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Abstract

In classification, there are usually some good
features that are indicative of class labels. For
example, in sentiment classification, words
like good and nice are indicative of the posi-
tive sentiment and words like bad and terrible
are indicative of the negative sentiment. How-
ever, there are also many common features
(e.g., words) that are not indicative of any spe-
cific class (e.g., voice and screen, which are
common to both sentiment classes and are not
discriminative for classification). Although
deep learning has made significant progresses
in generating discriminative features through
its powerful representation learning, we be-
lieve there is still room for improvement. In
this paper, we propose a novel angle to fur-
ther improve this representation learning, i.e.,
feature projection. This method projects exist-
ing features into the orthogonal space of the
common features. The resulting projection is
thus perpendicular to the common features and
more discriminative for classification. We ap-
ply this new method to improve CNN, RNN,
Transformer, and Bert based text classification
and obtain markedly better results.

1 Introduction

Text classification is an important task in natural
language processing and text mining. It has a very
wide range of applications, such as sentiment classi-
fication (Liu, 2012), question classification (Li and
Roth, 2002), and deception detection (Liu, 2012;
Feng et al., 2012). In recent years, deep learn-
ing models have been shown to outperform tra-
ditional classification methods (Kim, 2014; Iyyer
et al., 2015; Tang et al., 2015; Dai and Le, 2015; Jin
et al., 2016; Joulin et al., 2017; Shen et al., 2018).
Given the input document, the system applies a
mapping function (e.g., averaging or summation, a
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convolution neural network (CNN), recurrent neu-
ral network (RNN), and so on) to learn a dense
representation of the document and then uses this
representation to perform the final classification.
Representation learning is one of the key strengthes
of deep learning.

In this paper, we propose to further improve the
representation learning, i.e., to make the represen-
tation more discriminative for classification. Note
that throughout the paper we will use sentence sen-
timent classification as an example to explain dif-
ferent ideas, but in our experiments, non-sentiment
classification datasets are also used to show the
generality of the proposed method. For text clas-
sification, many neural networks and embedding
techniques have been devised and applied, e.g.,
RNN, CNN, Transformer (Vaswani et al., 2017)
and Bert (Devlin et al., 2018). For example, RNN
can model the whole sentence and also capture the
long-term dependencies within the sentence. How-
ever, modeling the entire sequence may neglect
some key local contexts that are important for clas-
sification (Yin et al., 2017). CNN is able to extract
more local and position-invariant features (Scherer
et al., 2010; Collobert et al., 2011). However, these
methods may not give enough weights to some spe-
cial or discriminative words. To solve this problem,
the attention mechanism was introduced. For exam-
ple, by exploiting attention, Transformer and Bert
(which maximizes Transformer’s ability to extract
sentence semantic information) can achieve even
better results than both CNN and RNN on many
tasks. We will see some other related methods
to produce effective representations in the related
work section.

Although the existing models are already able
to produce excellent representations, we will show
that these representations can still be improved.
This paper explores in an entirely different direc-
tion, i.e., feature projection. In a typical sentence or
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document, there are usually some words or features
that are correlated with some class labels, but there
are also many other common features that cannot
distinguish different classes. For example, in senti-
ment classification, words like Good and Nice are
indicative of the positive sentiment, and words like
Bad and Terrible are indicative of the negative sen-
timent. Words like picture, price, and battery are
not indicative of any sentiment, i.e., they are not
discriminative. However, they may still interfere
the representation learning to produce sub-optimal
feature representations for the final classification.
Even though the attention mechanism can allevi-
ate this problem to some extent by giving higher
weights to words associated with classes and lower
weights to the other words that are not indicative of
any specific classes. However, due to the idiosyn-
crasy of the data and the inaccuracy of the attention
mechanism, the problem remains.

