networks, and how it is integrated
with different encoders and decoders, respectively.



2.1 Lexicon Construction
To build the wordhood memory networks, the first
step is to construct the lexicon N because the keys
in the memory module are built upon N , where
each n-gram in N is stored as a key in it.2 In this
study, N is simply a list of n-grams, and techni-
cally, it can be constructed through many existing
resources or automatic methods. Compared to us-
ing an off-the-shelf lexicon or the word dictionary
from the training data, it is hypothesized that, for
the purpose of incorporating wordhood information
into the general sequence labeling framework, un-
supervised wordhood measures, such as accessor
variety (AV) (Feng et al., 2004), pointwise mu-
tual information (PMI) (Sun et al., 1998), and de-
scription length gain (DLG) (Kit and Wilks, 1999),
would perform better. For example, AV measures
the wordhood of an n-gram k by

AV (k) = min(Lav(k), Rav(k)) (2)

where Lav(k) and Rav(k) denote the number of
different character types that can precede (left ac-
cess number) or follow (right access number) the
n-gram k. Normally, the higher the AV score is, the
more likely the n-gram forms a word.

2.2 Wordhood Memory Networks
To encode both n-grams and the wordhood informa-
tion they carry, one requires an appropriate frame-
work to do so for CWS. Compared with other net-
work structures that can exploit n-grams such as
the attention mechanism, key-value memory net-
works are more appropriate to model such pairwise
knowledge via transforms between keys and values.
In the memory, we map n-grams and their word-
hood information to keys and values, respectively.
Following Miller et al. (2016), we illustrate how
our memory module generates and operates the
(keys, values) pair for each xi in this subsection.

N-gram Addressing For each xi in a train-
ing/test instance, normally there are many n-
grams in N that contain xi. Therefore, the n-
gram addressing step is to generate all n-grams
from xi’s context (including xi) and keep only
the ones that appear in N , resulting Ki =
[ki,1, ki,2 · · · , ki,j , · · · ki,mi ] that xi is a part of ki,j .
For example, in the input sentence shown in Figure
1, the n-grams that contain the character x4 =“民”
(people) form the list K4 = [“民” (people), “居民”

2Therefore n-gram and key are equivalent in the memory.

Rule vi,j

xi is the beginning of the key ki,j VB

xi is inside the key ki,j VI

xi is the ending of the key ki,j VE

xi is the single-character key ki,j VS

Table 1: The rules for assigning different values to xi

according to its position in a key ki,j .

(resident), “民生” (livelihood), “居民生活” (res-
idents’ life)], which are highlighted in the dashed
boxes illustrated at the bottom part of the figure.
Then, the memory module activates the correspond-
ing keys in it, addresses their embeddings (which
are denoted as eki,j for each ki,j), and computes the
probability distribution for them with

pi,j =
exp(hi · eki,j)∑mi
j=1 exp(hi · eki,j)

(3)

for each key, where hi is the vector for xi which
can be generated from any text encoder.

Wordhood Reading Values in the memory rep-
resent the wordhood information for a given xi
and ki,j pair, which is not a straightforward map-
ping because xi may have different roles in each
ki,j . For example, ki,j delivers different word-
hood information when xi appears at the begin-
ning or the ending of ki,j . Therefore, we set rules
in Table 1 to read a value for a key according to
different situations of xi in ki,j , where we use a
set of values {VB, VI , VE , VS} with embeddings
{eVB

, eVI
, eVE

, eVS
} (illustrated in different col-

ors in Figure 1) so that all n-grams should map to
one of the values based on xi’s position in ki,j . To
illustrate that, in the aforementioned example, n-
grams inK4 for x4 =“民” (people) are mapped to a
value list V4 = [VS , VE , VB, VI ] (see Figure 1). As
a result, each Ki for xi has a list of values denoted
by Vi = [vi,1, vi,2 · · · , vi,j . · · · vi,mi ]. Then the to-
tal wordhood memory for xi is computed from the
weighted sum of all keys and values by

oi =

mi∑
j=1

pi,je
v
i,j (4)

where evi,j is the embedding for vi,j . Afterwards,
oi is summed element-wise with hi and the result
is passed through a fully connected layer by

ai = Wo · (hi + oi) (5)



