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Abstract

Visual Dialog involves “understanding” the di-
alog history (what has been discussed previ-
ously) and the current question (what is asked),
in addition to grounding information in the
image, to generate the correct response. In
this paper, we show that co-attention mod-
els which explicitly encode dialog history out-
perform models that don’t, achieving state-of-
the-art performance (72 % NDCG on val set).
However, we also expose shortcomings of the
crowd-sourcing dataset collection procedure
by showing that history is indeed only required
for a small amount of the data and that the
current evaluation metric encourages generic
replies. To that end, we propose a challeng-
ing subset (VisDialConv) of the VisDial val set
and provide a benchmark of 63% NDCG.

1 Introduction

Recently, there has been an increased interest in vi-
sual dialog, i.e. dialog-based interaction grounded
in visual information (Chattopadhyay et al., 2017;
De Vries et al., 2017; Seo et al., 2017; Guo et al.,
2018; Shekhar et al., 2018; Kottur et al., 2019;
Haber et al., 2019). One of the most popular test
beds is the Visual Dialog Challenge (VisDial) (Das
et al., 2017), which involves an agent answering
questions related to an image, by selecting the an-
swer from a list of possible candidate options. Ac-
cording to the authors, nearly all interactions (98%)
contain dialog phenomena, such as co-reference,
that can only be resolved using dialog history,
which makes this a distinct task from previous Vi-
sual Question Answering (VQA) challenges, e.g.
(Antol et al., 2015). For example, in order to an-
swer the question “About how many?” in Figure
1, we have to infer from what was previously said,
that the conversation is about the skiers.

∗This work was carried out during the internship at Adobe
Research.
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Figure 1: Visual Dialog task according to (Das et al.,
2017) as a ranking problem, where for the current ques-
tion (blue), the agent ranks list of 100 candidate an-
swers (yellow). Relevance weights for each candidate
were collected via crowd-sourcing. Previous dialog his-
tory (red) together with the caption (green) forms the
contextual information for the current turn.

In the original paper, Das et al. (2017) find that
models which structurally encode dialog history,
such as Memory Networks (Bordes et al., 2016)
or Hierarchical Recurrent Encoders (Serban et al.,
2017) improve performance. However, “naive” his-
tory modelling (in this case an encoder with late
fusion/concatenation of current question, image
and history encodings) might actually hurt perfor-
mance. Massiceti et al. (2018) take this even fur-
ther, claiming that VisDial can be modeled without
taking history or even visual information into ac-
count. Das et al. (2019) rebutted by showing that
both features are still needed to achieve state-of-the-
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art (SOTA) results and an appropriate evaluation
procedure has to be used.

In this paper, we show that competitive results on
VisDial can indeed be achieved by replicating the
top performing model for VQA (Yu et al., 2019b)
– and effectively treating visual dialog as multiple
rounds of question-answering, without taking his-
tory into account. However, we also show that
these results can be significantly improved by en-
coding dialog history, as well as by fine-tuning
on a more meaningful retrieval metric. Finally,
we show that more sophisticated dialog encodings
outperform naive fusion on a subset of the data
which contains “true” dialog phenomena according
to crowd-workers. In contrast to previous work on
the VisDial dataset, e.g. (Kottur et al., 2018; Agar-
wal and Goyal, 2018; Gan et al., 2019; Guo et al.,
2019; Kang et al., 2019), we are the first to conduct
a principled study of dialog history encodings. Our
contributions can thus be summarized as follows:

• We present SOTA results on the VisDial
dataset using transformer-based Modular Co-
Attention (MCA) networks. We further show
that models encoding dialog history outper-
form VQA models on this dataset.

• We show that curriculum fine-tuning (Bengio
et al., 2009) on annotations of semantically
equivalent answers further improves results.

• We experiment with different dialog history
encodings and show that early fusion, i.e.
dense interaction with visual information (ei-
ther via grounding or guided attention) works
better for cases where conversational histori-
cal context is required.

• We release a crowd-sourced subset contain-
ing verified dialog phenomena and provide
benchmark results for future research.

2 Visual Dialog Models

In this section, we extend Modular Co-Attention
Networks, which won the VQA challenge 2019
(Yu et al., 2019b) and adapt it to visual dialog. Dif-
ferent from previous co-attention networks (Kim
et al., 2018; Nguyen and Okatani, 2018), MCA
networks use guided attention to model dense re-
lations between the question and image regions
for better visual grounding. In the following, we
explore MCA networks with different input encod-
ings following a ‘[model]-[input]’ convention to
refer to our MCA model variants; see Figure 3
for an overview. Whenever unspecified, images

are represented as a bag of bottom-up features, i.e.
object level representations (see Section 3).

2.1 Modular Co-Attention networks

The MCA module with multi-modal fusion as de-
picted in Figure 2, is common to all our architec-
tures. Inspired by the transformers (Vaswani et al.,
2017), the MCA network (Yu et al., 2019b) is a
modular composition of two basic attention units:
self-attention and guided attention. These are ar-
ranged in an encoder-decoder composition in the
MCA module (Figure 2), which performed best for
VQA (Yu et al., 2019b).

2.1.1 Self-Attention and Guided-Attention
The Self-Attention (SA) unit in transformers
(Vaswani et al., 2017) is composed of a multi-
head attention layer followed by a feed-forward
layer. When applied to vision, the SA unit can be
viewed as selecting the most relevant object-level
image features for the downstream task. Specifi-
cally, the scaled dot product attention takes as input
key, query and value (usually same modality’s em-
bedded representations) and outputs a self-attended
vector (Eq.1). Multi-head attention provides mul-
tiple representation spaces to capture different lin-
guistic/grounding phenomena, which are otherwise
lost by averaging using a single head.

