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Abstract

Entity set expansion, aiming at expanding a
small seed entity set with new entities belong-
ing to the same semantic class, is a critical
task that benefits many downstream NLP and
IR applications, such as question answering,
query understanding, and taxonomy construc-
tion. Existing set expansion methods boot-
strap the seed entity set by adaptively select-
ing context features and extracting new enti-
ties. A key challenge for entity set expansion
is to avoid selecting ambiguous context fea-
tures which will shift the class semantics and
lead to accumulative errors in later iterations.
In this study, we propose a novel iterative set
expansion framework that leverages automati-
cally generated class names to address the se-
mantic drift issue. In each iteration, we select
one positive and several negative class names
by probing a pre-trained language model, and
further score each candidate entity based on
selected class names. Experiments on two
datasets show that our framework generates
high-quality class names and outperforms pre-
vious state-of-the-art methods significantly.

1 Introduction

Entity set expansion aims to expand a small set
of seed entities (e.g., {“United States”, “China”,
“Canada”}) with new entities (e.g., “United King-
dom”, “Australia”) belonging to the same semantic
class (i.e., Country). The entities so discovered
may benefit a variety of NLP and IR applications,
such as question answering (Wang et al., 2008),
query understanding (Hua et al., 2017), taxonomy
construction (Shen et al., 2018a), and semantic
search (Xiong et al., 2017; Shen et al., 2018b).

Most existing entity set expansion methods boot-
strap the initial seed set by iteratively selecting
context features (e.g., co-occurrence words (Pantel
et al., 2009), unary patterns (Rong et al., 2016),
and coordinational patterns (Mamou et al., 2018)),
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Figure 1: Examples of class-probing and entity-
probing queries generated based on Hearst patterns.

while extracting and ranking new entities. A key
challenge to set expansion is to avoid selecting am-
biguous patterns that may introduce erroneous en-
tities from other non-target semantic classes. Take
the above class Country as an example, we may
find some ambiguous patterns like “* located at”
(which will match more general Location enti-
ties) and “match against *” (which may be asso-
ciated with entities in the Sports Club class).
Furthermore, as bootstrapping is an iterative pro-
cess, those erroneous entities added at early iter-
ations may shift the class semantics, leading to
inferior expansion quality at later iterations. Ad-
dressing such “semantic drift” issue without requir-
ing additional user inputs (e.g., mutually exclusive
classes (Curran et al., 2007) and negative example
entities (Jindal and Roth, 2011)) remains an open
research problem.

In this study, we propose to empower entity
set expansion with class names automatically gen-
erated from pre-trained language models (Peters
et al., 2018; Devlin et al., 2019; Yang et al., 2019).
Intuitively, knowing the class name is “country”,
instead of “state” or “city”, can help us identify
unambiguous patterns and eliminate erroneous en-
tities like “Europe” and “New York”. Moreover, we
can acquire such knowledge (i.e., positive and nega-
tive class names) by probing a pre-trained language
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model automatically without relying on human an-
notated data.

Motivated by the above intuition, we propose a
new iterative framework for entity set expansion
that consists of three modules: (1) The first, class
name generation module, constructs and submits
class-probing queries (e.g., “[MASK] such as USA,
China, and Canada.” in Fig. 1) to a language model
for retrieving a set of candidate class names. (2)
The second, class name ranking module, builds
an entity-probing query for each candidate class
name and retrieves a set of entities. The similarity
between this retrieved set and the current entity
set serves as a proxy for the class name quality,
based on which we rank all candidate class names.
An unsupervised ensemble technique (Shen et al.,
2017) is further used to improve the quality of fi-
nal ranked list from which we select one best class
name and several negative class names. (3) The
third, class-guided entity selection module, scores
each entity conditioned on the above selected class
names and adds top-ranked entities into the cur-
rently expanded set. As better class names may
emerge in later iterations, we score and rank all en-
tities (including those already in the expanded set)
at each iteration, which helps alleviate the semantic
drift issue.