MSR PKU AS CITYU CTB6
TRAIN TEST TRAIN TEST TRAIN TEST TRAIN TEST TRAIN DEV TEST

CHAR # 4,050K 184K 1,826K 173K 8,368K 198K 2,403K 68K 1,056K 100K 134K
WORD # 2,368K 107K 1,110K 104K 5,500K 123K 1,456K 41K 641K 60K 82K
CHAR TYPE # 5K 3K 5K 3K 6K 4K 5K 3K 4K 3K 3K
WORD TYPE # 88K 13K 55K 13K 141K 19K 69K 9K 42K 10K 12K

OOV RATE - 2.7 - 5.8 - 4.3 - 7.2 - 5.4 5.6

Table 2: Statistics of the five benchmark datasets, in terms of the number of character and word tokens and types
in each training and test set. Out-of-vocabulary (OOV) rate is the percentage of unseen word tokens in the test set.

where Wo is a trainable parameter and the output
ai ∈ R|T | is a weight vector with its each dimen-
sion corresponding to a segmentation label.

2.3 Text Encoders and Decoders
To ensure wordhood memory networks functional-
ize, one requires to generate hi for each xi by

[h1,h2, ...,hi, ...,hl] = Encoder(X ) (6)

where the Encoder can be different models, e.g.,
Bi-LSTM and BERT (Devlin et al., 2019), to repre-
sent a sequence of Chinese characters into vectors.

Once all ai are generated from the memory for
each xi, a decoder takes them to predict a sequence
of segmentation labels Ŷ = ŷ1ŷ2 · · · ŷl for X by

Ŷ = Decoder(A) (7)

where A = a1a2 · · ·ai · · ·al is the sequence of
output from Eq. 5. The Decoder can be imple-
mented by different algorithms, such as softmax:

ŷi = argmax
exp(ati)∑|T |
t=1 exp(a

t
i)

(8)

where ati is the value at dimension t in ai. Or one
can use CRF for the Decoder:

ŷi = argmax
yi∈T

exp(Wc · ai + bc)∑
yi−1yi

exp(Wc · ai) + bc
(9)

where Wc ∈ R|T |×|T | and bc ∈ R|T | are trainable
parameters to model the transition for yi−1 to yi.

3 Experimental Settings

3.1 Datasets
We employ five benchmark datasets in our experi-
ments: four of them, namely, MSR, PKU, AS, and
CITYU, are from SIGHAN 2005 Bakeoff (Emer-
son, 2005) and the fifth one is CTB6 (Xue et al.,
2005). AS and CITYU are in traditional Chinese
characters whereas the other three use simplified

BC BN MZ NW WEB

CHAR # 275K 483K 403K 443K 342K
WORD # 184K 287K 258K 260K 210K
CHAR TYPE # 3K 3K 4K 3K 4K
WORD TYPE # 12K 23K 26K 21K 21K

OOV RATE 3.4 6.0 8.9 5.9 7.1

Table 3: Statistics of CTB7 with respect to five differ-
ent genres. The OOV rate for each genre is computed
based on the vocabulary from all the other four genres.

ones. Following previous studies (Chen et al., 2015,
2017; Qiu et al., 2019), we convert traditional Chi-
nese characters in AS and CITYU into simplified
ones.3 For MSR, AS, PKU, and CITYU, we fol-
low their official training/test data split. For CTB6,
we use the same split as that stated in Yang and
Xue (2012); Chen et al. (2015); Higashiyama et al.
(2019), and only use its test set for the final experi-
ment. Table 2 show the statistics of all datasets in
terms of the number of characters and words and
the percentage of out-of-vocabulary (OOV) words
in the dev/test sets with respect to the training set.

In addition, we also use CTB7 (LDC2010T07)
to perform our cross-domain experiments. There
are five genres in CTB7, including broadcast con-
versation (BC), broadcast news (BN), magazine
(MZ), newswire (NW), and weblog (WEB). The
statistics of all the genres are reported in Table 3,
where the OOV rate for each genre is computed
according to the union of all other genres. For
example, the OOV rate for BC is computed with
respect to the union of BN, MZ, NW, and WEB.

