
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 8211–8225
July 5 - 10, 2020. c©2020 Association for Computational Linguistics

8211

TVQA+: Spatio-Temporal Grounding for Video Question Answering

Jie Lei Licheng Yu Tamara L. Berg Mohit Bansal
Department of Computer Science

University of North Carolina at Chapel Hill
{jielei, licheng, tlberg, mbansal}@cs.unc.edu

Abstract

We present the task of Spatio-Temporal Video
Question Answering, which requires intelli-
gent systems to simultaneously retrieve rel-
evant moments and detect referenced visual
concepts (people and objects) to answer nat-
ural language questions about videos. We
first augment the TVQA dataset with 310.8K
bounding boxes, linking depicted objects to vi-
sual concepts in questions and answers. We
name this augmented version as TVQA+. We
then propose Spatio-Temporal Answerer with
Grounded Evidence (STAGE), a unified frame-
work that grounds evidence in both spatial
and temporal domains to answer questions
about videos. Comprehensive experiments
and analyses demonstrate the effectiveness of
our framework and how the rich annotations in
our TVQA+ dataset can contribute to the ques-
tion answering task. Moreover, by performing
this joint task, our model is able to produce
insightful and interpretable spatio-temporal at-
tention visualizations.1

1 Introduction

We have witnessed great progress in recent years
on image-based visual question answering (QA)
tasks (Antol et al., 2015; Yu et al., 2015; Zhu et al.,
2016b). One key to this success has been spatial at-
tention (Anderson et al., 2018; Shih et al., 2016; Lu
et al., 2016), where neural models learn to attend to
relevant regions for predicting the correct answer.
Compared to image-based QA, there has been less
progress on the performance of video-based QA
tasks. One possible reason is that attention tech-
niques are hard to generalize to the temporal na-
ture of videos. Moreover, due to the high cost of
annotation, most existing video QA datasets only
contain QA pairs, without providing labels for the

1Dataset and code are publicly available: http:
//tvqa.cs.unc.edu, https://github.com/
jayleicn/TVQAplus

Question: What is Sheldon holding when he is talking to Howard about the sword?
Correct Answer: A computer.

00:02.314 → 00:06.732
Howard: Sheldon, he’s got Raj. Use
your sleep spell. Sheldon! Sheldon!

00:06.902 → 00:10.992
Sheldon: I’ve got the Sword of Azeroth.

Question: Who is talking to Howard when he is in the kitchen upset?
Correct Answer: Raj is talking to Howard.

00:17.982 → 00:20.532
Howard: That's really stupid advice.

00:20.534 → 00:22.364
Raj: You know that hurts my feelings.

Figure 1: Samples from TVQA+. Questions and cor-
rect answers are temporally localized to clips, and spa-
tially localized to frame-level bounding boxes. Colors
indicate corresponding box-object pairs. Subtitles are
shown in dashed blocks. Wrong answers are omitted.

key clips or regions needed to answer the question.
Inspired by previous work on grounded image and
video captioning (Lu et al., 2018; Zhou et al., 2019),
we propose methods that explicitly localize video
clips as well as spatial regions for answering video-
based questions. Such methods are useful in many
scenarios, such as natural language guided spatio-
temporal localization, and adding explainability to
video question answering, which is potentially use-
ful for decision making and model debugging. To
enable this line of research, we also collect new
joint spatio-temporal annotations for an existing
video QA dataset.

In the past few years, several video QA datasets
have been proposed, e.g., MovieFIB (Maharaj
et al., 2017), MovieQA (Tapaswi et al., 2016),
TGIF-QA (Jang et al., 2017), PororoQA (Kim
et al., 2017), MarioQA (Mun et al., 2017), and
TVQA (Lei et al., 2018). TVQA is one of the
largest video QA datasets, providing a large video
QA dataset built on top of 6 famous TV series. Be-

http://tvqa.cs.unc.edu
http://tvqa.cs.unc.edu
https://github.com/jayleicn/TVQAplus
https://github.com/jayleicn/TVQAplus
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cause TVQA was collected on television shows, it
is built on natural video content with rich dynamics
and complex social interactions, where question-
answer pairs are written by people observing both
videos and their accompanying dialogues, encour-
aging the questions to require both vision and lan-
guage understanding to answer. Movie (Tapaswi
et al., 2016; Maharaj et al., 2017) and television
show (Lei et al., 2018) videos come with the lim-
itation of being scripted and edited, but they are
still more realistic than cartoon/animation (Kim
et al., 2017) and game (Mun et al., 2017) videos,
and they also come with richer, real-world-inspired
inter-human interactions and span across diverse
domains (e.g., medical, crime, sitcom, etc.), mak-
ing them a useful testbed to study complex video
understanding by machine learning models.

One key property of TVQA is that it provides
temporal annotations denoting which parts of a
video clip are necessary for answering a proposed
question. However, none of the existing video QA
datasets (including TVQA) provide spatial annota-
tion for the answers. Actually, grounding spatial
regions correctly could be as important as ground-
ing temporal moments for answering a given ques-
tion. For example, in Fig. 1, to answer the question
of “What is Sheldon holding when he is talking to
Howard about the sword?”, we need to localize the
moment when “he is talking to Howard about the
sword?”, as well as look at the region of “What is
Sheldon holding”.

Hence, in this paper, we first augment a subset of
the TVQA dataset with grounded bounding boxes,
resulting in a spatio-temporally grounded video
QA dataset, TVQA+. It consists of 29.4K multiple-
choice questions grounded in both the temporal
and the spatial domains. To collect spatial ground-
ings, we start by identifying a set of visual concept
words, i.e., objects and people, mentioned in the
question or correct answer. Next, we associate the
referenced concepts with object regions in individ-
ual frames, if there are any, by annotating bounding
boxes for each referred concept (see examples in
Fig. 1). Our TVQA+ dataset has a total of 310.8K
bounding boxes linked with referred objects and
people, spanning across 2.5K categories (more de-
tails in Sec. 3).