Contributions. In summary, this study makes the
following contributions: (1) We propose a new set
expansion framework that leverages class names
to guide the expansion process and enables filtra-
tion of the entire set in each iteration to resolve the
semantic drift issue; (2) we design an automatic
class name generation algorithm that outputs high-
quality class names by dynamically probing pre-
trained language models; and (3) experiments on
two public datasets from different domains demon-
strate the superior performance of our approach
compared with state-of-the-art methods.

2 Background

In this section, we provide background on language
models and define the entity set expansion problem.

2.1 Language Model

A standard language model (LM) inputs a word se-
quence w = [w1, w2, . . . , wn] and assigns a prob-
ability P(w) to the whole sequence. Recent stud-
ies (Peters et al., 2018; Devlin et al., 2019; Yang
et al., 2019) found that language models, simply
trained for next word or missing word prediction,

can generate high quality contextualized word rep-
resentations which benefit many downstream appli-
cations. Specifically, these language models will
output an embedding vector for each word appear-
ance in a specific context that is usually the en-
tire sentence where the target word occurs, rather
than just words appearing before the target word.
Therefore, we can also view a LM as a model that
inputs a word sequence w and outputs a probabil-
ity P(wi) = P(wi|w1, . . . , wi−1, wi+1, . . . , wn)
to any position 1 ≤ i ≤ n. Currently, Devlin
et al. (2019) propose BERT and train the language
model with two objectives: (1) a cloze-filling ob-
jective which randomly substitutes some words
with a special [MASK] token in the input sentence
and forces LM to recover masked words, and (2)
a binary classification objective that guides LM
to predict whether one sentence directly follows
another (sentence). BERT leverages Transformer
(Vaswani et al., 2017) architecture and is learned on
English Wikipedia as well as BookCorpus. More
LM architectures are described in Section 5.

2.2 Problem Formulation

We first define some key concepts and then present
our problem formulation.
Entity. An entity is a word or a phrase that refers
to a real-world instance. For example, “U.S.” refers
to the country: United States.
Class Name. A class name is a text representation
of a semantic class. For instance, country could
be a class name for the semantic class that includes
entities like “United States” and “China”.
Probing Query. A probing query is a word se-
quence containing one [MASK] token. In this work,
we utilize Hearst patterns (Hearst, 1992) to con-
struct two types of probing queries: (1) A class-
probing query aims to predict the class name of
some given entities (e.g., “[MASK] such as United
States and China”), and (2) an entity-probing query
aims to retrieve entities that fit into the mask token
(e.g., “countries such as [MASK] and Japan”).
Problem Formulation. Given a text corpusD and
a seed set of user-provided entities, we aim to out-
put a ranked list of entities that belong to the same
semantic class.
Example 1. Given a seed set of three countries
{“United States”, “China”, “Canada”}, we aim
to return a ranked list of entities belonging to the
same country class such as “United Kingdom”,
“Japan”, and “Mexico”.
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3 Class-Guided Entity Set Expansion

We introduce our class-guided entity set expansion
framework in this section. First, we present our
class name generation and ranking modules in Sec-
tions 3.1 and 3.2, respectively. Then, we discuss
how to leverage class names to guide the iterative
expansion process in Section 3.3.

3.1 Class Name Generation

The class name generation module inputs a small
collection of entities and generates a set of can-
didate class names for these entities. We build
this module by automatically constructing class-
probing queries and iteratively querying a pre-
trained LM to obtain multi-gram class names.

First, we notice that the class name genera-
tion goal is similar to the hypernymy detection
task which aims to find a general hypernym (e.g.,
“mammal”) for a given specific hyponym (e.g.,
“panda”). Therefore, we leverage the six Hearst pat-
terns (Hearst, 1992)1, widely used for hypernymy
detection, to construct the class-probing query.
More specifically, we randomly select three en-
tities in the current set as well as one Hearst pattern
(out of six choices) to construct one query. For ex-
ample, we may choose entities {“China”, “India”,
“Japan”} and pattern “NPy such as NPa, NPb,
and NPc” to construct the query “[MASK] such
as China, India, and Japan”. By repeating such a
random selection process, we can construct a set
of queries and feed them into pre-trained language
models to obtain predicted masked tokens which
are viewed as possible class names.