In this paper, we propose a novel feature pro-
jection method to improve feature representation
learning to make it more discriminative for classi-
fication. The proposed method is called Feature
Purification Network (FP-Net). Specifically, FP-
Net consists of two sub-networks, a common fea-
ture learning network referred to as the C-net and
a projection network referred to as the P-net. C-
net uses a Gradient Reverse Layer (GRL) (Ganin
and Lempitsky, 2014; Zhang et al., 2019) to extract
common features~b (i.e., invariant features (Zhang
et al., 2019)) that are shared by multiple classes
and have little discriminative power for classifica-
tion. At the same time, P-net uses a traditional
feature extractor to learn the feature vector ~a for
the input sentence or document. Then the feature
(or representation) vector ~a is projected onto the
vector of the common features~b (i.e., vector~b) to
get a projection vector ~c, which represents the input
sentence’s own common features. Then, we project
the feature vector ~a onto the orthogonal direction
of the vector of the common features ~c to produce
the final purer features for classification. It is quite
clear and intuitive that this orthogonal project is
to get rid of the common features and make the
system focusing on those discriminative features
only. We will explain why two projections are used
in Section 3.

In summary, the key contribution of this paper is
the improvement to representation learning through
feature vector projection. To the best of our knowl-
edge, this is the first such technique. Specifically,

an Orthogonal Projection Layer (OPL) is proposed
to map the features obtained by a traditional fea-
ture extractor to the classification-specific semantic
space, which is orthogonal to the common features
such that we obtain a more relevant and discrim-
inative (or purer) feature representation from the
original document for classification.

Extensive experiments have been conducted to
verify the effectiveness of the proposed method
on two sentence sentiment classification datasets
MR and SST2, a natural language inference dataset
SNLI, and a question classification dataset TREC.
The results show that the proposed method can
improve the classification accuracy of RNN, CNN,
Transformer and Bert based classification methods
markedly, which shows that feature projection is a
highly promising direction to explore.

2 Related Work

It is well known that one of the key strengths of
deep neural networks is their superb ability to learn
highly effective representations or features from the
raw data, which have been shown to be very suc-
cessful for all kinds of applications including natu-
ral language processing tasks such as text classifi-
cation (Jin et al., 2016), machine translation (Bah-
danau et al., 2014; Vaswani et al., 2017) dialogue
(Wang and Jiang, 2016), etc. Previous work on
learning representations broadly falls in two main
categories: supervised and unsupervised methods.
Our work focuses on improving the representation
of text for supervised classification.

Supervised methods: These methods improve
data utilization efficiency and discriminative fea-
ture distillation as they can obtain better train-
ing signals from the labeled data. Sequence
models such as recurrent neural networks (RNN),
Long short-term memory (LSTM) (Hochreiter
and Schmidhuber, 1997) and gated recurrent unit
(GRU) (Chung et al., 2014) networks are suitable
for handling text because a sentence or document
can be regarded as a sequence. Therefore, a large
amount of work based on RNN and its variants for
feature extraction and downstream tasks has been
done (Tang et al., 2015; Wang and Tian, 2016; He
et al., 2016). Unlike RNN’s sequence modeling
approach, CNN (Convolutional Neural Network)
uses different sized windows to capture local cor-
relations and position-invariant information (Kim,
2014; Conneau et al., 2016; Lai et al., 2015; Xiao
and Cho, 2016; Wang, 2018). A common approach
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of these methods is to create an instance-level rep-
resentation by using the final hidden state of the
RNN, the maximum (or average) pooling of the
RNN hidden states, or convolutional n-grams. How-
ever, they may ignore the importance of special
words that are highly discriminative for classifi-
cation. After Bahdanau et al. (2014) introduced
the attention mechanism in machine translation,
attention mechanism has been exploited in many
natural language processing tasks including text
classification to solve the above problem. For ex-
ample, Yang et al. (2016) introduced attention as
an integral part of the model for text classifica-
tion. Lin et al. (2017) proposed a new model for
extracting interpretable sentence embeddings us-
ing self-attention. Ma et al. (2018) showed that
attention mechanism is also effective for sentiment
classification. Vaswani et al. (2017) further illus-
trated that they can get a stronger sentence-level
representation by stacking multiple blocks of self-
attention. Bert (Devlin et al., 2018) combines
Transformer and a large corpus to produce an even
more complete and better sentence-level represen-
tation. Some other studies improved the representa-
tion of sentences from the perspective of language
structures (e.g., parse trees and dependency trees)
(Tai et al., 2015; Mou et al., 2015). Subramanian
et al. (2018) utilized a single multi-task framework
to combine the benefits of diverse sentence repre-
sentation learning objectives. However, to the best
of our knowledge, these existing works and others
have not used feature projection to improve (or pu-
rify) representations for supervised learning, which
we believe is a promising direction to explore.