3.2 Wordhood Measures

We experiment with three wordhood measures to
construct N . The main experiment adopts the
aforementioned AV as the measure to rank all n-
grams, because AV was shown to be the most effec-
tive wordhood measure in previous CWS studies
(Zhao and Kit, 2008). Since AV is sensitive to

3The conversion scripts are from https://github.
com/skydark/nstools/tree/master/zhtools

https://github.com/skydark/nstools/tree/master/zhtools
https://github.com/skydark/nstools/tree/master/zhtools


MSR PKU AS CITYU CTB6

AV 49K 71K 105K 104K 50K
PMI 18K 16K 22K 21K 16K

DLG 32K 22K 32K 27K 16K

Table 4: The size of lexiconN generated from different
wordhood measures under our settings.

corpus size, in our experiments we use different
AV thresholds when building the lexicon for each
dataset: the threshold is 2 for PKU, CITYU, CTB6
and CTB7, and 5 for MSR and AS.

To test the the robustness of WMSEG, we also
try two other wordhood measures, i.e., PMI (Sun
et al., 1998) and DLG (Kit and Wilks, 1999). PMI
measures pointwise mutual information between
two Chinese characters, x′ and x′′, via

PMI(x′, x′′) = log
p(x′x′′)

p(x′)p(x′′)
(10)

where p computes the probability of an n-gram
(i.e., x′, x′′ and x′x′′) in a dataset. A high PMI
score indicates that the two characters co-occur a
lot in the dataset and are likely to form a word.
Hence, we use a threshold to determine whether
a word boundary delimiter should be inserted be-
tween two adjacent characters in the dataset. In our
experiments, we set the threshold to 0, PMI score
lower than it will result in a segmentation. In other
words, for each dataset, we use PMI to perform un-
supervised segmentation and collect the segmented
words from it to build the n-gram lexicon N .

The other measure, DLG, computes wordhood
of an n-gram s according to the change of the de-
scription length of a dataset D with and without
treating that n-gram as a segment:

DLG(s) = DL(D)−DL(D[r → s]⊕ s) (11)

where D denotes the original dataset and D[r →
s]⊕s represents a new dataset by treating s as a new
segment, replacing all the occurrences of s with a
new symbol r (which can be seen as an index for
newly identified segment s), and then appending
s at the end. DL(D) is the Shannon-Fano code
length of a dataset D, calculated by

DL(D) = −
∑
x∈V

c(x)log
c(x)

|D|
(12)

where V refers to the vocabulary of D and c(x) the
count of segment x. We set the threshold for DLG
to 0 and use the n-grams whose DLG is higher than
it to build lexicon N for each dataset.

Bi-LSTM BERT / ZEN

Word Embedding Size 200 -
Hidden State Size 100 768
Hidden State Layers 1 12
Key Embedding Size 200 768
Value Embedding Size 200 768
Dropout Rate 0.2 0.1

Table 5: The hyper-parameters for our models w.r.t. dif-
ferent encoders, i.e., Bi-LSTM, BERT and ZEN.

All aforementioned measures are conducted on
the union of the training and test sets, so that n-
grams and their wordhood information are shared
in both the learning and prediction phase. We re-
move all white spaces from the data and use the
resulted raw texts to perform these measures. Table
4 shows the sizes of the lexicons created with these
wordhood measures on the five datasets.

3.3 Model Implementation

Following previous studies (Sun and Xu, 2011;
Chen et al., 2015, 2017; Ma et al., 2018; Qiu et al.,
2019), we use four segmentation labels in our ex-
periments, i.e., T = {B, I,E, S}. Among them,
B, I , and E indicate a character is the beginning,
inside, and the ending of a word and S denotes that
the character is a single-character word.

Since text representation plays an important role
to facilitate many tasks (Conneau et al., 2017; Song
et al., 2017, 2018; Sileo et al., 2019), we try two
effective and well-known encoders, i.e., Bi-LSTM
and BERT4. In addition, we test WMSEG on a pre-
trained encoder for Chinese language, i.e., ZEN5

(Diao et al., 2019), which learns n-gram informa-
tion in its pre-training from large raw corpora and
outperforms BERT on many Chinese NLP tasks.
Table 5 shows the hyperparameter settings for all
the encoders: for the Bi-LSTM encoder, we follow
the setting of Chen et al. (2015) and adopt their
character embeddings for exi , and for BERT and
ZEN encoders, we follow the default settings in
their papers (Devlin et al., 2019; Diao et al., 2019).

For the decoders, we use softmax and CRF, and
set their loss functions as cross-entropy and neg-
ative log-likelihood, respectively. The memory
module can be initialized by random or pre-trained
word embeddings for keys and values. In our ex-
periments, we use random initialization for them.6

4We use the Chinese base model from https://s3.
amazonaws.com/models.huggingface.co/.