Att(Q,K, V ) = softmax(QK
T

√
dK

)V

MHAtt(Q,K, V ) = Concat(head1, . . . headn)WO

headi = Att(QWQ
i ,KW

K
k , V W

V
i )

(1)

The Guided-Attention (GA) unit conditions the
attention on different sequences. The key and value
come from one modality, while the query comes
from a different modality similar to the decoder
architecture in Transformers (Vaswani et al., 2017).
Similar to Eq. 1, the GA unit outputs features
fi = Att(X,Y, Y ) where X ∈ Rm×dx comes from
one modality and Y∈ Rn×dy from the other. Resid-
ual connection (He et al., 2016) and layer normal-
ization (Ba et al., 2016) are applied to the output of
both the attention and feed-forward layers similar
to (Vaswani et al., 2017; Yu et al., 2019b) in both
the SA and GA units.

2.1.2 Modular Co-Attention Module
The following description of the MCA module is
based on the question and the image, but can be
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Figure 2: Modular Co-Attention (MCA) module with MCA-I (Section 2.1) as an example.

extended analogously to model the interaction be-
tween the question and history. First, the input (i.e.
the question) is passed through multiple multi-head
self-attention layers L, in order to get self-aware
representations before acting as conditional signal
to different modalities (visual or contextual history)
similar to the auto-encoding procedure of Trans-
formers. Then the final representation XL is used
as the input for GA units to model cross-modal
dependencies and learn the final conditioned repre-
sentation Y L.

2.1.3 Multi-modal fusion
The learned representations XL

∈ Rm×d and
Y

L
∈ Rn×d contain the contextualized and con-

ditioned representations over the word and image
regions, respectively. We apply attention reduction
(Yu et al., 2019b) with a multi-layer perceptron
(MLP) for XL (analogously for Y L). We obtain
the final multi-modal fused representation z:

α
x
= softmax(MLP

x(XL))

x̃ =
i=1

∑
m

α
x
i x

L
i

z = LayerNorm(WT
x x̃ +W

T
y ỹ)

(2)

where αx
= [αx

1 . . . α
x
m] ∈ Rm are learned

attention weights (same process for αy and ỹ) and
Wx ∈ Rd×dz , Wy ∈ Rd×dz are linear projection
matrices (dimensions are the same for simplicity).

We call this model MCA with Image compo-
nent only; (MCA-I), since it only encodes the
question and image features and therefore treats
each question in Visual Dialog as an independent

instance of VQA, without conditioning on the his-
torical context of the interaction.

2.2 Variants with Dialog History

In the following, we extend the above framework
to model dialog history. We experiment with
late/shallow fusion of history and image (MCA-I-
H), as well as modelling dense interaction between
conversational history and the image representation
(i.e. MCA-I-VGH, MCA-I-HGuidedQ).

History guided Question (MCA-I-HGuidedQ):
The network in Figure 3a is designed to model co-
reference resolution, which can be considered as
the primary task in VisDial (Kottur et al., 2018).
We first enrich the question embedding by condi-
tioning on historical context using guided attention
in the MCA module. We then use this enriched (co-
reference resolved) question to model the visual
interaction as described in Section 2.1.

Visually grounded history with image represen-
tation (MCA-I-VGH): Instead of considering
conversational history and the visual context as
two different modalities, we now ground the history
with the image first, see Figure 3b. This is similar
in spirit to maintaining a pool of visual attention
maps (Seo et al., 2017), where we argue that differ-
ent questions in the conversation attend to different
parts of the image. Specifically, we pass the history
to attend to object-level image features using the
MCA module to get visually grounded contextual
history. We then embed the question to pool the rel-
evant grounded history using another MCA module.
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Figure 3: All models incorporating dialog history described in Section 2.2

In parallel, the question embedding is also used to
ground the current visual context. At the final step,
the respective current image and historical compo-
nents are fused together and passed through a linear
layer before decoding. Note, this model is generic
enough to potentially handle multiple images in a
conversation and thus could be extended for tasks
e.g. conversational image editing, which is one of
the target applications of visual dialog (Kim et al.,
2017; Manuvinakurike et al., 2018a,b; Lin et al.,
2018; El-Nouby et al., 2018).

Two-stream Image and History component
(MCA-I-H): Figure 3c shows the model which
maintains two streams of modular co-attention net-
works – one for the visual modality and the other
for conversational history. We follow a similar ar-
chitecture for the visual component as MCA-I and
duplicate the structure for handling conversational
history. At the final step, we concatenate both the
embeddings and pass them through a linear layer.

2.3 Decoder and loss function

For all the models described above, we use a dis-
criminative decoder which computes the similar-
ity between the fused encoding and RNN-encoded
answer representations which is passed through a
softmax layer to get the probability distribution

over the candidate answers. We train using cross
entropy over the ground truth answer:

L(θ) = 1

N

N=100

∑
n=1

ynlogP (xn, θ) (3)

N denotes the number of candidate answers
which is set to 100 for this task, yn is the (ground
truth) label which is 0 or 1 during the training pro-
cedure, or a relevance score of the options during
fine-tuning (casting it as multi-label classification).

3 Implementation

We use PyTorch1 (Paszke et al., 2017) for our exper-
iments2. Following Anderson et al. (2018), we use
bottom-up features of 36 proposals from images
using a Faster-RCNN (Ren et al., 2015) pre-trained
on Visual Genome (Krishna et al., 2017) to get a
bag of object-level 2048-d image representations.
Input question and candidate options are tokenized
to a maximum length of 20 while the conversa-
tional history to 200. Token embeddings in text
are initialized with 300-d GloVe vectors (Penning-
ton et al., 2014) and shared among all text-based
encoders. The RNN encodings are implemented us-
ing LSTMs (Hochreiter and Schmidhuber, 1997).

1https://pytorch.org/
2Code available at https://github.com/

shubhamagarwal92/visdial_conv

https://pytorch.org/
https://github.com/shubhamagarwal92/visdial_conv
https://github.com/shubhamagarwal92/visdial_conv
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We use the Adam optimizer (Kingma and Ba, 2015)
both for training and fine-tuning. More training de-
tails can be found in Appendix A.