The above procedure has one limitation—it can
only generate unigram class names. To obtain
multi-gram class names, we design a modified
beam search algorithm to iteratively query a pre-
trained LM. Specifically, after we query a LM for
the first time and retrieve top K most likely words
(for the masked token), we construct K new queries
by adding each retrieved word after the masked
token. Taking the former query “[MASK] such
as China, India, and Japan” as an example, we
may first obtain words like “countries”, “nations”,
and then construct a new query “[MASK] countries
such as China, India, and Japan”. Probing the LM
again with this new query, we can get words like
“Asian” or “large”, and obtain more fine-grained
class names like “Asian countries” or “large coun-

1For example, the pattern “NPy such as NPa” indicates
that noun phrase y is a hypernym of noun phrase a.

tries”. We repeat this process for maximum three
times and keep all generated class names that are
noun phrases2. As a result, for each Hearst pat-
tern and randomly selected three entities from the
current set, we will obtain a set of candidate class
names. Finally, we use the union of all these sets as
our candidate class name pool, denoted as C. Note
that in this module, we focus on the recall of can-
didate class name pool C, without considering its
precision, since the next module will further rank
and select these class names based on the provided
text corpus.

3.2 Class Name Ranking
In this module, we rank the above generated candi-
date class names to select one best class name that
represents the whole entity set and some negative
class names used in the next module to filter out
wrong entities. A simple strategy is to rank these
class names based on the number of times it has
been generated in the previous module. However,
such a strategy is sub-optimal because short uni-
gram class names always appear more frequently
than longer multi-gram class names. Therefore, we
propose a new method below to measure how well
each candidate class name represents the entity set.

First, we introduce a corpus-based similarity
measure between an entity e and a class name c.
Given the class name c, we first construct 6 entity-
probing queries by masking the hyponym term in
six Hearst patterns3, and query a pre-trained LM
to obtain the set of six [MASK] token embeddings,
denoted as Xc. Moreover, we use Xe to denote
the set of all contextualized representations of the
entity e in the given corpus. Then, we define the
similarity between e and c, as:

Mk(e, c) =
1

k
max

X⊆Xe,|X|=k

∑
x∈X

max
x′∈Xc

cos(x,x′), (1)

where cos(x,x′) is the cosine similarity between
two vectors x and x′. The inner max operator
finds the maximum similarity between each occur-
rence of e and the set of entity-probing queries
constructed based on c. The outer max operator
identifies the top-k most similar occurrences of e
with the queries and then we take their average as
the final similarity between the entity e and the
class name c. This measure is analogous to finding

2Therefore, class names likes “and countries” and “, coun-
tries” are filtered out.

3For example, a query for class name “countries” is
“countries such as [MASK]”.
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Figure 2: Overview of one iteration in CGExpan framework.

k best occurrences of entity e that matches to any
of the probing queries of class c, and therefore it
improves the previous similarity measures that uti-
lize only the context-free representations of entities
and class names (e.g., Word2Vec).

After we define the entity-class similarity score,
we can choose one entity in the current set and
obtain a ranked list of candidate class names based
on their similarities with this chosen entity. Then,
given an entity set E, we can obtain |E| ranked lists,
L1, L2, . . . , L|E|, one for each entity in E. Finally,
we follow (Shen et al., 2017) and aggregate all
these lists to a final ranked list of class names based
on the score s(c) =

∑|E|
i=1

1
ric

, where ric indicates
the rank position of class name c in ranked list Li.
This final ranked list shows the order of how well
each class name can represent the current entity set.
Therefore, we choose the best one that ranks in the
first position as the positive class , denoted as cp.