5https://github.com/sinovation/ZEN.
6We tried different initialization methods, and they did not

show a significant difference in CWS performance.

https://s3.amazonaws.com/models.huggingface.co/
https://s3.amazonaws.com/models.huggingface.co/
https://github.com/sinovation/ZEN


CONFIG MSR PKU AS CITYU CTB6
EN-DN WM F ROOV F ROOV F ROOV F ROOV F ROOV

BL-SM × 95.53 62.96 91.85 48.84 94.52 62.21 93.79 67.26 93.56 67.39√
95.61 63.94 91.97 49.00 94.70 64.18 93.88 69.20 93.70 68.52

BL-CRF × 95.80 66.17 92.35 52.04 94.39 61.59 93.96 67.84 93.84 70.81√
95.98 68.75 92.43 56.80 95.07 68.17 94.20 69.91 94.03 71.88

BT-SM × 97.84 86.32 96.20 84.43 96.33 77.86 97.51 86.69 96.90 88.46√
98.16 86.50 96.47 86.34 96.52 78.67 97.77 86.62 97.13 88.30

BT-CRF × 97.98 85.52 96.32 85.04 96.34 77.75 97.63 86.66 96.98 87.43√
98.28 86.67 96.51 86.76 96.58 78.48 97.80 87.57 97.16 88.00

ZEN-SM × 98.35 85.78 96.27 84.50 96.38 77.62 97.78 90.69 97.08 86.20√
98.36 85.30 96.49 84.95 96.55 78.02 97.86 90.89 97.22 86.83

ZEN-CRF × 98.36 86.82 96.36 84.81 96.39 77.81 97.81 91.78 97.13 87.08√
98.40 84.87 96.53 85.36 96.62 79.64 97.93 90.15 97.25 88.46

Table 6: Experimental results of WMSEG on SIGHAN2005 and CTB6 datasets with different configurations. “EN-
DN” stands for the text encoders (“BL” for Bi-LSTM and “BT” for BERT) and decoders (“SM” for softmax and
“CRF” for CRF). The “WM” column indicates whether the wordhood memories are used (

√
) or not (×).

4 Results and Analyses

In this section, we firstly report the results of WM-
SEG with different configurations on five bench-
mark datasets and its comparison with existing
models. Then we explore the effect of using dif-
ferent lexicon N and different wordhood measures
in WMSEG. We also use a cross-domain exper-
iment to illustrate the effectiveness of WMSEG

when more OOVs are in the test set. Lastly, a case
study is performed to visualize how the wordhood
information used in WMSEG helps CWS.

4.1 Results on Benchmark Datasets

In the main experiment, we illustrate the validity of
the proposed memory module by comparing WM-
SEG in different configurations, i.e., with and with-
out the memory in integrating with three encoders,
i.e., Bi-LSTM, BERT, and ZEN, and two decoders,
i.e., softmax and CRF. The experimental results
on the aforementioned five benchmark datasets are
shown in Table 6, where the overall F-score and
the recall of OOV are reported. With five datasets
and six encoder-decoder configurations, the table
includes results from 30 pairs of experiments, each
pair with or without using the memories.

There are several observations drawn from the
results. First, the overall comparison clearly in-
dicates that, WMSEG (i.e., the model with word-
hood memories) outperforms the baseline (i.e., the
model without wordhood memories) for all 30 pairs
in terms of F-scores and for 25 pairs in terms of
ROOV . Second, the proposed memory module
works smoothly with different encoders and de-
coders, where some improvement is pretty signifi-

cant; for instance, when using Bi-LSTM as the en-
coder and CRF as the decoder, WMSEG improves
the F-score on the AS dataset from 94.39 to 95.07
and ROOV from 61.59 to 68.17. With BERT or
ZEN as the encoder, even when the baseline system
performs very well, the improvement of WMSEG

on F-scores is still decent. Third, among the models
with ZEN, the ones with the memory module fur-
ther improve their baselines, although the context
information carried by n-grams is already learned
in pre-training ZEN. This indicates that wordhood
information provides additional cues (besides the
contextual features) that can benefit CWS, and our
proposed memory module is able to provide fur-
ther task-specific guidance to an n-gram integrated
encoder. Fourth, the wordhood memory shows
its robustness with different lexicon size when we
consider WMSEG’s performance with the lexicon
statistics reported in Table 4 together. To summa-
rize, the results in this experiment not only confirm
that wordhood information is a simple yet effec-
tive source of knowledge to help CWS without
requiring external support such as a well-defined
dictionary or manually crafted heuristics, but also
fully illustrate that the design of our model can
effectively integrate this type of knowledge.