With such richly annotated data, we then pro-
pose the task of spatio-temporal video question
answering, which requires intelligent systems to
localize relevant moments, detect referred objects

and people, and answer questions. We further de-
sign several metrics to evaluate the performance of
the proposed task, including QA accuracy, object
grounding precision, temporal localization accu-
racy, and a joint temporal localization and QA ac-
curacy. To address spatio-temporal video question
answering, we propose a novel end-to-end trainable
model, Spatio-Temporal Answerer with Grounded
Evidence (STAGE), which effectively combines
moment localization, object grounding, and ques-
tion answering in a unified framework. We find
that the QA performance benefits from both tempo-
ral moment and spatial region supervision. Addi-
tionally, we provide visualization of temporal and
spatial localization, which is helpful for understand-
ing what our model has learned. Comprehensive
ablation studies demonstrate how each of our an-
notations and model components helps to improve
the performance of the tasks.

To summarize, our contributions are:

• We collect TVQA+, a large-scale spatio-
temporal video question answering dataset,
which augments the original TVQA dataset with
frame-level bounding box annotations. To our
knowledge, this is the first dataset that combines
moment localization, object grounding, and ques-
tion answering.

• We design a novel video question answering
framework, Spatio-Temporal Answerer with
Grounded Evidence (STAGE), to jointly localize
moments, ground objects, and answer questions.
By performing all three sub-tasks together, our
model achieves significant performance gains
over the baselines, as well as presents insightful,
interpretable visualizations.

2 Related Work

Question Answering In recent years, multiple
question answering datasets and tasks have been
proposed to facilitate research towards this goal, in
both vision and language communities, in the form
of visual question answering (Antol et al., 2015; Yu
et al., 2015; Jang et al., 2017) and textual question
answering (Rajpurkar et al., 2016; Weston et al.,
2016), respectively. Video question answering (Lei
et al., 2018; Tapaswi et al., 2016; Kim et al., 2017)
with naturally occurring subtitles are particularly
interesting, as it combines both visual and textual
information for question answering. Different from
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Dataset Origin Task #Clips/#QAs #Boxes Temporal
(#Sentences) Annotation

MovieFIB (Maharaj et al., 2017) Movie QA 118.5K/349K - 7
MovieQA (Tapaswi et al., 2016) Movie QA 6.8K/6.5K - 3
TGIF-QA (Jang et al., 2017) Tumblr QA 71.7K/165.2K - 7
PororoQA (Kim et al., 2017) Cartoon QA 16.1K/8.9K - 7
DiDeMo (Hendricks et al., 2017) Flickr TL 10.5K/40.5K - 3
Charades-STA (Gao et al., 2017) Home TL -/19.5K - 3
TVQA (Lei et al., 2018) TV Show QA/TL 21.8K/152.5K - 3
ANet-Entities (Zhou et al., 2019) Youtube CAP/TL/SL 15K/52K 158K 3

TVQA+ TV Show QA/TL/SL 4.2K/29.4K 310.8K 3

Table 1: Comparison of TVQA+ with other video-language datasets. TL=Temporal Localization, SL=Spatial
Localization, CAP=Captioning.

existing video QA tasks, where a system is only
required to predict an answer, we propose a novel
task that additionally grounds the answer in both
spatial and temporal domains.

Language-Guided Retrieval Grounding lan-
guage in images/videos is an interesting problem
that requires jointly understanding both text and vi-
sual modalities. Earlier works (Kazemzadeh et al.,
2014; Yu et al., 2017, 2018b; Rohrbach et al., 2016)
focused on identifying the referred object in an im-
age. Recently, there has been a growing interest
in moment retrieval tasks (Hendricks et al., 2017,
2018; Gao et al., 2017), where the goal is to localize
a short clip from a long video via a natural language
query. Our work integrates the goals of both tasks,
requiring a system to ground the referred moments
and objects simultaneously.

Temporal and Spatial Attention Attention has
shown great success on many vision and language
tasks, such as image captioning (Anderson et al.,
2018; Xu et al., 2015), visual question answer-
ing (Anderson et al., 2018; Trott et al., 2018), lan-
guage grounding (Yu et al., 2018b), etc. However,
sometimes the attention learned by the model itself
may not agree with human expectations (Liu et al.,
2016; Das et al., 2016). Recent works on grounded
image captioning and video captioning (Lu et al.,
2018; Zhou et al., 2019) show better performance
can be achieved by explicitly supervising the atten-
tion. In this work, we use annotated frame-wise
bounding box annotations to supervise both tem-
poral and spatial attention. Experimental results
demonstrate the effectiveness of supervising both
domains in video QA.

Split #Clips/#QAs #Annotated #Boxes #CategoriesImages

Train 3,364/23,545 118,930 249,236 2,281
Val 431/3,017 15,350 32,682 769
Test 403/2,821 14,188 28,908 680

Total 4,198/29,383 148,468 310,826 2,527

Table 2: Data Statistics for TVQA+ dataset.