Aside from choosing the positive class name cp,
we also select a set of negative class names for the
target semantic class to help bound its semantics.
To achieve this goal, we assume that entities in the
initial user-provided seed set E0 definitely belong
to the target class. Then, we choose those class
names that rank lower than cp in all lists corre-
sponding to entities in E0, namely {Li|ei ∈ E0},
and treat them as the negative class names. We
refer to this negative set of class names as CN and
use them to guide the set expansion process below.

3.3 Class-Guided Entity Selection

In this module, we leverage the above selected
positive and negative class names to help select
new entities to add to the set. We first introduce
two entity scoring functions and then present a new
rank ensemble algorithm for entity selection.

The first function utilizes the positive class name
cp and calculates each entity ei’s score :

scoreloci = Mk(ei, cp), (2)

where Mk is defined in Eq. (1). We refer to this
score as a local score because it only looks at top-k
best occurrences in the corpus where the contextu-
alized representation of entity ei is most similar to
the representation of class name cq.

The second scoring function calculates the sim-
ilarity between each candidate entity and existing
entities in the current set, based on their context-
free representations. For each entity e, we use the
average of all its contextualized embedding vectors
as its context-free representation, denoted as ve.
Given the current entity set E, we first sample sev-
eral entities from E, denoted as Es, and calculate
the score for each candidate entity ei as:

scoreglbi =
1

|Es|
∑
e∈Es

cos(vei ,ve). (3)

Note here we sample a small set Es (typically of
size 3), rather than using the entire set E. Since
the current entity set E may contain wrong entities
introduced in previous steps, we do not use all the
entities in E and compute the candidate entity score
only once. Instead, we randomly select multiple
subsets of entities from the current set E, namely
Es, obtain a ranked list of candidate entities for
each sampled subset, and aggregate all ranked lists
to select the final entities. Such a sampling strategy
can reduce the effect of using wrong entities in E,
as they are unlikely to be sampled multiple times,
and thus can alleviate potential errors that are intro-
duced in previous iterations. We refer to this score
as a global score because it utilizes context-free
representations which better reflect entities’ over-
all positions in the embedding space and measure
the entity-entity similarity in a more global sense.
Such a global score complements the above local
score and we use their geometric mean to finally
rank all candidate entities:

scorei =
√

scoreloci × scoreglbi . (4)

As the expansion process iterates, wrong entities
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may be included in the set and cause semantic drift-
ing. We develop a novel rank ensemble algorithm
that leverages those selected class names to im-
prove the quality and robustness of entity selection.
First, we repeatedly sample Es (used for calculat-
ing scoreglbi in Eq. (3)) T times from current entity
set E, and obtain T entity ranked lists {Rm}Tm=1.
Second, we follow the class name ranking proce-
dure in Section 3.2 to obtain |E| class ranked lists
{Ln}|E|n=1, one for each entity ei ∈ E. Note here
each Ln is actually a ranked list over {cp} ∪ CN ,
namely the set of selected one positive class name
and all negative class names. Intuitively, an entity
belonging to our target semantic class should sat-
isfy two criteria: (1) it appears at the top positions
in multiple entity ranked lists, and (2) within its cor-
responding class ranked list, the selected best class
name cp should be ranked above any one of the
negative class name in CN . Combining these two
criteria, we define a new rank aggregation score as
follows:

S(ei) =
T∑
t=1

(
1(ei ∈ E) + st(ei)

)
× 1(ricp < min

c′∈CN

ric′), (5)

where 1(·) is an indicator function, ric is the rank
of class name c in entity ei’s ranked list Li

c, and
st(ei) the individual aggregation score of ei de-
duced from the ranked list Rt, for which we test
two aggregation methods: (1) mean reciprocal rank,
where

st(ei) =
1

rti
(6)

and rti is the rank of entity ei in the t-th ranked list
Rt; and (2) the combination of scores (CombSUM),
where

st(ei) =
scoreti −minej∈Rt scoretj

maxej∈Rt scoretj −minej∈Rt scoretj
(7)

is the ranking score of ei in the ranked list Rt after
min-max feature scaling.