Unsupervised methods: These methods utilize
a large unlabeled text corpus to learn word represen-
tations which are then composed into sentence and
document representations. For example, Kiros et al.
(2015) constructed sentence representations by try-
ing to reconstruct neighbouring sentences. Hill
et al. (2016) proposed a log-linear bag-of-words
models for sentence representation. The unsuper-
vised smooth inverse frequency method in (Etha-
yarajh, 2018) built on this but used a weighted aver-
age of word embeddings and principal component
removal for sentence representations. Our work
is again clearly different from these unsupervised
methods as the proposed method works under su-
pervised learning. Existing unsupervised methods
also do not use feature projection.

Some other works have also been done for semi-

supervised representation learning (Kevin Clark,
2018) and transfer learning (Tamaazousti et al.,
2018). Jason Phang (2019) also proposed to use
some data-rich intermediate supervised tasks for
pre-training to help produce better representation
for the end task. To the best of our knowledge, all
these previous studies tried to improve represen-
tations using external data or knowledge, which
are quite different from our method as we don’t
use any external information. Also, the philosophy
of our approach is entirely different as we try to
eliminate commonalities among classes through
feature projection, which is orthogonal to existing
representation learning approaches.

Finally, our work is related to several other
works. Ganin and Lempitsky (2014) introduced the
gradient reverse layer (GRL) for extracting com-
mon features in the context of domain adaptation. It
embeds domain adaptation into the process of learn-
ing representations so that the final classification
decision has more discriminative and invariant char-
acteristics for domain changes. We also use GRL
to extract irrelevant or common features. However,
we do not work on domain adaptation and they do
not use feature projection. Belinkov et al. (2019)
used adversarial learning to encourage models to
learn representations free of hypothesis-only biases
in the SNLI dataset. Zhang et al. (2019) combined
GRL and aspect attention to study cross-domain
sentiment classification. They found common fea-
tures across domains and then extracted informa-
tion from the aspects (which are product features)
with the help of common features to do classifica-
tions. Our work is clearly different because none of
these existing works improve representation learn-
ing through feature projection.

3 Feature Purification Network

The overall framework of our model is shown in
Figure 1. The whole model consists of two parts,
the first part is the projection network (i.e., P-net)
and the other is the common feature learning net-
work (i.e., C-net). As mentioned earlier, the goal
of C-net is to extract common features and the goal
of P-net is to compute the purified features for clas-
sification, which is done by projecting the learned
full information vector of the input document into
a more discriminative semantic space to eliminate
the influence of the common features.

P-net consists of four parts: the input layer X ,
the feature extractor Fp, Orthogonal Projection
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Figure 1: The architecture of FP-Net

Layer (OPL), and the final classification layer Cp.
C-net is also composed of four parts: the input layer
X , the feature extractor Fc (Fp and Fc’s parame-
ters are not shared)1, the Gradient Reverse Layer
(GRL) and the classification layer Cc. The key
idea of the proposed technique is as follows: The
feature vector fp computed by the feature extractor
Fp is projected to the orthogonal direction of the
feature vector fc extracted by Fc of the C-net. That
is, fp (the full information extracted from the input
document) is projected to the discriminative seman-
tic space to be purified for the final classification.
However, in order to perform the orthogonal pro-
jection, two operations are required, which we will
explain shortly. Next we use CNN as an example
feature extractor to detail each component of the
proposed FP-Net.