3 Dataset

In this section, we describe the TVQA+ Dataset,
the first video question answering dataset with
both spatial and temporal annotations. TVQA+
is built on the TVQA dataset introduced by Lei
et al.. TVQA is a large-scale video QA dataset
based on 6 popular TV shows, containing 152.5K
multiple choice questions from 21.8K, 60-90 sec-
ond long video clips. The questions in the TVQA
dataset are compositional, where each question is
comprised of two parts, a question part (“where
was Sheldon sitting”), joined via a link word, (“be-
fore”, “when”, “after”), to a localization part that
temporally locates when the question occurs (“he
spilled the milk”). Models should answer questions
using both visual information from the video, as
well as language information from the naturally
associated dialog (subtitles). Since the video clips
on which the questions were collected are usually
much longer than the context needed for answering
the questions, the TVQA dataset also provides a
temporal timestamp annotation indicating the mini-
mum span (context) needed to answer each ques-
tion. While the TVQA dataset provides a novel
question format and temporal annotations, it lacks
spatial grounding information, i.e., bounding boxes
of the concepts (objects and people) mentioned in
the QA pair. We hypothesize that object annota-
tions could provide an additional useful training
signal for models to learn a deeper understanding
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Figure 2: Box distributions for top 60 categories in TVQA+ train set.

of visual information. Therefore, to complement
the original TVQA dataset, we collect frame-wise
bounding boxes for visual concepts mentioned in
the questions and correct answers. Since the full
TVQA dataset is very large, we start by collecting
bounding box annotations for QA pairs associated
with The Big Bang Theory. This subset contains
29,383 QA pairs from 4,198 clips.

3.1 Data Collection

Identify Visual Concepts To annotate the visual
concepts in video frames, the first step is to iden-
tify them in the QA pairs. We use the Stanford
CoreNLP part-of-speech tagger (Manning et al.,
2014) to extract all nouns in the questions and cor-
rect answers. This gives us a total of 152,722 words
from a vocabulary of 9,690 words. We manually
label the non-visual nouns (e.g., “plan”, “time”,
etc.) in the top 600 nouns, removing 165 frequent
non-visual nouns from the vocabulary.

Bounding Box Annotation For the selected The
Big Bang Theory videos from TVQA, we first ask
Amazon Mechanical Turk workers to adjust the
start and end timestamps to refine the temporal
annotation, as we found the original temporal anno-
tation were not ideally tight. We then sample one
frame every two seconds from each span for spatial
annotation. For each frame, we collect the bound-
ing boxes for the visual concepts in each QA pair.
We also experimented with semi-automated anno-
tation for people with face detection (Zhang et al.,
2016) and recognition model (Liu et al., 2017), but
they do not work well mainly due to many partial
occlusion of faces (e.g., side faces) in the frames.
During annotation, we provide the original videos
(with subtitles) to help the workers understand the
context for the given QA pair. More annotation
details (including quality check) are presented in

Figure 3: Box/image area ratios (left) and span length
distributions (right) in TVQA+.

the appendix.

3.2 Dataset Analysis

TVQA+ contains 29,383 QA pairs from 4,198
videos, with 148,468 images annotated with
310,826 bounding boxes. Statistics of TVQA+ are
shown in Table 2. Note that we follow the same
data splits as the original TVQA dataset, support-
ing future research on both TVQA and TVQA+.
Table 1 compares TVQA+ dataset with other video-
language datasets. TVQA+ is unique as it supports
three tasks: question answering, temporal localiza-
tion, and spatial localization.

It is also of reasonable size compared to
the grounded video captioning dataset ANet-
Entities (Zhou et al., 2019). On average, we obtain
2.09 boxes per image and 10.58 boxes per ques-
tion. The annotated boxes cover 2,527 categories.
We show the number of boxes (in log scale) for
each of the top 60 categories in Fig. 2. The distri-
bution has a long tail, e.g., the number of boxes
for the most frequent category “sheldon” is around
2 orders of magnitude larger than the 60th cate-
gory “glasses”. We also show the distribution of
bounding box area over image area ratio in Fig. 3
(left). The majority of boxes are fairly small com-
pared to the image, which makes object grounding
challenging. Fig. 3 (right) shows the distribution
of localized span length. While most spans are
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Figure 4: Overview of the proposed STAGE framework.

less than 10 seconds, the largest spans are up to 20
seconds. The average span length is 7.2 seconds,
which is short compared to the average length of
the full video clips (61.49 seconds).

4 Methods

Our proposed method, Spatio-Temporal Answerer
with Grounded Evidence (STAGE), is a unified
framework for moment localization, object ground-
ing and video QA. First, STAGE encodes the video
and text (subtitle, QA) via frame-wise regional
visual representations and neural language repre-
sentations, respectively. The encoded video and
text representations are then contextualized using a
Convolutional Encoder. Second, STAGE computes
attention scores from each QA word to object re-
gions and subtitle words. Leveraging the attention
scores, STAGE is able to generate QA-aware rep-
resentations, as well as automatically detecting the
referred objects/people. The attended QA-aware
video and subtitle representation are then fused to-
gether to obtain a joint frame-wise representation.
Third, taking the frame-wise representation as in-
put, STAGE learns to predict QA relevant temporal
spans, then combines the global and local (span lo-
calized) video information to answer the questions.
In the following, we describe STAGE in detail.

4.1 Formulation
In our tasks, the inputs are: (1) a question with 5
candidate answers; (2) a 60-second long video; (3)
a set of subtitle sentences. Our goal is to predict the
answer and ground it both spatially and temporally.
Given the question, q, and the answers, {ak}5k=1,
we first formulate them as 5 hypotheses (QA-pair)

hk = [q, ak] and predict their correctness scores
based on the video and subtitle context (Onishi
et al., 2016). We denote the ground-truth (GT)
answer index as yans and thus the GT hypothesis
as hyans . We then extract video frames {vt}Tt=1 at
0.5 FPS (T is the number of frames for each video).
Subtitle sentences are then temporally aligned with
the video frames. Specifically, for each frame vt,
we pair it with two neighboring sentences based on
the subtitle timestamps. We choose two neighbors
since this keeps most of the sentences at our current
frame rate, and also avoids severe misalignment
between the frames and the sentences. The set of
aligned subtitle sentences are denoted as {st}Tt=1.
We denote the number of words in each hypothesis
and subtitle as Lh, Ls, respectively. We use No to
denote the number of object regions in a frame, and
d = 128 as the hidden size.