To interpret Eq. 5, the first summation term re-
flects our criterion (1) and its inner indicator func-
tion ensuring an entity in the current set E prone
to have a large rank aggregation score if not been
filtered out below. The second term reflects our cri-
terion (2) by using an indicator function that filters
out all entities which are more similar to a negative
class name than the positive class name. Note here
we calculate the aggregation score for all entities in

Dataset # Test Queries # Entities # Sentences

Wiki 40 33K 1.50M

APR 15 76K 1.01M

Table 1: Datasets statistics

the vocabulary list, including those already in the
current set E, and it is possible that some entity in
E will be filtered out because it has 0 value in the
second term. This makes a huge difference compar-
ing with previous iterative set expansion algorithms
which all assume that once an entity is included in
the set, it will stay in the set forever. Consequently,
our method is more robust to the semantic drifting
issue than previous studies.
Summary. Starting with a small seed entity set, we
iteratively apply the above three modules to obtain
an entity ranked list and add top-ranked entities into
the set. We repeat the whole process until either (1)
the expanded set reaches a pre-defined target size
or (2) the size of the set does not increase for three
consecutive iterations. Notice that, by setting a
large target size, more true entities belonging to the
target semantic class will be selected to expand the
set, which increases the recall, but wrong entities
are also more likely to be included, which decreases
the precision. However, as the output of the set
expansion framework is a ranked list, the most
confident high-quality entities will still be ranked
high in the list.

4 Experiments

4.1 Experiment Setup
Datasets. We conduct our experiments on two
public benchmark datasets widely used in previous
studies (Shen et al., 2017; Yan et al., 2019): (1)
Wiki, which is a subset of English Wikipedia arti-
cles, and (2) APR, which contains all news articles
published by Associated Press and Reuters in 2015.
Following the previous work, we adopt a phrase
mining tool, AutoPhrase (Shang et al., 2018), to
construct the entity vocabulary list from the corpus,
and select the same 8 semantic classes for the Wiki
dataset as well as 3 semantic classes for the APR
dataset. Each semantic class has 5 seed sets and
each seed set contains 3 entities. Table 1 summa-
rizes the statistics for these datasets.
Compared methods. We compare the following
corpus-based entity set expansion methods.
1. Egoset (Rong et al., 2016): This is a multi-

faceted set expansion system using context fea-
tures and Word2Vec embeddings. The original
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Methods Wiki APR
MAP@10 MAP@20 MAP@50 MAP@10 MAP@20 MAP@50

Egoset (Rong et al., 2016) 0.904 0.877 0.745 0.758 0.710 0.570
SetExpan (Shen et al., 2017) 0.944 0.921 0.720 0.789 0.763 0.639
SetExpander (Mamou et al., 2018) 0.499 0.439 0.321 0.287 0.208 0.120
CaSE (Yu et al., 2019b) 0.897 0.806 0.588 0.619 0.494 0.330
MCTS (Yan et al., 2019) 0.980∇ 0.930∇ 0.790∇ 0.960∇ 0.900∇ 0.810∇

CGExpan-NoCN 0.968 0.945 0.859 0.909 0.902 0.787
CGExpan-NoFilter 0.990 0.975 0.890 0.979 0.962 0.892
CGExpan-Comb 0.991 0.974 0.895 0.983 0.984 0.937
CGExpan-MRR 0.995 0.978 0.902 0.992 0.990 0.955

Table 2: Mean Average Precision on Wiki and APR. “∇” means the number is directly from the original paper.

framework aims to expand the set in multiple
facets. Here we treat all expanded entities as in
one semantic class due to little ambiguity in the
seed set.

2. SetExpan (Shen et al., 2017): This method iter-
atively selects skip-gram context features from
the corpus and develops a rank ensemble mech-
anism to score and select entities.

3. SetExpander (Mamou et al., 2018): This method
trains different embeddings based on different
types of context features and leverages addi-
tional human-annotated sets to build a classifier
on top of learned embeddings to predict whether
an entity belongs to the set.