4 Task Description

4.1 Dataset

We use VisDial v1.0 for our experiments and eval-
uation.3 The dataset contains 123K/2K/8K dialogs
for train/val/test set respectively. Each dialog is
crowd-sourced on a different image, consisting of
10 rounds of dialog turns, totalling approx. 1.3M
turns. Each question has also been paired with a list
of 100 automatically generated candidate answers
which the model has to rank. To account for the
fact that there can be more than one semantically
correct answer (e.g. “Nope”, “No”, “None”, “Can-
not be seen”), “dense annotations” for 2k/2k turns
of train/val of the data have been provided, i.e. a
crowd-sourced relevance score between 0 and 1 (1
being totally relevant) for all 100 options.

4.2 Evaluation protocol

As the Visual Dialog task has been posed as a
ranking problem, standard information retrieval
(IR) metrics are used for evaluation, such as Re-
call@{1,5,10} to measure performance in the top N
results (higher better), mean reciprocal rank (MRR)
of the Ground-Truth (GT) answer (higher better),
and Mean rank of the GT answer (lower better).
Normalized Discounted Cumulative Gain (NDCG)
is another measure of ranking quality, which is
commonly used when there is more than one cor-
rect answer (provided with their relevance).

4.3 Training details

Sparse Annotation Phase: We first train on
sparse annotations, i.e. only 1 provided ground-
truth answer, which is available for the whole train-
ing set. Here the model learns to select only one
relevant answer.

Curriculum Fine-tuning Phase: Dense annota-
tions, i.e. crowd-sourced relevance weights, are
provided for 0.16% of training set, which we use to
fine-tune the model to select multiple semantically
equivalent answers. This acts like a curriculum
learning setup (Elman, 1993; Bengio et al., 2009),

3Following the guidelines on the dataset page we report
results only on v1.0, instead of v0.9. VisDial v1.0 has been
consistently used for Visual Dialog Challenge 2018 and 2019.

where selecting one answer using sparse annotation
is an easier task and fine-tuning more difficult.4

4.4 Baselines

MCA-I-HConcQ and MCA-H: MCA-I-
HConcQ is a naive approach of concatenating
raw dialog history to the question while keeping
the rest of the architecture the same as MCA-I.
MCA-H on the other hand considers this task as
only conversational (not visual) dialog with MCA
module on history instead of image.

RvA: We reproduce the results of Niu et al.
(2019)’s Recursive Visual Attention model (RvA),
which won the 2019 VisDial challenge. Their
model browses the dialog history and updates the
visual attention recursively until the model has suf-
ficient confidence to perform visual co-reference
resolution. We use their single model’s open-
source implementation and apply our fine-tuning
procedure on the val set in Table 1. When report-
ing on the test set results in Table 2, we use the
leaderboard scores published online which con-
tains further unpublished enhancements based on
ensembling (MReaL-BDAI).

5 Results

In the following, we report results on the VisDial
v1.0 val set, (Table 1), as well as the test-std set,5

(Table 2). For measuring significance (reported
on p ≤ 0.05), we use Kruskal-Wallis (Kruskal
and Wallis, 1952) and Wilcoxon signed rank test
(Wilcoxon, 1992) with Bonferroni correction (Bon-
ferroni, 1936). We report results in terms of NDCG,
which is the main metric of the challenge.

MCA-I-H is our best performing model. It
achieves state-of-the-art performance: It outper-
forms the RvA baseline by almost 5 NDCG points
on the val set and by over 7 points on the test set.
On the official challenge test set, MCA-I-H ranks
2

nd: it improves over 7 NDCG over the best single
model but loses by 2 points against a 6-strong RvA
ensemble model (2019 winning entry).

4While ‘instance-level’ curriculum learning is defined in
terms of ‘harder dialogs’, in our work, we used ‘dataset/task-
level’ curriculum finetuning. Our suggested method is a com-
bination of curriculum learning and fine tuning (pre-training
and adjusting to a specific downstream task). As such, we use
the term ‘curriculum fine-tuning’ i.e. adaptation by NDCG
aware curriculum during fine-tuning.

5We only report results for our best preforming models as
the number of allowed submissions to the challenge is limited.
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Model Sparse annotation Phase Curriculum Fine-tuning
NDCG ↑ MRR ↑ R@1 ↑ R@5 ↑ R@10 ↑ Mean ↓ NDCG ↑ MRR ↑ R@1 ↑ R@5 ↑ R@10 ↑ Mean ↓

RvA (Challenge winners; single model) 55.86 64.42 50.71 81.50 90.15 4.06 67.90 51.92 36.57 70.69 83.61 5.85
MCA-H 51.67 59.65 45.21 77.01 86.79 4.92 64.06 38.16 22.86 54.99 71.24 9.19
MCA-I 59.94 59.67 45.95 76.15 86.24 5.24 70.82 37.34 21.22 56.13 72.74 9.23
MCA-I-HConcQ 60.65 64.08 50.83 80.74 89.62 4.22 70.81 40.75 24.53 60 75.11 8.13
MCA-I-HGuidedQ 60.17 64.36 50.99 80.95 89.93 4.17 71.32 44.1 28.44 61.74 76.53 7.83
MCA-I-VGH 62.44 61.25 47.5 78.16 87.8 4.74 72.0 40.22 24.38 58.8 73.77 8.44
MCA-I-H 60.27 64.33 51.12 80.91 89.65 4.24 72.22 42.38 26.94 60.17 75.2 8.2
MCA-I-H-GT 60.27 64.33 51.12 80.91 89.65 4.24 72.18 46.92 32.09 63.85 78.06 7.37

Table 1: Results on VisDial v1.0 val set. Here ‘I’ denotes image modality while ‘H’ refers to the use of dialog
history. Our baseline models are defined in Section 2.1 and 4.4. MCA variants with dialog history follow the same
order as Section 2.2. MCA-I-H-GT refers to the model with corrected dense annotations (see Section 6.2)

Model NDCG ↑ MRR ↑ R@1 ↑ R@5 ↑ R@10 ↑ Mean ↓

RvA 55.59 63.03 49.03 80.40 89.83 4.18
MS-D365-AI (Ensemble-2nd) 64.78 54.23 42.88 65.38 76.12 6.50
MReaL-BDAI (Ensemble-1st) 74.57 53.37 40.96 66.45 79.70 6.60
MCA-I 70.97 35.65 19.32 54.57 71.39 9.51
MCA-I-VGH 71.33 38.92 22.35 58.42 74.5 8.69
MCA-I-H 72.47 37.68 20.67 56.67 72.12 8.89

Table 2: Evaluation on test-std set with results from
the online leaderboard. Winners are picked on NDCG.
MReaL-BDAI (2019 winning entry) is an ensemble of
6 RvA models. Runner-up MS-D365AI (unpublished)
also used ensembling. Note all our submitted MCA
models use curriculum fine-tuning and no ensembling.