4.2 STAGE Architecture

Input Embedding Layer For each frame vt, we
use Faster R-CNN (Ren et al., 2015) pre-trained
on Visual Genome (Krishna et al., 2017) to detect
objects and extract their regional representation as
our visual features (Anderson et al., 2018). We
keep the top-20 object proposals and use PCA to
reduce the feature dimension from 2048 to 300, to
save GPU memory and computation. We denote
ot,r ∈ R300 as the r-th object embedding in the t-th
frame. To encode the text input, we use BERT (De-
vlin et al., 2019), a transformer-based language
model (Vaswani et al., 2017) that achieves state-of-
the-art performance on various NLP tasks. Specifi-
cally, we first fine-tune the BERT-base model using
the masked language model and next sentence pre-
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diction objectives on the subtitles and QA pairs
from TVQA+ train set. Then, we fix its parameters
and use it to extract 768D word-level embeddings
from the second-to-last layer for the subtitles and
each hypothesis. Both embeddings are projected
into a 128D space using a linear layer with ReLU.

Convolutional Encoder Inspired by the re-
cent trend of replacing recurrent networks with
CNNs (Dauphin et al., 2016; Yu et al., 2018a)
and Transformers (Vaswani et al., 2017; Devlin
et al., 2019) for sequence modeling, we use posi-
tional encoding (PE), CNNs, and layer normaliza-
tion (Ba et al., 2016) to build our basic encoding
block. As shown in the bottom-right corner of
Fig. 4, it is comprised of a PE layer and multiple
convolutional layers, each with a residual connec-
tion (He et al., 2016) and layer normalization. We
use Layernorm(ReLU(Conv(x)) + x) to denote
a single Conv unit and stack Nconv of such units as
the convolutional encoder. x is the input after PE,
Conv is a depthwise separable convolution (Chol-
let, 2017). We use two convolutional encoders at
two different levels of STAGE, one with kernel size
7 to encode the raw inputs, and another with kernel
size 5 to encode the fused video-text representation.
For both encoders, we set Nconv = 2.

QA-Guided Attention For each hypothesis
hk = [q, ak], we compute its attention scores w.r.t.
the object embeddings in each frame and the words
in each subtitle sentence, respectively. Given the
encoded hypothesis Hk ∈ RLh×d for the hypothe-
sis hk with Lh words, and encoded visual feature
Vt ∈ RNo×d for the frame vt with No objects, we
compute their matching scores Mk,t ∈ RLh×No =
HkV

T
t . We then apply softmax at the second di-

mension of Mk,t to get the normalized scores M̄k,t.
Finally, we compute the QA-aware visual repre-
sentation V att

k,t ∈ RLh×d = M̄k,tVt. Similarly, we
compute QA-aware subtitle representation Satt

k,t .

Video-Text Fusion The above two QA-aware
representations are then fused together as:

Fk,t = [Satt
k,t ;V

att
k,t ;Satt

k,t � V att
k,t ]WF + bF ,

where � denotes hadamard product, WF ∈ R3d×d

and bF ∈ Rd are trainable weights and bias, Fk,t ∈
RLh×d is the fused video-text representation. After
collecting F att

k,t from all time steps, we get F att
k ∈

RT×Lh×d. We then apply another convolutional
encoder with a max-pooling layer to obtain the
output Ak ∈ RT×d.

Span Predictor To predict temporal spans, we
predict the probability of each position being the
start or end of the span. Given the fused in-
put Ak ∈ RT×d, we produce start probabilities
p1
k ∈ RT and end probabilities p2

k ∈ RT using
two linear layers with softmax, as shown in the
top-right corner of Fig. 4. Different from existing
works (Seo et al., 2017; Yu et al., 2018a) that used
the span predictor for text only, we use it for a joint
localization of both video and text, which requires
properly-aligned joint embeddings.

Span Proposal and Answer Prediction Given
the max-pooled video-text representation Ak, we
use a linear layer to further encode it. We run max-
pool across all the time steps to get a global hypoth-
esis representation Gg

k ∈ Rd. With the start and end
probabilities from the span predictor, we generate
span proposals using dynamic programming (Seo
et al., 2017). At training time, we combine the set
of proposals with IoU ≥ 0.5 with the GT spans,
as well as the GT spans to form the final proposals
{stp, edp} (Ren et al., 2015). At inference time,
we take the proposals with the highest confidence
scores for each hypothesis. For each proposal, we
generate a local representation Gl

k ∈ Rd by max-
pooling Ak,stp:edp . The local and global represen-
tations are concatenated to obtain Gk ∈ R2d. We
then forward {Gk}5k=1 through softmax to get the
answer scores pans ∈ R5. Compared with existing
works (Jang et al., 2017; Zhao et al., 2017) that use
soft temporal attention, we use more interpretable
hard attention, extracting local features (together
with global features) for question answering.

4.3 Training and Inference
In this section, we describe the objective functions
used in the STAGE framework. Since our spatial
and temporal annotations are collected based on
the question and GT answer, we only apply the at-
tention loss and span loss on the targets associated
with the GT hypothesis (question + GT answer),
i.e., Mk=yans ,t, p1

k=yans and p2
k=yans . For brevity,

we omit the subscript k=yans in the following.