4. CaSE (Yu et al., 2019b): This method combines
entity skip-gram context feature and embedding
features to score and rank entities once from the
corpus. The original paper has three variants
and we use the CaSE-W2V variant since it is
the best model claimed in the paper.

5. MCTS (Yan et al., 2019): This method boot-
straps the initial seed set by combing the Monte
Carlo Tree Search algorithm with a deep simi-
larity network to estimate delayed feedback for
pattern evaluation and to score entities given
selected patterns.

6. CGExpan: This method is our proposed
Class-Guided Set Expansion framework, using
BERT (Devlin et al., 2019) as the pre-trained
language model. We include two versions of
our full model, namely CGExpan-Comb and
CGExpan-MRR, that use the combination of
score and mean reciprocal rank for rank aggre-
gation, respectively.

7. CGExpan-NoCN: An ablation of CGExpan that
excludes the class name guidance. Therefore, it
only incorporates the average BERT representa-
tion to select entities.

8. CGExpan-NoFilter: An ablation of CGExpan

CGExpan vs. Other MAP@10 MAP@20 MAP@50

vs. SetExpan 100% 94.5% 87.3%
vs. CGExpan-NoFilter 100% 94.5% 58.2%
vs. CGExpan-NoCN 100% 94.5% 70.9%

Table 3: Ratio of seed entity set queries on which the
first method reaches better or the same performance as
the second method.

that excludes the negative class name selection
step and uses only the single positive class name
in the entity selection module.

Evaluation Metric. We follow previous studies
and evaluate set expansion results using Mean
Average Precision at different top K positions
(MAP@K) as below:

MAP@K =
1

|Q|
∑
q∈Q

APK(Lq, Sq),

where Q is the set of all seed queries and for each
query q, we use APK(Lq, Sq) to denote the tra-
ditional average precision at position K given a
ranked list of entities Lq and a ground-truth set Sq.

Implementation Details. For CGExpan, we use
BERT-base-uncased4 as our pre-trained LM. For
parameter setting, in the class name generation
module (Sec. 3.1), we take top-3 predicted tokens
in each level of beam search and set the maximum
length of generated class names up to 3. When
calculating the similarity between an entity and a
class name (Eq. 1), we choose k = 5, and will later
provide a parameter study on k in the experiment.
Also, since MAP@K for K = 10, 20, 50 are typi-
cally used for set expansion evaluations, we follow
the convention and choose 50 as the target set size
in our experiments.5

4In principle, other masked LMs such as RoBERTa and
XLNet can also be used in our framework.

5The code and data are available at https://github.
com/yzhan238/CGExpan

https://github.com/yzhan238/CGExpan
https://github.com/yzhan238/CGExpan
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Methods Wiki APR
MAP@{10/20/50} MAP@{10/20/50}

Oracle-Full 0.991/0.976/0.891 1.000/1.000/0.964
Oracle-NoFilter 0.994/0.983/0.887 0.988/0.966/0.894
CGExpan 0.995/0.978/0.902 0.992/0.990/0.955

Table 4: Compared to oracle models knowing ground
truth class names, CGExpan automatically generates
class names and achieves comparative performances.

4.2 Experiment Results

Overall Performance. Table 2 shows the over-
all performance of different entity set expansion
methods. We can see that CGExpan along with
its ablations in general outperform all the base-
lines by a large margin. Comparing with SetExpan,
the full model CGExpan achieves 24% improve-
ment in MAP@50 on the Wiki dataset and 49%
improvement in MAP@50 on the APR dataset,
which verifies that our class-guided model can re-
fine the expansion process and reduce the effect
of erroneous entities on later iterations. In addi-
tion, CGExpan-NoCN outperforms most baseline
models, meaning that the pre-trained LM itself
is powerful to capture entity similarities. How-
ever, it still cannot beat CGExpan-NoFilter model,
which shows that we can properly guide the set
expansion process by incorporating generated class
names. Moreover, by comparing our full model
with CGExpan-NoFilter, we can see that negative
class names indeed help the expansion process by
estimating a clear boundary for the target class and
filtering out erroneous entities. Such an improve-
ment is particularly obvious on the APR dataset.
The two versions of our full model overall have
comparable performance, but CGExpan-MRR con-
sistently outperforms CGExpan-Comb. To explain
such a difference, empirically we observe that high-
quality entities tend to rank high in most of the
ranked lists. Therefore, we use the MRR ver-
sion for the rest of our experiment, denoted as
CGExpan.