CNN Extractor: Given a dataset D =
{(xi, yi)}Ni=1, where xi is an input document with
the length L (after padding or cut) and yi is the la-
bel corresponding to the sample xi. Let Vij ∈ Rk

be the word vector corresponding to the jth word
of the document xi. Xi ∈ RL×k is the embedding
matrix of xi. Recall our FP-Net model consists of
two sub-networks, i.e., P-net and C-net, with the
same input xi. The two sub-networks also have the
same structure for the feature extractor CNN, but
there are no shared parameters between them. The
feature extractors of P-net and C-net are Fp, Fc.

1The feature extractor can be any existing extractor. In this
work, we verified the effectiveness of our purification network
using CNN, RNN, Transformer, and Bert as feature extractors
as we will see in the experiment section.

We use Fc as an example to introduce the work-
ing of CNN. When the feature extractor Fc receives
Xi from the input layer, Fc extracts the advanced
features fc from Xi in the form of n-grams, which
is:

fc = [c1, c2, ..., cl−n+1] = [cj ]
l−n+1
j=1 , (1)

where cj represents the output produced by CNN’s
filter on Xi[j : j+n−1, :]. Mathematically, a con-
volution operation consists of a filter W ∈ Rn×k

and a bias b ∈ R. Then cj can be expressed as:

cj = g(W ·Xi[j : j + n− 1, :] + b), (2)

where g is a nonlinear activation function such
as Relu. We use a Maxpooling operation over
the feature map and take the maximum value
fc = max{fc} as the feature corresponding to
this particular filter. The same feature extractor
Fp will also get the advanced features fp from the
input layer. We refer to the features of the P-net
and C-net respectively as

fp = CNNp(X), (3)

fc = CNNc(X). (4)

Other details of C-net will be introduced in C-net
Module, and likewise, additional details about P-
net will be introduced in P-net Module.

C-net Module: The goal of C-net is to extract
the common features, which are the semantic infor-
mation of the input example that is not discrimina-
tive for the classification task. As mentioned earlier,
common features are those shared by all classes of
the problem. The classifier Cc should not use them
to distinguish different classes. To obtain common
features, we add a Gradient Reverse Layer (GRL)
(Ganin and Lempitsky, 2014; Ganin et al., 2016)
after the feature extractor Fc to reverse the gradient
direction. Through this training module, we can
obtain the common features that are shared among
classes.

Without loss of generality, we can think of the
gradient reverse layer as a ”pseudo-function” de-
fined by two incompatible equations describing its
forward and back-propagation behaviors:

GRL(x) = x, (5)

∂GRL(x)

∂x
= −λI, (6)
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Figure 2: Working of the Orthogonal Projection Layer.
The example here is in a 2-dimensional space. fp rep-
resents the traditional feature vector; fc represents the
common feature vector; fp∗ is the projected feature vec-
tor; f̃p is our final Orthogonal Projection feature vector.

where λ is a hyper-parameter. We process the fea-
ture vector fc through GRL as GRL(fc) = f̃c,
which is then fed to the classifier Cc:

YGRL = softmax(f̃c ·Wc + bc), (7)

Lossc = CrossEntropy(Ytruth, YGRL), (8)

where Wc and bc are the weights and bias of Cc
respectively. By optimizing the objective function
Lossc, the feature extractor Fc is able to extract
the common features of different classes.

P-net Module: The goal of P-net is to first ex-
tract the full semantic information from the input
example and then project it into the semantic space
purified for classification. In order to achieve this,
we perform the projection of the feature fp ex-
tracted by the feature extractor Fp onto the orthog-
onal direction of the common feature fc, extracted
by Fc. The feature space orthogonal to the com-
mon feature vector should contain features that are
pure and highly effective for classification (e.g.,
sentiment related information in sentiment classifi-
cation). Projecting the traditional feature vector fp
to this orthogonal feature space preserves the dis-
criminative information and remove those common
features of the classes that are unhelpful and even
confusing to the classification task.