Compared to MCA-I, which treats the task as
multiple rounds of VQA, encoding history im-
proves results, but only significantly for MCA-
I-VGH in the sparse annotation phase. After
fine-tuning, MCA-I-VGH and MCA-I-H perform
equally. MCA-I-H implements a late/shallow fu-
sion of history and image. Architectures which
model dense interaction between the conversational
history and the image representations (i.e. MCA-
I-VGH, MCA-I-HGuidedQ) perform comparably;
only MCA-HConcQ performs significantly worse.
Note that MCA-I also outperforms the baselines
and current SOTA by a substantial margin (both in
the sparse annotation phase and curriculum fine-
tuning phase), while, counter-intuitively, there is
not a significant boost by adding conversational
history. This is surprising, considering that accord-
ing to Das et al. (2017), 38% of questions contain
a pronoun, which would suggest that these ques-
tions would require dialog history in order to be
“understood/grounded” by the model.

Furthermore, curriculum fine-tuning signifi-
cantly improves performance with an average im-
provement of 11.7 NDCG points, but worsens per-
formance in terms of the other metrics, which only
consider a single ground truth (GT) answer.

6 Error Analysis

In the following, we perform a detailed error analy-
sis, investigating the benefits of dialog history en-

coding and the observed discrepancy between the
NDCG results and the other retrieval based metrics.

6.1 Dialog History

We performed an ablation study whereby we did
not include the caption as part of historical context
and compare with the results in Table 1. The per-
formance dropped from (NDCG 72.2, MRR 42.3)
to (NDCG 71.6, MRR 40.7) using our best per-
forming MCA-I-H model after finetuning. Since
the crowd-sourced conversation was based on the
caption, the reduced performance was expected.

In order to further verify the role of dialog his-
tory, we conduct a crowd-sourcing study to under-
stand which questions require dialog history, in
order to be understood by humans. We first test our
history-encoding models on a subset (76 dialogs)
of the recently released VisPro dataset (Yu et al.,
2019a) which focuses on the task of Visual Pro-
noun Resolution.6 Note that VisPro also contains
non-referential pleonastic pronouns, i.e. pronouns
used as “dummy subjects” when e.g. talking about
the weather (“Is it sunny?”).

We thus create a new crowd-sourced dataset7,
which we call VisDialConv. This is a subset of the
VisDial val-set consisting of 97 dialogs, where the
crowd-workers identified single turns (with dense
annotations) requiring historical information. In
particular, we asked crowd-workers whether they
could provide an answer to a question given an
image, without showing them the dialog history,
and select one of the categories in Table 4 (see
further details in Appendix B).

In order to get reliable results, we recruited 3
crowd-workers per image-question pair and only
kept instances where at least 2 people agreed. Note
that we only had to discharge 14.5% of the origi-

6We use the intersection of dialogs in VisDial val set and
VisPro to create this subset.

7Data collection code available at https://github.
com/shubhamagarwal92/visdialconv-amt

https://github.com/shubhamagarwal92/visdialconv-amt
https://github.com/shubhamagarwal92/visdialconv-amt
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Model Sparse annotation Phase Curriculum Fine-tuning
NDCG ↑ MRR ↑ R@1 ↑ R@5 ↑ R@10 ↑ Mean ↓ NDCG ↑ MRR ↑ R@1 ↑ R@5 ↑ R@10 ↑ Mean ↓

VisPro subset dataset
MCA-I 59.80 57.88 45.39 72.24 82.76 5.84 69.82 36.2 20 54.08 70.92 10.02
MCA-I-HConcQ 61.08 61.79 48.95 77.5 86.58 4.72 68.44 38 22.24 55.79 71.71 9.17
MCA-I-HGuidedQ 61.35 60.13 47.11 75.26 86.18 5.23 68.29 36.59 21.05 53.29 70.13 9.76
MCA-I-VGH 61.68 59.33 46.18 75.53 86.71 5.07 68.97 39.21 23.68 57.11 70.53 8.83
MCA-I-H 61.72 59.62 45.92 77.11 86.45 4.85 70.87 39.8 25.39 55.13 70.39 9.42
VisDialConv (Crowd-sourced subset) dataset
MCA-I 52.07 55.55 41.65 72.47 83.81 5.92 58.65 36.2 20.52 53.3 68.25 10.32
MCA-I-HConcQ 54.84 62.06 47.42 80.1 88.87 4.37 61.42 37.92 21.86 55.67 73.3 9.01
MCA-I-HGuidedQ 53.81 62.29 48.35 80.1 88.76 4.42 62.92 38.07 22.58 54.74 70.82 9.5
MCA-I-VGH 55.48 58.45 44.54 74.95 86.19 5.18 60.63 38.1 22.89 53.71 70.31 9.49
MCA-I-H 53.01 61.24 47.63 79.07 87.94 4.77 59.89 39.73 25.15 56.49 71.86 9.53

Table 3: Automatic evaluation on the subsets of VisPro and VisDialConv dataset. We found history based MCA
models to outperform significantly compared to the MCA-I model. On VisDialConv, MCA-I-VGH still outperform
all other models in spare annotation phase while MCA-I-HGuidedQ performs the best after fine-tuning.