Fine-grained Performance Analysis. Table 3
reports more fine-grained comparison results be-
tween two methods. Specifically, we calculate
the ratio of seed entity set queries (out of total
55 queries) on which one method achieves better
or the same performance as the other method. We
can see that CGExpan clearly outperforms SetEx-
pan and its two variants on the majority of queries.
In Table 4, we further compare CGExpan with
two “oracle” models that have the access to ground
truth class names. Results show that CGExpan can
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Figure 3: Performance for different k values on Wiki
(left) and APR (right).

achieve comparative results as those oracle models,
which indicates the high quality of generated class
names and effectiveness of CGExpan.

Parameter Study. In CGExpan, we calculate the
similarity between an entity and a class name based
on its k occurrences that are most similar to the
class name (cf. Eq. (1)). Figure 3 studies how this
parameter k would affect the overall performance.
We find that the model performance first increases
when k increases from 1 to 5 and then becomes
stable (in terms of MAP@10 and MAP@20) when
k further increases to 10. Overall, we find k = 5 is
enough for calculating entity-class similarity and
CGExpan is insensitive to k as long as its value is
larger than 5.

4.3 Case Studies

Class Name Selection. Table 5 shows some re-
sults of our class name ranking module for several
queries from different semantic classes in the Wiki
dataset. We see that CGExpan is able to select
the correct class name and thus injects the correct
semantics in later entity selection module. More-
over, as shown in the last column, CGExpan can
identify several negative class names that provide
a tight boundary for the target semantic class, in-
cluding sports and competition for sport
league class, as well as city and country
for Chinese province class. These negative
class names help CGExpan avoid adding those re-
lated but erroneous entities into the set.

From Table 5 we can see that it happens when
the predicted positive class name is not exactly
the ground true class name in the original dataset.
However, since we use both the generated class
names and currently expanded entities as guidance
and select new entities according to the context fea-
tures in the provided corpus, those imperfect class
names can still guide the set expansion process and
perform well empirically.

Also, in principle, synonyms of the positive class
name can be wrongly selected as negative class
names, which also happens but very rarely in our
experiments. However, since these synonyms con-
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Seed Entity Set Ground True Class Name Positive Class Name Negative Class Names
{“Intel”, “Microsoft”, “Dell”} company company product, system, bank, ...

{“United States”, “China”, “Canada”} country country state, territory, island, ...
{“ESPNews”, “ESPN Classic”, “ABC”} tv channel television network program, sport, show, ...
{“NHL”, “NFL”, “American league”} sports league professional league sport, competition, ...

{“democratic”, “labor”, “tories”} party political party organization, candidate, ...
{“Hebei”, “Shandong”, “Shanxi”} Chinese province chinese province city, country, state, ...

{“tuberculossi”, “Parkinson’s disease”,
“esophageal cancer”} disease chronic disease symptom, condition, ...

{“Illinois”, “Arizona”, “California”} US state state county, country, ...

Table 5: Class names generated for seed entity sets. The 2nd column is the ground true class name in the original
dataset. The 3rd and 4th columns are positive and negative class names predicted by CGExpan, respectively.

sistently rank lower than the positive one for the
initial seeds based on the given corpus, they are
indeed not good class names for this specific cor-
pus. Thus, misclassifying them will not have much
influence on the performance of our model.
Entity Selection. Table 6 shows expanded en-
tity sets for two sample queries. After correctly
predicting true positive class names and selecting
relevant negative class names, CGExpan utilizes
them to filter out those related but erroneous en-
tities, including two TV shows in television
network class and three entities in political
party class. As a result, CGExpan can outper-
form CGExpan-NoFilter.