The Orthogonal Projection Layer (OPL) helps
us accomplish this goal. Figure 2 illustrates the
idea of OPL using a two-dimensional space exam-
ple. Mathematically, we first project the tradition
feature vector fp onto the common feature vector
fc:

fp∗ = Proj(fp, fc), (9)

where Proj is a projection function.

Proj(x, y) =
x · y
|y|

y

|y|
, (10)

where x, y are vectors. We then do the projection
in the orthogonal direction of the projected feature

fp to get the purer classification feature vector:

f̃p = Proj(fp, (fp − fp∗)). (11)

Clearly, it is easy to show that the feature vec-
tor f̃p obtained by Eq. 11 is equivalent to fp–fp∗.
Using the traditional feature vector fp and the pro-
jected feature vector fp∗, we can build a plane
(in three dimensions). The intersection of this
plane and the orthogonal plane of the projected
feature vector fp∗ is our pure feature vector. In
other words, the projection in Eq. 9 is a constraint
on the common feature vector. That is to say: the
modulus of the common feature vector is limited by
projecting the traditional feature vector of the input
xi to the common feature vector, so the semantic
information of the new common feature vector (i.e.,
the projected feature fp∗) contains only the com-
mon semantic information in xi. This makes the
final purified feature vector f̃p coming from the tra-
ditional feature vector fp rather than any vector in
any plane orthogonal to the common feature vector
fc. Finally, we use the purified feature vector f̃p to
do the classification.

YOPL = softmax(f̃p ·Wp + bp), (12)

Lossp = CrossEntropy(Ytruth, YOPL). (13)

Note that here Lossp and Lossc are trained simul-
taneously, and they use different optimizers. Lossp
uses the Adam optimizer. Since Ganin and Lempit-
sky (2014) used Moment SGD as the domain classi-
fier’s optimizer, our C-net loss function Lossc also
uses Moment SGD optimizer.2 Gradients are also
passed back through feature fc when optimizing
Lossp. Although the two losses are opposite to
each other in terms of optimization targets of the
feature extractor Fc, the effect of Lossp on Fc is in
the orthogonal direction of fc. A balance will be
found to make the extracted feature fc closer to the
real common features. The complete training algo-
rithm of the proposed FP-Net is given in Algorithm
1, which is self-explanatory.

4 Experiments

We now evaluate the proposed FP-Net 3 using four
text classification datasets and compare it with base-
lines without the purification capability. Our goal is

2We have conducted experiments using the Adam opti-
mizer for both C-Net and P-Net. The results are about the
same as using two different optimiers.

3https://github.com/Qqinmaster/FP-Net/
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Algorithm 1 Feature Purification Network
1: Input:

Dataset D = {(xi, yi)}Ni=1, xi’s embedding
matrix Xi ∈ RLk; Randomly initialized FP-
Net’s parameters θ.

2: for each iteration b = 1, 2, ...,M do
3: Sample one batch Xb from D
4: C-net part:
5: Generate common features (CFs) (Eq. 3)
6: CFs go through GRL (Eq. 5)
7: Perform classification (Eq. 7)
8: P-net part:
9: Generate traditional features (TFs) (Eq. 4)

10: TFs projection (Eq. 9)
11: Get the purified features (Eq. 11)
12: Perform classification (Eq. 12)
13: Update parameters:
14: C-net, P-net’s parameters are updated to-

gether (Eq. 8 & Eq. 13)
15: end for

to verify whether the proposed feature purification
is general and effective for different deep learning
classification models (or more precisely, feature
extractors) on diverse datasets.

4.1 Experimental Datasets

We carried out experiments on four diverse bench-
mark datasets:

MR: This is a movie review dataset for senti-
ment classification. It has two classes: positive and
negative (Pang and Lee, 2005).4

SST2: This is the Stanford Sentiment Treebank
dataset.5 Each sample is marked as negative or
positive.