To further illustrate the validity and the effective-
ness of WMSEG, we compare our best-performing
model with the ones in previous studies on the
same benchmark datasets. The comparison is pre-
sented in Table 7, where WMSEG (both the one
with BERT and ZEN) outperforms all existing mod-
els with respect to the F-scores and achieves new
state-of-the-art performance on all datasets.



MSR PKU AS CITYU CTB6
F ROOV F ROOV F ROOV F ROOV F ROOV

ZHANG ET AL. (2013) 97.5 - 96.1 73.1 - - - - - -
PEI ET AL. (2014) 97.2 - 95.2 - - - - - - -
MA AND HINRICHS (2015) 96.6 87.2 95.1 76.0 - - - - - -
CHEN ET AL. (2015) 97.4 - 96.5 - - - - - 96.0 -
XU AND SUN (2016) 96.3 - 96.1 - - - - - 95.8 -
ZHANG ET AL. (2016) 97.7 - 95.7 - - - - - 95.95 -
CHEN ET AL. (2017) 96.04 71.60 94.32 72.64 94.75 75.34 95.55 81.40 - -
WANG AND XU (2017) 98.0 - 96.5 - - - - - - -
ZHOU ET AL. (2017) 97.8 - 96.0 - - - - - 96.2 -
MA ET AL. (2018) 98.1 80.0 96.1 78.8 96.2 70.7 97.2 87.5 96.7 85.4
GONG ET AL. (2019) 97.78 64.20 96.15 69.88 95.22 77.33 96.22 73.58 - -
HIGASHIYAMA ET AL. (2019) 97.8 - - - - - - - 96.4 -
QIU ET AL. (2019) 98.05 78.92 96.41 78.91 96.44 76.39 96.91 86.91 - -

WMSEG (BERT-CRF) 98.28 86.67 96.51 86.76 96.58 78.48 97.80 87.57 97.16 88.00
WMSEG (ZEN-CRF) 98.40 84.87 96.53 85.36 96.62 79.64 97.93 90.15 97.25 88.46

Table 7: Performance (F-score) comparison between WMSEG (BT-CRF and ZEN-CRF with woodhood memory
networks) and previous state-of-the-art models on the test set of five benchmark datasets.

4.2 Cross-Domain Performance

As domain variance is always an important factor
affecting the performance of NLP systems espe-
cially word semgenters (Song et al., 2012; Song
and Xia, 2013), in addition to the experiments
on benchmark datasets, we also run WMSEG on
CTB7 across domains (genres in this case) with
and without the memory module. To test on each
genre, we use the union of the data from the other
four genres to train our segmenter and use AV to
extract n-grams from the entire raw text from CTB7
in this experiment. Table 8 reports the results in F-
score and OOV recall, which show a similar trend
as that in Table 6, where WMSEG outperforms
baselines for all five genres. Particularly, for gen-
res with large domain variance (e.g., the ones with
high OOV rates such as MZ and WEB), CWS is
difficult, and its relatively low F-scores in Table 8
from baseline models confirm that. Yet WMSEG

offers a decent way to improve cross-domain CWS
performance without any help from external knowl-
edge or complicated model design, which further
illustrates the effectiveness of the memory mod-
ule. The reason could be that many n-grams are
shared in both training and test data; these n-grams
with their wordhood information present a strong
indication to the model on what combinations of
characters can be treated as words, even though
some of them never appear in the training data.