Annotation Count Percentage
VQA turns 594 67.12%
History required 97 10.96%
Common Sense 94 10.62%
Guess 59 6.67%
Cant tell 34 3.84%
Not relevant 7 0.79%

Table 4: Results of crowd-sourcing study to understand
whether humans require dialog history to answer the
question. ‘VQA turns’ indicate that humans could po-
tentially answer correctly without having access to the
previous conversation while ‘History required’ are the
cases identified requiring dialog context. We also iden-
tified the cases requiring world knowledge/ common
sense, guessing and questions not relevant to the image.

nal 1035 image-question pairs, leaving us with 885
examples. The results in Table 4 show that only
11% required actual dialog historical context ac-
cording to the crowd-workers. Most of the time
(67% cases), crowd-workers said they can answer
the question correctly without requiring history.

The results in Table 3 are on the subset of 97
questions which the crowd-workers identified as
requiring history.8 They show that history encod-
ing models (MCA-I-HGuidedQ / MCA-I-HConcQ
/ MCA-I-H / MCA-I-VGH) significantly outper-
form MCA-I, suggesting that this data cannot be
modelled as multiple rounds of VQA. It can also
be seen that all the models with dense (early) in-
teraction of the historical context outperform the
one with late interaction (MCA-I-H) in terms of
NDCG. Models with dense interactions appear to
be more reliable in choosing other correct relevant
answers because of the dialog context.

8We took care to only include examples from Visdial val
set in both Vispro and VisDialConv subsets. Also note, there
are only 8 overlapping instances between Vispro and Visdial-
Conv subsets.

Our best performing model on VisDialConv is
MCA-I-HGuidedQ and achieves a NDCG value
of 62.9 after curriculum fine-tuning. However, on
the VisPro subset, we observe that MCA-I-H still
outperforms the other models. Interestingly, on this
set, MCA-I also outperforms other history encod-
ing models (except for MCA-I-H).

In sum, our analysis shows that only a small sub-
set of the VisDial dataset contains questions which
require dialog history, and for those, models which
encode history lead to better results. We posit that
this is due to the fact that questions with pleonastic
pronouns such as “Is it sunny/daytime/day. . . ” are
the most frequent according to our detailed analysis
in Appendix C about the dialog phenomena.

Relevance of GT Train Val
Count Percent Count Percent

1 1057 52.85% 643 31.15%
0.8 - - 397 19.23%
0.6 - - 330 15.99%
0.5 526 26.30% - -
0.4 - - 281 13.61%
0.2 - - 227 11.00%
0 417 20.85% 186 9.01%

Total 2000 100% 2064 100%

Table 5: Relevance score (dense annotation) provided
for 2k/2k train/val QA turns. We find that 20% of
the ground truth answers were marked as irrelevant (0
score) and partially relevant (0.5 score) by the human
annotators for train set. This can be attributed to human
errors made while collecting the original data as well as
when crowd-sourcing the dense annotations.

6.2 Dense Annotations for NDCG
Here, we investigate the discrepancy between the
NDCG results and the other retrieval-based meth-
ods. First, we find that the annotation scales differs:
while there is a 3-way annotation on the train set,
the val set defines 6 possible relevance classes, see
Table 5. This affects the evaluation results of our
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Image Dialog MCA-I-H MCA-I-VGH

A bag of chips and a apple and orange.
NRel: 15

Q What kind of chips
are they?
A Chili cheese corn
chips.
Q Is the bag open or
still sealed?
A Sealed.
Q Is it next to the
apple and orange?
A Yes.
Q Are they all on a
table?
GT: Yes.
Rel: 1.0

♣ RGT:1 ; NDCG: 65.56
(1.0) Yes.
(1.0) Yes they are on a

table.
(0.0) Maybe , it’s a close

up.
(0.0) Can’t see a table.
(0.2) I think so, it is a

close up.

♦ RGT:2 ; NDCG: 69.94
(0.8) I think so.
(1.0) Yes.
(0.2) It appears to be.
(0.4) I would think so.
(0.2) I think so, it is a

close up.

♣ RGT:1 ; NDCG: 83.93
(1.0) Yes.
(1.0) Yes they are on a

table.
(0.0) Yes they are.

(0.0) Can’t see a table.
(0.2) I think so, it is a

close up.

♦ RGT:4 ; NDCG: 84.15
(0.8) I think so.
(0.8) They appear to be.
(0.4) Probably.
(1.0) Yes.
(1.0) Yes they are.

A remote controller is hidden in a console in-
side of an arm rest.
NRel: 8

Q Can you see the
remote?
A Yes i can.
Q What color is it?
A It is black.
Q Can you tell what
it is for?
A It appears to be a
phone.
Q What kind of
furniture is it in?
GT: Looks like a car
console.
Rel: 0.4

♣ RGT:1 ; NDCG: 63.19
(0.4) Looks like a car

console.
(0.4) It looks like a chair

on a train or a bus.
(0.0) There are tables.

(0.0) Looks like an outdoor
space.

(0.2) It’s a cubicle with
shelves.

♦ RGT:3 ; NDCG: 79.2
(0.4) I cannot tell.
(0.4) I can’t tell.
(0.4) Looks like a car

console.
(0.2) Not sure.
(0.4) Can’t tell.

♣ RGT:2; NDCG: 58.99
(0.0) A cell phone, i can’t

see it close up.
(0.4) Looks like a car

console.
(0.4) It looks like a chair

on a train or a bus.
(0.2) It’s a cubicle with

shelves.
(0.0) The picture does not

show 1.
♦ RGT:7 ; NDCG: 82.22
(0.4) I cannot tell.
(0.4) Can’t tell.
(0.4) I can’t tell.

(0.2) Not sure.
(0.0) The picture does not

show 1.