TREC: This is a question classification dataset,
which is to classify a question into one of the six
question types (Li and Roth, 2002).6

SNLI: This is a popular text entailment dataset.
It contains 570k human annotated sentence pairs,
in which the premises are drawn from the captions
of the Flickr 30 corpus and hypotheses are man-
ually annotated (Bowman et al., 2015). For this
SNLI dataset, we created the following settings to
suit our needs: (1) we concatenated the two sen-
tences (in a pair) as a single sample; (2) when using

4http://www.cs.cornell.edu/people/
pabo/movie-review-data/

5http://nlp.stanford.edu/sentiment/
6http://cogcomp.cs.illinois.edu/Data/

QA/QC/

Data c l T rain Test |V |
MR 2 45 8,529 1,066 17,884
SNLI 3 40 54,936 9,824 33,944
SST2 2 35 6,920 1,821 16,789
TREC 6 15 5,000 952 8,834

Table 1: Dataset statistics. c: number of classes. l:
average length of sentences, after padding and cutting.
Train, Test: number of training and testing examples.
|V |: vocabulary size.

Bert as a feature extractor, we reduced the number
of training set samples to 25,000 to speed up the
training process. For other feature extractors (see
below), the complete data is used.

The dataset statistics are given in Table 1.

4.2 Baselines

Since our goal is to perform feature purification
so that the purified features are more conducive
for classification, to verify the validity of the pro-
posed FP-Net model, we compare the classification
results with and without purification using the fol-
lowing popular feature extractors:

LSTM: The long short-term memory network
(LSTM) (Hochreiter and Schmidhuber, 1997) for
solving the gradient disappearing problem of the
traditional RNN.

CNN: We use the Convolution Neural Networks
in (Kim, 2014) as the feature extractor to generate
representations.

Transformer: We use the encoder part of the
model proposed by (Vaswani et al., 2017) as the
feature extractor, followed by a classifier.

Bert: We fine-tuned on the trained Bert base
(Devlin et al., 2018). Bert base includes 12-layer,
768-hidden, 12-heads and 110M parameters. In
particular, we use Bert-base Uncased, where Un-
cased means that the text has been lower cased
before WordPiece tokenization.

Note, those existing feature learning or feature
enhancement approaches discussed in Section 2 are
not compared as they are entirely different from
our approach. They mainly relied on external data
or information to improve representation learning.
Our method does not use any external data or infor-
mation. However, we do include Bert as a baseline
as it is perhaps one of the most successful feature
learning methods using external data. Our method
can improve on top of Bert.
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Model MR SNLI SST2 TREC
LSTM 77.46(±0.41) 76.98(±0.07) 80.41(±0.20) 87.19(±0.58)
FP+LSTM 78.13(±0.18) 77.92(±0.10) 81.60(±0.17) 88.83(±0.40)
CNN 76.18(±0.45) 72.92(±0.19) 80.47(±0.59) 90.86(±0.51)
FP+CNN 78.74(±0.36) 74.38(±0.14) 82.02(±0.11) 92.78(±0.26)
Trans 75.18(±0.57) 66.71(±0.58) 76.93(±0.39) 87.33(±0.23)
FP+Trans 76.83(±0.66) 73.34(±0.43) 78.42(±0.49) 89.51(±0.79)
Bert 87.45(±0.51) 80.78(±0.42) 90.38(±0.10) 96.67(±0.22)
FP+Bert 90.56(±0.35) 81.47(±0.26) 92.24(±0.29) 98.33(±0.24)

Table 2: Results of our FP-Net against baseline methods. In each block, FP+X is a model obtained by our FP-Net
using X as the feature extractor. Accuracy (%) is the evaluation metric. Each result in the table is the average
accuracy of five experiments with the standard deviation in parentheses.

4.3 Implementation Details
First, all the word embeddings in our experiments
are randomly initialized as 200-dimension vectors
and then modified during training (except Bert).
For each type of feature extractor, we have the
following configuration:

1) For the RNN-based models, we use a two-
layer LSTM for feature extraction and the hidden
state of each layer is set to 256.