Spatial Supervision While the attention de-
scribed in Sec. 4.2 can be learned in a weakly su-
pervised end-to-end manner, we can also train it
with supervision from GT boxes. We define a box
as positive if it has an IoU ≥ 0.5 with the GT box.
Consider the attention scores Mt,j ∈ RNo from
a concept word wj in GT hypothesis hyans to the
set of proposal boxes’ representations {ot,r}No

r=1 at
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frame vt. We expect the attention on positive boxes
to be higher than the negative ones, and therefore
use LSE (Li et al., 2017) loss for the supervision:

Lt,j=
∑

rp∈Ωp,rn∈Ωn

log
(
1 + exp(Mt,j,rn −Mt,j,rp)

)
,

where Mt,j,rp is the rp-th element of the vector
Mt,j . Ωp and Ωn denote the set of positive and
negative box indices, respectively. LSE loss is
a smoothed alternative to the widely used hinge
loss, it is easier to optimize than the original
hinge loss (Li et al., 2017). During training, we
randomly sample two negatives for each positive
box. We use Latti to denote the attention loss for
the i-th example, which is obtained by summing
over all the annotated frames {vt} and concepts
{wj} for Lattt,j . We define the overall attention
loss Latt = 1

N

∑N
i=1 Latti . At inference time, we

choose the boxes with scores higher than 0.2 as the
predictions.

Temporal Supervision Given softmax normal-
ized start and end probabilities p1 and p2, we apply
cross-entropy loss:

Lspan = − 1

2N

N∑
i=1

(
logp1

y1i
+ logp2

y2i

)
,

where y1
i and y2

i are the GT start and end indices.

Answer Prediction Similarly, given answer
probabilities pans, our answer prediction loss is:

Lans = − 1

N

N∑
i=1

logpans
yansi

,

where yansi is the index of the GT answer.
Finally, the overall loss is a weighted combina-

tion of the three objectives above: L = Lans +
wattLatt + wspanLspan , where watt and wspan are
set as 0.1 and 0.5 based on validation set tuning.

5 Experiments

As introduced, our task is spatio-temporal video
question answering, requiring systems to tempo-
rally localize relevant moments, spatially detect re-
ferred objects and people, and answer questions. In
this section, we first define the evaluation metrics,
then compare STAGE against several baselines,
and finally provide a comprehensive analysis of
our model. Additionally, we also evaluate STAGE
on the full TVQA dataset.

Model QA Grd. Temp. ASAAcc. mAP mIoU

ST-VQA (Jang et al., 2017) 48.28 - - -
two-stream (Lei et al., 2018) 68.13 - - -
STAGE (video) 52.75 26.28 10.90 2.76
STAGE (sub) 67.99 - 30.16 20.13
STAGE 74.83 27.34 32.49 22.23

Human (Lei et al., 2018) 90.46 - - -

Table 3: TVQA+ test set results.

5.1 Metrics

To measure QA performance, we use classification
accuracy (QA Acc.). We evaluate span predic-
tion using temporal mean Intersection-over-Union
(Temp. mIoU) following previous work (Hendricks
et al., 2017) on language-guided video moment re-
trieval. Since the span depends on the hypothesis
(QA pair), each QA pair provides a predicted span,
but we only evaluate the span of the predicted an-
swer. Additionally, we propose Answer-Span joint
Accuracy (ASA), that jointly evaluates both answer
prediction and span prediction. For this metric, we
define a prediction to be correct if the predicted
span has an IoU ≥ 0.5 with the GT span, pro-
vided that the answer prediction is correct. Finally,
to evaluate object grounding performance, we fol-
low the standard metric from the PASCAL VOC
challenge (Everingham et al., 2015) and report the
mean Average Precision (Grd. mAP) at IoU thresh-
old 0.5. We only consider the annotated words and
frames when calculating the mAP.

5.2 Comparison with Baseline Methods

We consider the two-stream model (Lei et al., 2018)
as our main baseline. In this model, two streams
are used to predict answer scores from subtitles
and videos respectively and final answer scores are
produced by summing scores from both streams.
We retrain the model using the official code2 on
TVQA+ data, with the same feature as STAGE. We
also consider ST-VQA (Jang et al., 2017) model,
which is primarily designed for question answering
on short videos (GIFs). We also provide STAGE
variants that use only video or subtitle to study
the effect of using only one of the modalities. Ta-
ble 3 shows the test results of STAGE and the
baselines. STAGE outperforms the baseline model
(two-stream) by a large margin in QA Acc.,3 with
9.83% relative gains. Additionally, STAGE also lo-

2https://github.com/jayleicn/TVQA
3This also holds true when considering mean (standard-

deviation) of 5 runs: 74.20 (0.42).

https://github.com/jayleicn/TVQA
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Model QA Grd. Temp. ASAAcc. mAP mIoU

baseline 65.79 2.74 - -
+ CNN 67.25 3.16 - -
+ Aligned Fusion (backbone) 68.31 7.31 - -
+ Temp. Sup. 71.40 10.86 30.77 20.09
+ Spat. Sup. 71.99 24.10 31.16 20.42
+ Local Feature (STAGE) 72.56 25.22 31.67 20.78

STAGE with GT Span 73.28 - - -

Table 4: Ablation study of STAGE on TVQA+ val set.
Each row adds an extra component to the row above it.

Model baseline +CNN +AF +TS +SS +LF

what (60.52%) 65.66 66.43 67.58 70.76 71.25 72.34
who (10.24%) 65.37 64.08 64.72 72.17 73.14 74.11
where (9.68%) 65.41 64.38 68.49 71.58 71.58 74.32
why (9.55%) 74.31 78.82 77.43 79.86 78.12 76.39
how (9.05%) 60.81 67.03 69.23 66.30 69.96 67.03

total (100%) 65.79 67.25 68.31 71.40 71.99 72.56

Table 5: QA Acc. by question type on TVQA+ val set.
For brevity, we only show top-5 question types (per-
centage in brackets). AF=Aligned Fusion, TS=Temp.
Sup., SS=Spat. Sup., LF=Local Feature. Each column
adds an extra component to the column before it.

calizes the relevant moments with temporal mIoU
of 32.49% and detects referred objects and people
with mAP of 27.34%. However, a large gap is still
observed between STAGE and human, showing
space for further improvement.