Figure 4: Top-5 ranked predictions (relevance in parentheses) of MCA-I-H and MCA-I-VGH after both sparse
annotation and curriculum fine-tuning phase. RGT defines the rank of Ground Truth (GT) predicted by the model.
We also calculate NDCG of rankings for current question turn. NRel denotes number of candidate answer op-
tions (out of 100) with non-zero relevance (dense annotations). Here ♣ and ♦ represents predictions after sparse
annotation and curriculum fine-tuning respectively.

model, for which we can’t do much.
Next, a manual inspection reveals that the rele-

vance weight annotations contain substantial noise:
We find that ground truth answers were marked as
irrelevant for about 20% of train and 10% of val
set. Thus, our models seem to get “confused” by
fine-tuning on this data. We, therefore, manually
corrected the relevance of only these GT answers
(in dense annotations of train set only, but not in
val set). Please see Appendix D for further details.
The results in Table 1 (for MCA-I-H-GT) show
that the model fine-tuned on the corrected data
still achieves a comparable NDCG result, but sub-
stantially improves stricter (single answer) metrics,
which confirms our hypothesis.

Finally, due to the noisy signal they receive dur-
ing fine-tuning, our models learn to select “safe”
answers9, such as “I can’t tell” (see examples in

9We show the statistics of top-ranked predictions by our
MCA-I-H model on our VisdialConv subset (i.e. 97 dialogs
of the Visdial val set). Read as: (Response, count, %) (Yes,
14, 14%) (No, 11, 11.34%) (I cannot tell, 9, 9.27%) (Nope,
3, 3%) (Not that I see, 2, 2.06%) (Red and white, 2, 2.06%)
(Not sure, 2, 2.06%) (I can’t tell, 2, 2.06%). This shows that

Figure 4), which rank high according to (the more
forgiving) NDCG, but perform poorly for stricter
metrics like MRR and Recall.

7 Discussion and Related Work

Our results suggest that the VisDial dataset only
contains very limited examples which require di-
alog history. Other visual dialog tasks, such as
GuessWhich? (Chattopadhyay et al., 2017) and
GuessWhat?! (De Vries et al., 2017) take place
in a goal-oriented setting, which according to
Schlangen (2019), will lead to data containing more
natural dialog phenomena. However, there is very
limited evidence that dialog history indeed matters
for these tasks (Yang et al., 2019). As such, we see
data collection to capture visual dialog phenomena
as an open problem.

Nevertheless, our results also show that encoding
dialog history still leads to improved results. This
is in contrast with early findings that a) “naive”
encoding will harm performance (Das et al. (2017);

at least 13.3% of answers are non-commital (I cannot tell, Not
sure, I can’t tell).
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see MCA-I-HConcQ in Table 1), or that b) history
is not necessary (Massiceti et al., 2018).

Furthermore, we find that our model learns to
provide generic answers by taking advantage of
the NDCG evaluation metric. Learning generic
answers is a well-known problem for open-domain
dialog systems, e.g. (Li et al., 2016). While the
dialog community approaches these phenomena by
e.g. learning better models of coherence (Xu et al.,
2018), we believe that evaluation metrics also need
to be improved for this task, as widely discussed
for other generation tasks, e.g. (Liu et al., 2016;
Novikova et al., 2017; Reiter, 2018). As a first step,
BERT score (Zhang et al., 2019) could be explored
to measure ground-truth similarity replacing the
noisy NDCG annotations of semantic equivalence.

8 Conclusion and Future Work

In sum, this paper shows that we can get SOTA per-
formance on the VisDial task by using transformer-
based models with Guided-Attention (Yu et al.,
2019b), and by encoding dialog history and fine-
tuning we can improve results even more.

Of course, we expect pre-trained visual BERT
models to show even more improvements on this
task, e.g. Vilbert (Lu et al., 2019), LXMert (Tan
and Bansal, 2019), UNITER (Chen et al., 2019)
etc. However, we also show the limitations of this
shared task in terms of dialog phenomena and eval-
uation metrics. We, thus, argue that progress needs
to be carefully measured by posing the right task
in terms of dataset and evaluation procedure.
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A More implementation details

We built our implementation upon starter code in
PyTorch which the VisDial organisers kindly pro-
vided.10 We follow the guidelines of Teney et al.
(2018) and used static 36 as the number of object
proposals in our experiments (though our model
can handle dynamic number of proposals).

We experimentally determined the learning rates
of 0.0005 for training MCA models and 0.0001
for fine-tuning and reducing it by 1/10 after every
7 and 10 epochs out of a total of 12 epochs for
training and 1/5 after 2 epochs for fine-tuning.

We use pytorch’s LambdaLR scheduler while
training and ReduceLROnPlateau for the fine-
tuning procedure. Dropout of 0.2 is used for regu-
larization and we perform early stopping and saved
the best model by tracking the NDCG value on val
set. Layer normalisation (Ba et al., 2016) is used
for stable training following (Vaswani et al., 2017;
Yu et al., 2019b). Attention reduction consisted of
2 layer MLP (fc(d)-ReLU-Dropout(0.2)-fc(1)).

We also experimented with different contextual
representations, including BERT (Devlin et al.,
2019); However we didn’t observe any improve-
ment, similar to the observation by (Tan and Bansal,
2019).

For the results on the validation set, only the
training split is used. To report results on test-std
set, both the training and val set are used for train-
ing. For curriculum fine-tuning we use multi-class
cross entropy loss where weighted by the relevance
score. All our MCA modules have 6 layers and 8
heads, which we determined via a hyper parameter
search. Table 7 shows more details.

Annotation Text
VQA turns I can confidently tell the correct answer just seeing

the image.
History required I want to know what was discussed before to an-

swer confidently. Cannot answer with just the
question and image. Need more information (con-
text) from previous conversation.

Common Sense I can answer it but by inferring using common
sense.

Guess I can only guess the answer.
Cant tell I can’t tell the answer.
Not relevant Not relevant question for this image.

Table 6: Mapping of human annotation with the actual
text shown to the user.