2) For the CNN-based models, in order to obtain
more fine-grained features, we use filter sizes of
[2,3,4,5,6] with 100 feature maps each.

3) For the Transformer-based models, we use
Transformer’s encoder as the feature extractor,
specifically with single-head and 3 blocks.

4) For the Bert-based models, we fine-tuned the
pre-trained Bert-base parameters. These settings
are exactly the same in the baseline as in our FP-
Net.

In the training of the C-net module, we use a
stochastic gradient with 0.9 as the momentum and
the following annealing learning rate (Ganin and
Lempitsky, 2014).

lp =
l0

(1 + α · p)β

where p is the training progress linearly chang-
ing from 0 to 1, l0 = 0.01, α = 10 and β =
0.75. In GRL, the hyper-parameters λ swept
[0.05, 0.1, 0.2, 0.4, 0.8, 1.0].

4.4 Experiment Results
In our experiments, we adopt the classification ac-
curacy as the evaluation metric. We summarize
the experimental results in Table 2, where FP+X
means that the model trained by the proposed FP-
Net using X as the feature extractor. Each of the

two lines compares the experimental results of the
traditional model with our proposed model on these
four datasets. From Table 2, we can make the fol-
lowing observations.

1. Our FP-Net model consistently improves
the results of the baseline feature extractors (i.e.,
LSTM, CNN, Transformer and Bert) using the pro-
posed feature projection. This verifies the effective-
ness of the proposed feature purification method
of projecting the traditional feature vectors to the
orthogonal direction of the common features.

2. Compared with the traditional CNN, the
FP+CNN model increases the accuracy by 2.56%
on the MR dataset and 1.46% on the SNLI dataset.
The improvement of FP+LSTM is less, increased
by 0.67% and 0.94% on the MR and SNLI datasets.
This shows that the way that CNN extracts input
features (concatenate the feature after using differ-
ent sliding window sizes for extracting local fea-
tures) is quite effective in extracting more complete
semantic information, which leads to more irrele-
vant features being used. That is why the projection
on the CNN features brings more improvements
compared to the RNN-based model.

3. By comparing the experimental results of the
attention-base model (i.e., Transformer and Bert),
we can see that our FP-Net can improve the feature
representation capabilities of these feature extrac-
tors. For example, in the Bert-based experiment,
our FP+Bert can increases the accuracy by 3.11%
on MR and 1.66% on TREC. That is to say our or-
thogonal projection method can make the represen-
tation of attention-based obtain a higher discrimi-
native power for classification. Outperforming Bert
is particularly significant because Bert is perhaps
one of the best feature extractors, if not the best.
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Model MR SNLI SST2 TREC
FP+CNN 78.74(±0.36) 74.38(±0.14) 82.02(±0.11) 92.78(±0.26)
FP+CNN-G 77.71(±0.44) 72.85(±0.62) 81.09(±0.17) 91.89(±0.10)
FP+CNN-O 76.64(±0.39) 73.11(±0.22) 81.25(±0.11) 90.76(±0.37)
FP+CNN-G-O(plus) 76.38(±0.45) 73.08(±0.19) 80.67(±0.52) 90.89(±0.41)
FP+CNN-G-O(concat) 76.18(±0.51) 72.91(±0.26) 81.02(±0.18) 91.16(±0.41)

Table 3: Ablation experiments. The first block contains the results of FP+CNN with GRL (-G) or OPL (-O)
removed and the results with both GRL and OPL (-G-O) removed and the features of the two modules (or sub-
networks) summed. The second block contains the results with both GRL (-G) and OPL (-O) removed and the
features of the two modules concatenated.

Model MR SNLI SST2 TREC
CNN 76.18(±0.45) 72.92(±0.19) 80.47(±0.59) 90.86(±0.51)
CNN Dp 76.72(±0.50) 73.49(±0.14) 80.67(±0.40) 90.91(±0.41)
FP+CNN 78.74(±0.36) 74.38(±0.14) 82.02(±0.11) 92.78(±0.26)
Trans 75.18(±0.57) 66.71(±0.58) 76.93(±0.39) 87.33(±0.23)
Trans Dp 75.75(±0.31) 68.36(±0.25) 77.10(±0.48) 88.16(±0.34)
FP+Trans 76.83(±0.66) 73.34(±0.43) 78.42(±0.49) 89.51(±0.79)

Table 4: Experimental results with doubled parameter size on the four datasets. For example, Trans Dp shows the
increase of the number of blocks of the Transformer from 3 to 6.