5.3 Model Analysis

Backbone Model Given the full STAGE model
defined in Sec. 4, we define the backbone model as
the ablated version of it, where we remove the span
predictor along with the span proposal module, as
well as the explicit attention supervision. We fur-
ther replace the CNN encoders with RNN encoders,
and remove the aligned fusion from the backbone
model. This baseline model uses RNN to encode
input sequences and interacts QA pairs with sub-
titles and videos separately. The final confidence
score is the sum of the confidence scores from the
two modalities. In the backbone model, we align
subtitles with video frames from the start, fusing
their representation conditioned on the input QA
pair, as in Fig. 4. We believe this aligned fusion
is essential for improving QA performance, as the
latter part of STAGE has a joint understanding of
both video and subtitles. With both changes, our
backbone model obtains 68.31% on QA Acc., sig-
nificantly higher than the baseline’s 65.79%. The
results are shown in Table 4.

Model Temp. Sup. val test-public

two-stream (Lei et al., 2018) 7 65.85 66.46
PAMN (Kim et al., 2019b) 7 66.38 66.77
multi-task (Kim et al., 2019a) 3 66.22 67.05

STAGE backbone (GloVe) 7 66.46 -
STAGE backbone + Temp. Sup. (GloVe) 3 66.92 -
STAGE backbone 7 68.56 69.67
STAGE backbone + Temp. Sup. 3 70.50 70.23

Table 6: QA Acc. on the full TVQA dataset.

Temporal and Spatial Supervision In Table 4,
we also show the results when using temporal and
spatial supervision. After adding temporal supervi-
sion, the model is be able to ground on the temporal
axis, which also improves the model’s performance
on other tasks. Adding spatial supervision gives ad-
ditional improvements, particularly for Grd. mAP,
with 121.92% relative gain.

Span Proposal and Local Feature In the
second-to-last row of Table 4, we show our full
STAGE model, which is augmented with local fea-
tures Gl for question answering. Local features are
obtained by max-pooling the span proposal regions,
which contain more relevant cues for answering
the questions. With Gl, we achieve the best perfor-
mance across all metrics, indicating the benefit of
using local features.

Inference with GT Span The last row of Table 4
shows our model uses GT spans instead of pre-
dicted spans at inference time. We observe better
QA Acc. with GT spans.

Accuracy by Question Type In Table 5, we
show a breakdown of QA Acc. by question type.
We observe a clear increasing trend on “what”,
“who”, and “where” questions after using the back-
bone net and adding attention/span modules in each
column. Interestingly, for “why” and “how” ques-
tions, our full model fails to present overwhelming
performance, indicating some reasoning (textual)
module to be incorporated as future work.

Qualitative Examples We show two correct pre-
dictions in Fig. 5, where Fig. 5(a) uses grounded
objects to answer the question, and Fig. 5(b) uses
text. More examples (including failure cases) are
provided in the appendix.

TVQA Results We also conduct experiments
on the full TVQA dataset (Table 6), without re-
lying on the bounding boxes and refined times-
tamps in TVQA+. Without temporal supervision,
STAGE backbone is able to achieve 3.91% relative
gain from the best published result (multi-task) on
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00:16.897 → 00:20.067
Grab a napkin, homey,
you just got served.

00:22.236 → 00:23.776
Leonard: It's fine. You win.

Q: What did Leonard tell Howard after Howard said that Leonard just got served?
A1: Leonard told Howard that he really hates that game. 
A2: Leonard told Howard that Howard isn't very good. 
A3: Leonard told Howard that Sheldon will beat his score. 
A4: Leonard told Howard that it was fine, he wins.   Pred GT
A5: Leonard told Howard that he will beat him.   

00:01.509 → 00:04,539
Leonard: Said the premise is intriguing.

00:04.545 → 00:06.475
Sheldon: Good to see you again.

Q:   What is Leonard wearing when he says said the premise is intriguing?
A1: Glasses.  Pred GT
A2: Coffee.
A3: Rosary.
A4: Gang Collars.
A5: Hat.

(a) (b)

Figure 5: Example predictions from STAGE. Span predictions are shown on the top, each block represents a frame,
the color indicates the model’s confidence for the spans. For each QA, we show grounding examples and scores for
one frame in GT span. GT boxes are in green. Predicted and GT answers are labeled by Pred and GT, respectively.

TVQA test-public set. Adding temporal supervi-
sion, performance is improved to 70.23%. For a
fair comparison, we also provided STAGE variants
using GloVe (Pennington et al., 2014) instead of
BERT (Devlin et al., 2019) as text feature. Using
GloVe, STAGE models still achieve better results.

6 Conclusion

We collected the TVQA+ dataset and proposed the
spatio-temporal video QA task. This task requires
systems to jointly localize relevant moments, detect
referred objects/people, and answer questions. We
further introduced STAGE, an end-to-end trainable
framework to jointly perform all three tasks. Com-
prehensive experiments show that temporal and
spatial predictions help improve QA performance,
as well as providing explainable results. Though
our STAGE achieves state-of-the-art performance,
there is still a large gap compared with human per-
formance, leaving space for further improvement.
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A Appendices

A.1 Timestamp Annotation

During our initial analysis, we find the original
timestamp annotations from the TVQA (Lei et al.,
2018) dataset to be somewhat loose, i.e., around
8.7% of 150 randomly sampled training questions
had a span that was at least 5 seconds longer than
what is needed. To have better timestamps, we
asked a set of Amazon Mechanical Turk (AMT)
workers to refine the original timestamps. Specif-
ically, we take the questions that have a localized
span length of more than 10 seconds (41.33% of
the questions) for refinement while leaving the rest
unchanged. During annotation, we show a ques-
tion, its correct answer, its associated video (with
subtitle), as well as the original timestamp to the
AMT workers (illustrated in Fig. 6, with instruc-
tions omitted). The workers are asked to adjust the
start and end timestamps to make the span as small
as possible, but need to contain all the information
mentioned in the QA pair.