10https://github.com/batra-mlp-lab/
visdial-challenge-starter-pytorch.

https://www.aclweb.org/anthology/J18-3002
https://www.aclweb.org/anthology/J18-3002
https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/1908.11279.pdf
https://arxiv.org/abs/1908.11279.pdf
https://arxiv.org/abs/1908.11279.pdf
https://papers.nips.cc/paper/6962-visual-reference-resolution-using-attention-memory-for-visual-dialog.pdf
https://papers.nips.cc/paper/6962-visual-reference-resolution-using-attention-memory-for-visual-dialog.pdf
https://www.aaai.org/ocs/index.php/AAAI/AAAI17/paper/viewPaper/14567
https://www.aaai.org/ocs/index.php/AAAI/AAAI17/paper/viewPaper/14567
https://www.aclweb.org/anthology/C18-1104.pdf
https://www.aclweb.org/anthology/C18-1104.pdf
https://arxiv.org/abs/1908.07490.pdf
https://arxiv.org/abs/1908.07490.pdf
https://arxiv.org/abs/1908.07490.pdf
https://arxiv.org/abs/1708.02711
https://arxiv.org/abs/1708.02711
https://arxiv.org/abs/1708.02711
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://link.springer.com/chapter/10.1007/978-1-4612-4380-9_16
https://link.springer.com/chapter/10.1007/978-1-4612-4380-9_16
https://www.aclweb.org/anthology/D18-1432
https://www.aclweb.org/anthology/D18-1432
https://www.aclweb.org/anthology/D18-1432
http://arxiv.org/abs/1902.09326.pdf
http://arxiv.org/abs/1902.09326.pdf
https://www.aclweb.org/anthology/D19-1516.pdf
https://www.aclweb.org/anthology/D19-1516.pdf
https://www.aclweb.org/anthology/D19-1516.pdf
http://openaccess.thecvf.com/content_CVPR_2019/papers/Yu_Deep_Modular_Co-Attention_Networks_for_Visual_Question_Answering_CVPR_2019_paper.pdf
http://openaccess.thecvf.com/content_CVPR_2019/papers/Yu_Deep_Modular_Co-Attention_Networks_for_Visual_Question_Answering_CVPR_2019_paper.pdf
https://arxiv.org/pdf/1904.09675.pdf
https://arxiv.org/pdf/1904.09675.pdf
https://github.com/batra-mlp-lab/visdial-challenge-starter-pytorch
https://github.com/batra-mlp-lab/visdial-challenge-starter-pytorch
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Model Training Curriculum Fine-tuning
NDCG MRR R@1 R@5 R@10 Mean NDCG MRR R@1 R@5 R@10 Mean

MCA-I-H (L6 H8) 60.27 64.33 51.12 80.91 89.65 4.24 72.22 42.38 26.94 60.17 75.2 8.2
MCA-I-H (L2 H4) 58.99 64.46 51.14 81.03 89.91 4.19 70.57 42.48 26.3 61.3 76.05 8.06
MCA-I-H (L6 H2) 60.13 60.63 46.7 77.55 87.47 4.8 70.42 39.17 23.3 57.64 73.48 8.69

Table 7: Hyper-parameter tuning for number of layers and number of heads. The results in the main paper are
reported with 6 Layers(L6) and 8 Heads (H8) for all MCA models.

B AMT Interface

Here, we provide more details on the crowd-
sourcing study described in Section 6.1. Figure
6 shows the instructions shown to the turkers. We
also setup a qualification test consisting of 2 test
images (in Figure 7) to assess whether turkers un-
derstood the task properly. This allowed us to have
an automated quality check for the annotations.
Each HIT consisted of 15 images. For the actual
task (e.g. Fig. 8), users were shown just the image
and the current question – without any previous
historical context – and asked to choose one of the
answers as shown in Table 6. Our AMT interface11

used AWS boto3 library in python.

C Diversity and dialog phenomena in
VisDial dataset

We also did an analysis of the top-20 questions (Fig-
ure 9) and answers (Figure 10) in the training set.
‘Yes’/‘No’ binary answers form the major chunk
(19.15% and 21.2% respectively) of ground truth
answers. Color related answers (such as White,
Brown in the top-20 answers) form 4% of all the
ground truth answers. Numbered answers (such
as 0, 1, 2 ,3) form 1.3% while ‘Can’t tell’ form
another 1.2%.

As evident in the top-20 questions,
weather related questions (such as ‘Is it
sunny/daytime/day/night?’), color related
(‘What color is it/his hair/the table?’) and basic
conversational-starters (‘Can you see any people?’)
form the major portion.

We also tried to analyze the top-20 answers (Fig-
ure 11) which had non-zero relevance in the dense
annotations. Specifically, we took all 2k exam-
ple turns of training set with dense annotations for
each of 100 options. We find that generic answers
such as ‘Can’t tell’, binary answers ‘Yes/No’ and
their semantically equivalent answers ‘Not that i
can see’ are mostly given non-zero relevance by
crowd-workers.

11We built upon the repo: https://github.com/
jcjohnson/simple-amt.

We tried to calculate the statistics of the pro-
nouns and ellipsis which we consider essential (but
not complete) phenomena in a dialog dataset. Fig-
ure 12 shows the number of pronouns in a dialog.
We find that major chunk consisted of 2-6 pro-
nouns in all the 10 questions across the dialog. We
tried to distinguish between the usage of ‘it’ as
pleonastic and non-pleonastic pronouns (discussed
in (Loáiciga et al., 2017)). For e.g. in the sentence:
‘It is raining’. Here, though, ‘it’ would be identi-
fied as a pronoun, but it doesn’t refer to anything.
Notice the drift in distribution of the number of pro-
nouns (All pronouns vs Non-pleonastic). We also
tried to identify the cases of ellipsis (methodology
explained further) and found that majority ques-
tions (82%) doesn’t contain any case of ellipsis in
the dialog. We define simple heuristics to identify
dialog phenomena. Specifically, our heuristics can
be listed as:

• We use constituency parser (Joshi et al., 2018)
12 to parse each question. If the parsed tree
doesn’t contain ‘Sentence’ as the root (‘S’,
‘SQ’, ‘SBARQ’, ‘SINV’), we consider it a
case of ellipsis.

• We use spaCy 13 to extract the pronouns in all
the questions of a dialog.