4.5 Ablation Experiments and Analysis

In order to analyze the effectiveness of each com-
ponent of FP-Net, we performed the following two
ablation experiments.

First, in Table 3, we report the results of the ab-
lation test of each component of FP-Net, where
FP+CNN-G (or O, G-O) represents FP-Net with
the GRL (or OPL, or both GRL and OPL) removed
while using CNN as the feature extractor. The
parameters of all the experiments compared in the
first block are exactly the same. In order to keep the
parameter size consistent, we performed element-
wise summation of the features of FP-Net’s two
sub-networks fp and fc in the FP+CNN-G-O ex-
periment. By comparing the experimental results
of the first block, we observe the following:

1) Whether GRL or OPL is removed or both
GRL and OPL are removed at the same time, the
accuracy will drop significantly compared with the
complete FP-Net. For example, for the MR dataset,
when we remove the GRL and keep the OPL (i.e.,
FP+CNN-G), the accuracy decreases by 1.03%;
When we remove both GRL and OPL, and then
execute fp + fc (i.e., FP+CNN-G-O(plus)), the
accuracy decreases by 2.36%, etc. These results
show that each component in FP-Net is important,
and the absence of any one component will lead to
decline in accuracy.

2) In the experiment of FP+CNN-O, we remove
OPL and keep GRL, which means that we use fp−
fc instead of the orthogonal projection (i.e., fp −
fp∗). As stated in P-Net module of Section 3, such
a replacement will give up a constraint that gets the
common feature fp∗ of the current input xi from
the base common feature fc. The results showed
that the accuracy decreases by 2.10% on MR and
decreases by 1.27% on SNLI, which mean that the
projection operation (i.e., Eq. 9) is necessary.

3) Clearly, adding fp and fc of FP-Net is not
the only way to connect the two sub-networks of
FP+CNN-G-O. We can do fp ⊕ fc, where ⊕ is the
concatenation operator. Although this method has
more parameters in the P-net classifier, we can still
observe that the accuracy of FP+CNN-G-O is not
as good as the accuracy of FP+CNN. For example,
FP+CNN-G-O reduced the accuracy by 2.36% on
MR and 1.30% on SNLI, which can also prove the
effectiveness of GRL and OPL in our FP-Net.

Second, we show that the improvement in ac-
curacy by FP-Net is not due to the increase in the
number of parameters. We doubled the parame-
ters of traditional CNN and Transformer and com-
pared with our FP+CNN, FP+Trans. The results of
this part of the experiments are shown in Table 4,
where the index ’Dp’ means the Doubled parameter
size. For example, Tans Dp increases the number
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of blocks of Transformer in the baseline from 3 to
6. All experimental results show that increasing the
number of parameters of the baseline models will
improve classification accuracy slightly, but there
is still a large gap with the proposed model.

5 Conclusion

In this paper, we proposed a novel Feature Purifica-
tion Network (FP-Net) to improve the representa-
tion for text classification. The method is based on
feature projection. The proposed model uses two
sub-networks, one for identifying common features
that are not discriminative for classification, and
the other for feature projection that projects the tra-
ditional features to the orthogonal direction of the
common features. To the best of our knowledge,
this is the first method that uses feature projec-
tion to improve text classification. Through a large
number of comparative experiments, we showed
the effectiveness of the proposed feature projection
method.

Our current method is designed only for tradi-
tional text classification methods such as LSTM,
CNN, and Transformer. In our future work, we will
consider extending it to graph-based methods such
as GCN for graph data, and to generation-based
methods such as GAN for adversarial learning.
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