4.3 Effect of Using Different N

To analyze the robustness of WMSEG with respect
to the lexicon, we compare four ways (ID: 2-5 in Ta-
ble 9) of constructing the lexicon (N ): the first one

simply uses the vocabulary from the training data
(marked as GOLD LABEL in Table 9; ID: 2); the
other three ways use AV to extract n-grams from
the unsegmented training data only (ID: 3), the test
data only (ID: 4), and training + test set (ID: 5),
respectively.7 Table 9 shows the results of running
BERT-CRF on the WEB genre of CTB7 without
the wordhood memories (ID: 1) and with the mem-
ories (ID: 2-5), following the cross-domain setting
in §4.2. While the four methods with memories
achieve similar results on the F score, indicating
the robustness of our proposed framework, the one
that builds N using the raw texts from both train-
ing and test sets through unsupervised method (ID:
5) achieves the biggest improvement on ROOV ,
demonstrating the advantage of including the un-
labeled test set by incorporating the results from
unsupervised wordhood measures into the models.

4.4 Effect of Different Wordhood Measures

WMSEG provides a general way of integrating
wordhood information for CWS, we expect other
wordhood measures to play the same role in it.
Therefore, we test PMI and DLG in our model
and compare them with the previous results from
AV (see Table 6). Specifically, we use our best per-
forming BERT-based model, i.e., BERT-CRF, with
the n-gram lexicons constructed by the aforemen-
tioned three measures and run it on all benchmark
datasets. We draw the histograms of the F-scores
obtained from WMSEG with each measure (red,
green, and blue bars for AV, PMI, and DLG, re-

7One could also use an external corpus to build N , which
is not considered in this experiment.



CONFIG BC BN MZ NW WEB

EN-DN WM F ROOV F ROOV F ROOV F ROOV F ROOV

BL-SM × 93.73 63.39 93.65 68.88 90.55 66.95 93.70 69.57 90.81 55.50√
94.04 63.53 93.91 72.32 90.76 65.65 93.83 72.40 91.22 56.62

BL-CRF × 93.95 65.60 93.87 71.89 90.67 67.13 93.87 72.17 91.12 57.51√
94.21 66.81 94.11 74.22 90.95 67.29 93.96 74.38 91.49 58.37

BT-SM × 96.27 80.76 96.88 87.90 94.97 84.45 97.08 89.78 94.82 74.00√
96.41 81.15 97.00 89.47 95.10 85.48 97.24 91.96 95.00 75.51

BT-CRF × 96.25 79.04 96.87 89.15 94.94 85.27 96.99 91.34 94.79 75.58√
96.43 81.29 97.09 90.29 95.11 85.32 97.21 92.48 95.03 76.30

ZEN-SM × 96.39 79.97 96.95 88.93 95.05 85.14 97.17 91.33 94.03 75.33√
96.45 81.34 97.03 89.78 95.06 85.60 97.21 91.73 95.08 75.60

ZEN-CRF × 96.30 80.05 96.97 90.38 94.93 85.64 97.10 91.03 94.90 74.98√
96.50 80.44 97.11 90.29 95.13 85.96 97.24 91.68 95.04 75.74

Table 8: Experimental results on five genres of CTB7. Abbreviations follow the same notation in Table 6.

ID TRAIN TEST GOLD LABEL F ROOV

1 - - - 94.79 75.58
2 × ×

√
+0.22 +0.21

3
√

× × +0.21 +0.20
4 ×

√
× +0.23 +0.33

5
√ √

× +0.24 +0.72

Table 9: Comparisons of performance gain on the WEB
genre of CTB7 with respect to the baseline BERT-CRF
model when the n-gram lexiconN for WMSEG is built
upon different sources.

√
and × refer to if a corre-

sponding data source is used or not, respectively.

spectively) in Figure 2, where the F-scores of the
baseline model are also presented in orange bars.

As shown in the figure, the performances of us-
ing the three measures are very similar, which indi-
cates that WMSEG is able to robustly incorporate
the wordhood information from various measures,
despite that those measures focus on different as-
pects of n-grams when determining whether the n-
grams should be treated as words. Particularly, con-
sider that the lexicons produced by the three mea-
sures are rather different in their sizes (as shown
in Table 4), the results in Figure 2 strongly demon-
strate the effectiveness of our proposed approach
in learning with a limited number of n-grams. This
observation also reveals the possibility that many
n-grams may be redundant for our model, and WM-
SEG is thus able to identify the most useful ones
from them, which is analyzed in the case study.

4.5 Case Study
To investigate how the memory learns from the
wordhood information carried by n-grams, we con-
duct a case study with an example input sentence
“他/从小/学/电脑/技术” (He learned computer
techniques since childhood). In this sentence, the

Figure 2: The F-scores of WMSEG (BERT) using three
different wordhood measures, namely AV (red), PMI
(green), and DLG (blue), on five benchmark datasets.

n-gram “从小学” is ambiguous with two possible
interpretations: “从小/学” (learn since childhood)
and “从/小学” (from primary school). Native Chi-
nese speakers can easily choose the first one with
the given context but a word segmenter might in-
correctly choose the second segmentation.