Figure 6: Timestamp refinement interface.

We show span length distributions of the original
and the refined timestamps from TVQA+ train set
in Fig. 7. The average span length of the original
timestamps is 14.41 secs, while the average for the
refined timestamps is 7.2 secs.

In Table 7 we show STAGE performance on
TVQA+ val set using the original timestamps and
the refined timestamps. Models with the refined
timestamps performs consistently better than the
ones with the original timestamps.

A.2 Bounding Box Annotation

At each step, we show a question, its correct an-
swer, and the sampled video frames to an AMT



8222

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39
span lengths (seconds)

0%

10%

20%

Pe
rc

en
ta

ge
 o

f q
ue

st
io

ns
Original
Refined

Figure 7: Comparison between the original and the re-
fined timestamps in the TVQA+ train set. The refined
timestamps are generally tighter than the original ones.

Model QA Acc.

Original Refined
STAGE backbone 68.31 68.31
+ Temp. Sup. 70.87 71.40
+ Spat. Sup. 71.23 71.99
+ Local Feature (STAGE) 70.63 72.56

Table 7: STAGE performance comparison between
the original timestamps and the refined timestamps on
TVQA+ val set. Each row adds an extra component to
the row above it.

worker. (illustrated in Fig. 8). We do not anno-
tate the wrong answers as most of them cannot be
grounded in the video. We checked 200 sampled
QAs - only 3.13% of the wrong answers could be
grounded, while 46% of the correct answers could
be grounded. As each QA pair has multiple vi-
sual concepts as well as multiple frames, each task
shows one pair of a concept word and a sampled
frame. For example, in Fig. 8, the word “laptop”
is highlighted, and workers are instructed to draw
a box around it. In our MTurk instructions, we
required workers to draw boxes for each instance
of a plural word. E.g., for the word “everyone”,
the worker need to draw a box for each person in
the frame. Note, it is possible that the highlighted
word will be a non-visual word or a visual word
that is not present in the frame being shown. In
that case, the workers are allowed to check the
box indicating the object is not present. Recent
works (Zellers et al., 2019; Gu et al., 2018) suggest
the use of pre-trained detectors for semi-automated
annotation. However, since TVQA+ has a wide
range of categories (see Fig. 2 and Table 1), it is
challenging to use off-the-shelf detectors in the
annotation process. As face detection and recog-
nition might be easier than recognizing open set
objects, we initially also tried using strong face
detection (Zhang et al., 2016) and recognition (Liu

Figure 8: Bounding box annotation interface. Here, the
worker is asked to draw a box around the highlighted
word “laptop”.

et al., 2017) model for character face annotation,
but the quality was much poorer than expected.
Thus, we decided to invest the required funds to
collect boxes manually and ensure their accuracy.
After the collection, with the GT labels, we again
used the above models to test face retrieval perfor-
mance for 12 most frequently appeared characters
in TVQA+. To allow (Liu et al., 2017) to work, we
manually collected 5 GT faces for each character
as our gallery set. At test time, we assign each
test face the label of its closest neighbor from the
gallery set in the learned embedding space. This
method achieves 55.6 F1/74.4 Precision/44.4 Re-
call. Such performance is not strong enough to
support further research. We found the main rea-
son is due to many partial occlusion of faces (e.g.,
side faces) in TV shows.

A.3 Quality

To ensure the quality of the collected bound-
ing boxes, we only allow workers from English-
speaking countries to participate the task. Besides,
we set high requirements for workers – they needed
to have at least 3000 accepted HITs and 95% ac-
cept rate. Qualified workers were well paid. We
also kept track of the quality of the data during
collection - workers with poor annotations were
disqualified to work on our task. After collection,
we further conducted an in-house check, 95.5% of
200 sampled QAs are correctly labeled, indicating
the high quality of our data.

A.4 Training Details

We optimize our model using Adam with an initial
learning rate of 1e-3, weight decay 3e-7. A mini-
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Model QA Grd. Temp. ASAAcc. mAP mIoU

STAGE-LXMERT 71.46 21.01 26.31 18.04
STAGE 74.83 27.34 32.49 22.23

Table 8: TVQA+ test set results with LXMERT.

batch contains 16 questions. We train the model
for maximum 100 epochs with early stop – if QA
Acc. is not improving for consecutive 5 epochs, the
training is stopped. CNN hidden size is set to 128.

A.5 Vision-Language Pretrained Features
In addition, we also consider features from
LXMERT (Tan and Bansal, 2019). This model
is pretrained on a large amount of image-text
pairs from multiple image captioning (Lin et al.,
2014; Krishna et al., 2017) and image question
answering (Goyal et al., 2017; Hudson and Man-
ning, 2019; Zhu et al., 2016a) datasets. Specif-
ically, we use video frame-question pairs as in-
put to LXMERT, and use the extracted features
to replace Faster R-CNN object features and
BERT question features. For answers and sub-
titles, we still use the original BERT features.
The results are shown in Table 8. We notice
that using LXMERT feature lowers STAGE’s per-
formance. This is not surprising, as the do-
mains in which the LXMERT model are pre-
trained on are very different from TVQA+: (cap-
tions/questions+image) vs (subtitles+QAs+videos).
Future work includes more investigation into adapt-
ing these pre-trained vision-language models for
more challenging video+dialogue domains.