• To distinguish between different usage of ‘it’,
we mark all the co-occurrences of manually
defined weather identifiers (‘rainy’, ‘sunny’,
‘daytime’, ‘day’, ‘night’) as pleonastic.

• Though ‘other’ is a pronoun, it is not tagged
by standard taggers. We explicitly deal with
these cases to tag ‘other’ as a case of pronoun.
For e.g. ‘What about the other?’

D Corrected dense annotations

We maintain the whole relevance list, however we
change the relevance of only the ground truth (GT)
to 1 instead of 0/0.5 in the train annotations (only
943 values). This was done to avoid extra gradient

12https://github.com/allenai/allennlp/
blob/master/allennlp/pretrained.py

13https://spacy.io/usage/
linguistic-features

https://github.com/jcjohnson/simple-amt
https://github.com/jcjohnson/simple-amt
https://github.com/allenai/allennlp/blob/master/allennlp/pretrained.py
https://github.com/allenai/allennlp/blob/master/allennlp/pretrained.py
https://spacy.io/usage/linguistic-features
https://spacy.io/usage/linguistic-features
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Image Dialog MCA-I-H MCA-I-VGH

A surfer crouches as they ride a cresting wave.
NRel: 15

Q Is the photo in
color?
A Yes.
Q Any other people?
GT: No.
Rel: 0.8

♣ RGT:1 ; NDCG 83.32
(0.8) No.
(0.2) 0.
(1.0) Nope.
(0.8) No there’s not.
(0.4) Just the 1.

♦ RGT:2; NDCG 91.2
(1.0) Nope.
(0.8) No.
(0.8) Not that i can see.
(0.8) Not that i see.
(0.8) No there’s not.

♣ RGT:1 ; NDCG 74.98
(0.8) No.
(0.2) 0.
(1.0) Nope.
(0.2) 0 at all.
(0.8) Not that i can see.

♦ RGT:1 ; NDCG 85.24
(0.8) No.
(0.8) Not that i can see.
(0.8) Not that i see.
(0.8) No there’s not.
(1.0) Nope.

An apple and orange are sitting in a white box
with size measurements.
NRel: 4

Q What color is the
apple?
A It is red and
yellow.
Q What color is the
orange?
A It is dark orange.
Q What is the size of
the box?
A Can’t tell.
Q Where is the box?
GT: Can’t tell.
Rel: 1.0

♣ RGT:9 ; NDCG 0.0
(0.0) On the table.
(0.0) In a container by the

window.
(0.0) On table.

(0.0) Use no paper here.
(1.0) I cannot tell.
♦ RGT:5 ; NDCG 73.59
(1.0) I cannot tell.
(0.0) On the table.
(1.0) I can’t tell.
(0.6) Not sure.
(1.0) Can’t tell.

♣ RGT:9 ; NDCG 0.0
(0.0) On table.
(0.0) On the table.

(0.0) In a container by the
window.

(0.0) In a kitchen.
(1.0) I cannot tell.
♦ RGT:4 ; NDCG 98.84
(1.0) I cannot tell.
(1.0) I can’t tell.
(0.6) Not sure.
(1.0) Can’t tell.
(0.0) In a container by the

window.

A clock with a rose on its corner sits on the
wall.
NRel: 3

Q Is it a real rose?
A I don’t think so.
Q Is it an old
fashion clock?
A No, not really.
Q Is it a digital
clock?
A No.
Q Is it hanging on
the wall or leaning?
GT: It’s hanging.
Rel: 1.0

♣ RGT:1 ; NDCG: 81.55
(1.0) It’s hanging.

(0.0) Yes, it’s attached
to the side of the
building.

(0.0) Yes.

(0.0) It is cut out, but it
is definitely sitting
on something.

(0.0) It looks like.
♦ RGT:2 ; NDCG 51.45
(0.0) It looks like.

(1.0) It’s hanging.
(0.0) Can’t tell.
(0.0) Unclear.
(0.0) I think so.

♣ RGT:2 ; NDCG 51.45
(0.0) No it is not mounted

on the wall.
(1.0) It’s hanging.

(0.0) It is cut out, but it
is definitely sitting
on something.

(0.0) Yes, it’s attached
to the side of the
building.

(0.0) On the rail.
♦ RGT:3 ; NDCG 40.78
(0.0) No it is not mounted

on the wall.
(0.0) Not sure.
(1.0) It’s hanging.
(0.0) Can’t tell.
(0.0) I can’t tell.

Figure 5: Top-5 ranked predictions (relevance in parentheses) of MCA-I-H and MCA-I-VGH after both sparse
annotation and curriculum fine-tuning phase. RGT defines the rank of Ground Truth (GT) predicted by the model
and NDCG of rankings for current question turn. NRel denotes number of candidate answer options (out of 100)
with non-zero relevance (dense annotations). Here ♣ and ♦ represents predictions after sparse annotation and
curriculum fine-tuning respectively.

information that the model will receive because
of noise in the dataset, since these examples were
already seen during the spare annotation phase. Val
annotations remains unaffected for fair compari-
son. As expected, this simple correction increase
the ground truth related metrics such as R{1,5,10}
drastically.
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Figure 6: Instructions for the AMT task.

Figure 7: Qualification test consisting of 2 test images to allow the turkers to actually attempt the task
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Figure 8: Sample task.
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Figure 9: Top-20 questions in the training set. Of all the questions in the training set, only 30% questions are
unique while weather related questions (like sunny, daytime, rainy) top the charts.
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Figure 10: Top-20 answers in the training set. Yes/No forms a major chunk in top 20 answers.
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Figure 11: Top-20 answers with non-zero relevance in the dense annotations of training set. Generic and yes/no se-
mantically equivalent answers mostly constitute the list. Percentage is calculated out of total 3652 unique answers
which have non-zero relevance in train dense annotations set.

Number of Pronouns

0

5

10

15

20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 19 20 21 23

Non-pleonastic All pronouns

Figure 12: Number of pronouns in 10 questions of a dialog.