We feed this case into our BERT-CRF model
with the memory module. In Figure 3, we visualize
the resulted weights that learned from keys (a) and
values (b) of the memory, as well as from the final
tagger (c). The heatmaps of all keys and values
in the memory with respect to each corresponding
input character clearly illustrate that the appropri-
ate n-grams, e.g., “他” (he), “学” (learn), “从小”
(from childhood), etc., receive higher weights than
others and the corresponding values for them are
also emphasized, which further affects final CWS
tagging so that the weight distributions from (b)
and (c) look alike to each other. Therefore, this
visualization explains, to some extent, that the pro-
posed memory mechanism can identify and distin-
guish important n-grams within a certain context
and thus improves CWS performance accordingly.



Figure 3: Heatmaps of weights learned for (a) keys and (b) values in the memory, and (c) the tags from the decoder,
with respect to each character in an input sentence. Higher weights are visualized with darker colors.

5 Related Work

As one of the most fundamental NLP tasks for
Chinese language processing, CWS has been stud-
ied for decades, with two steams of methods, i.e.,
word-based and character-based ones (Xue and
Shen, 2003; Peng et al., 2004; Levow, 2006; Zhao
et al., 2006; Zhao and Kit, 2008; Li and Sun, 2009;
Song et al., 2009a; Li, 2011; Sun and Xu, 2011;
Mansur et al., 2013; Zhang et al., 2013; Pei et al.,
2014; Chen et al., 2015; Ma and Hinrichs, 2015;
Liu et al., 2016; Zhang et al., 2016; Wang and
Xu, 2017; Zhou et al., 2017; Chen et al., 2017;
Ma et al., 2018; Higashiyama et al., 2019; Gong
et al., 2019; Qiu et al., 2019). Among these studies,
most of them follow the character-based paradigm
to predict segmentation labels for each character
in an input sentence; n-grams are used in some of
these studies to enhance model performance, which
is also observed in many other NLP tasks (Song
et al., 2009b; Xiong et al., 2011; Shrestha, 2014;
Shi et al., 2016; Diao et al., 2019). Recently, CWS
benefits from neural networks and further progress
are made with embeddings (Pei et al., 2014; Ma
and Hinrichs, 2015; Liu et al., 2016; Zhang et al.,
2016; Wang and Xu, 2017; Zhou et al., 2017), re-
current neural models (Chen et al., 2015; Ma et al.,
2018; Higashiyama et al., 2019; Gong et al., 2019)
and even adversarial learning (Chen et al., 2017).
To enhance CWS with neural models, there were
studies leverage external information, such as vo-
cabularies from auto-segmented external corpus
(Wang and Xu, 2017; Higashiyama et al., 2019),
where Higashiyama et al. (2019) introduced a word
attention mechanism to learn from large granular
texts during the CWS process. In addition, the stud-
ies from Chen et al. (2017) and Qiu et al. (2019) try
to improve CWS by learning from data annotated
through different segmentation criteria. Moreover,
there is a study leveraging auto-analyzed syntactic

knowledge obtained from off-the-shelf toolkits to
help CWS and part-of-speech tagging (Tian et al.,
2020). Compare to these studies, WMSEG offers
an alternative solution to robustly enhancing neural
CWS models without requiring external resources.

6 Conclusion

In this paper, we propose WMSEG, a neural frame-
work for CWS using wordhood memory networks,
which maps n-grams and their wordhood informa-
tion to keys and values in it and appropriately mod-
els the values according to the importance of keys
in a specific context. The framework follows the
sequence labeling paradigm, and the encoders and
decoders in it can be implemented by various pre-
vailing models. To the best of our knowledge, this
is the first work using key-value memory networks
and utilizing wordhood information for neural mod-
els in CWS. Experimental results on various widely
used benchmark datasets illustrate the effectiveness
of WMSEG, where state-of-the-art performance is
achieved on all datasets. Further experiments and
analyses also demonstrate the robustness of WM-
SEG in the cross-domain scenario as well as when
using different lexicons and wordhood measures.
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