A.6 More Prediction Examples
We show 6 correct prediction examples from
STAGE in Fig. 9. As can be seen from the figure,
correct examples usually have correct temporal and
spatial localization. In Fig. 10 we show 6 incorrect
examples. Incorrect object localization is one of
the most frequent failure reason, while the model
is able to localize common objects, it is difficult for
it to localize unusual objects (Fig. 10(a, d)), small
objects (Fig. 10(b)). Incorrect temporal localiza-
tion is another most frequent failure reason, e.g.,
Fig. 10(c, f). There are also cases where the objects
being referred are not present in the sampled frame,
as in Fig. 10(e).
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00:10.268 → 00:11.848
Lesley: ...no extraneous spittle.

00:13.146 → 00:15.356
Lesley: On the other hand, no arousal.

Q:   What does Lesley say there was none of when Leonard asked about the kiss?
A1: Lesley says there was no arousal.   Pred GT 
A2: Lesley says there was no passion.
A3: There was no kiss. 
A4: Lesley says the kiss lacked a certain fire. 
A5: Lesley says there was no excitement in the kiss.

00:34.309 → 00:37.019
- What's that?
- Tea.

00:37.729 → 00:38.899
Sheldon: When people are upset...

Q:   Where is Leonard sitting before Sheldon brings him the tea ?
A1: Sheldon's bed.
A2: The armchair.
A3: The floor.
A4: His bed.
A5: The couch.   Pred GT

(a) (b)

00:00.060 → 00:02.020
- Oh, hey, Leonard.
- Good afternoon, Penny.

00:02.187 → 00:04.567
Leonard: So, hi, hey. Uh...

Q:   Who visited Penny in her house before dinner?
A1: No one visited Penny in her house.
A2: Howard visited Penny in her house.
A3: Raj visited Penny in her house.
A4: Sheldon visited Penny in her house.
A5: Leonard visited Penny in her house. Pred GT 

00:00.141 → 00:01.391
Raj: I don't believe it.

00:01.559 → 00:02.599
Howard: Neither do I.

Q:  What is Leonard holding when he is listening to Raj?
A1: A notepad.
A2: A book.
A3: A yellow cup . Pred GT 
A4: A cell phone.
A5: A set of keys.

(c) (d)

00:50.790 → 00:52.290
Leonard, it's 2 in the morning.

00:53.918 → 00:59.018
- So?
- So it's my turn.

Q:   Where was Leonard when Sheldon walked into the living room at 2am?
A1: On the couch.
A2: In the time machine.   Pred GT
A3: In the kitchen.
A4: In his room.
A5: He wasn't there.

Q:   Where was Penny when she called to Leonard?
A1: Penny was working at a restaurant.   Pred GT
A2: Penny was at home.
A3: Penny was walking in the street.
A4: Penny was at bed.
A5: Penny was in the kitchen.

00:41.444 → 00:43.274
Leonard: - What's up?
- Yeah, well, I'm at work too.

00:43.446 → 00:46.656
Penny: And you'll never guess who's 
here infecting my entire station.

(e) (f)

Figure 9: Correct prediction examples from STAGE. The span predictions are shown on the top of each example,
each block represents a frame, the color indicates the model’s confidence for the predicted spans. For each QA, we
show grounding examples and scores for one frame in GT span, GT boxes are shown in green. Model predicted
answers are labeled by Pred, GT answers are labeled by GT.
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00:00.343 → 00:03.763
Past Howard: I haven't seen your 
Oreos!

00:03.972 → 00:07.062
Past Howard: Just take your bath 
without them!

Q:   What was Raj doing when Howard was shouting at someone?
A1: Raj was playing some music. 
A2: Raj was seated in the couch.
A3: Raj was taking a shower.   Pred 
A4: Raj was not in the room.
A5: Raj was eating lots of cookies in his mouth as he watched Howard. GT

00:27,095 → 00:42.315
Leonard: Sheldon?

00:45.072 → 01:08.032 
Leonard: Hello?

Q: What is Leonard holding when he comes out of the bedroom?
A1: Leonard is holding his cell phone.   Pred
A2: Leonard is holding a baseball bat.
A3: Leonard is holding a shovel.
A4: Leonard is holding a coat hanger.
A5: Leonard is holding a mock lightsaber.   GT

(a) (b)

00:26.568 → 00:27.818
Leonard: Sounds like a breakthrough.

00:27.986 → 00:30.486
Should I call Science and tell them to 
hold the cover?

Q:   What is Leonard wearing when he is talking to Sheldon?
A1: A scarf.
A2: A hat.
A3: A suit.   GT
A4: A kilt.   Pred
A5: Jogging pants. 

00:17.350 → 00:19.640
Howard: Plus Superman and Godzilla.

00:20.020 → 00:21.690
Leonard: No, no, no. Orcs are magic.

Q:   Who grab a bottle after Leonard talked?
A1: Sheldon.
A2: Howard.
A3: Penny.
A4: Raj.   GT
A5: Leonard.   Pred

(c) (d)

00:23.443 → 00:27.403
- You gotta take one for the team.
- Yeah. Sack up, dude.

00:28,823 → 00:30.403
Leonard: Fine.

Q:   What was Leonard 's drink when they are talking about taking one for the team?
A1: Fanta.
A2: bottle of water.   Pred
A3: Sprite.
A4: Gatorade.
A5: Coke Cola.   GT

00:03.743 → 00:06.663
Penny: ...something Elton John would 
drive through the Everglades.

00:12.502 → 00:14.332
Sheldon: It only moves in time.

Q:   What direction did Sheldon turn to when Penny insulted their time machine ?
A1: He looked at his hands.
A2: To the left.
A3: Up towards the ceiling.   Pred
A4: He turned to Penny.
A5: To the right.   GT

(e) (f)

Figure 10: Wrong prediction examples from STAGE. The span predictions are shown on the top of each example,
each block represents a frame, the color indicates the model’s confidence for the predicted spans. For each QA, we
show grounding examples and scores for one frame in GT span, GT boxes are shown in green. Model predicted
answers are labeled by Pred, GT answers are labeled by GT.