5 Related Work

Entity Set Expansion. Traditional entity set ex-
pansion systems such as Google Sets (Tong and
Dean, 2008) and SEAL (Wang and Cohen, 2007,
2008) typically submit a query consisting of seed
entities to a general-domain search engine and ex-
tract new entities from retrieved web pages. These
methods require an external search engine for on-
line seed-oriented data collection, which can be
costly. Therefore, more recent studies propose to
expand the seed set by offline processing a corpus.
These corpus-based set expansion methods can be
categorized into two general approaches: (1) one-
time entity ranking which calculates entity distribu-
tional similarities and ranks all entities once with-
out back and forth refinement (Mamou et al., 2018;
Yu et al., 2019b), and (2) iterative bootstrapping
which aims to bootstrap the seed entity set by iter-
atively selecting context features and ranking new
entities (Rong et al., 2016; Shen et al., 2017; Yan
et al., 2019; Zhu et al., 2019; Huang et al., 2020).
Our method in general belongs to the later category.
Finally, there are some studies that incorporate ex-
tra knowledge to expand the entity set, including
negative examples (Curran et al., 2007; McIntosh
and Curran, 2008; Jindal and Roth, 2011), semi-
structured web table (Wang et al., 2015), and ex-

ternal knowledge base (Yu et al., 2019a). Partic-
ularly, Wang et al. (2015) also propose to use a
class name to help expand the target set. However,
their method requires a user-provided class name
and utilizes web tables as additional knowledge,
while our method can automatically generate both
positive and negative class names and utilize them
to guide the set expansion process.

Language Model Probing. Traditional language
models aim at assigning a probability for an in-
put word sequence. Recent studies have shown
that by training on next word or missing word pre-
diction task, language models are able to gener-
ate contextualized word representations that bene-
fit many downstream applications. ELMo (Peters
et al., 2018) proposes to learn a BiLSTM model
that captures both forward and backward contexts.
BERT (Devlin et al., 2019) leverages the Trans-
former architecture and learns to predict randomly
masked tokens in the input word sequence and
to classify the neighboring relation between pair
of input sentences. Based on BERT’s philosophy,
RoBERTa (Liu et al., 2019) conducts more care-
ful hyper-parameter tuning to improve the perfor-
mance on downstream tasks. XLNet (Yang et al.,
2019) further combines the ideas from ELMo and
BERT and develops an autoregressive model that
learns contextualized representation by maximiz-
ing the expected likelihood over permutations of
the input sequence.

Aside from generating contextualized represen-
tations, pre-trained language models can also serve
as knowledge bases when being queried appropri-
ately. Petroni et al. (2019) introduce the language
model analysis probe and manually define prob-
ing queries for each relation type. By submitting
those probing queries to a pre-trained LM, they
show that we can retrieve relational knowledge and
achieve competitive performance on various NLP
tasks. More recently, Bouraoui et al. (2020) further
analyze BERT’s ability to store relational knowl-
edge by using BERT to automatically select high-
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Seed Entity Set CGExpan CGExpan-NoCN CGExpan-NoFilter
1 “Pb” 1 “NBC” 1 “Pb”
2 “ABC” 2 “CBS” 2 “Mtv”
3 “CBS” 3 “Disney Channel” 3 “ABC”

... ... ...
35 “Telemundo” 35 “ESPN Radio”* 35 “MyNetworkTV”
36 “Fox Sports Net” 36 “BBC America” 36 “ESPN2”
37 “Dateline NBC” 37 “G4” 37 “the Today Show”*
38 “Channel 4” 38 “Sirius Satellite Radio”* 38 “Access Hollywood”*
39 “The History Channel” 39 “TNT” 39 “Cartoon Network”

{“ESPN”,
“Discovery Channel”,
“Comedy Central”}

... ... ...
1 “republican” 1 “national party” 1 “republican”
2 “likud” 2 “labour party” 2 “likud”
3 “liberal democrats” 3 “gop establishment”* 3 “liberal democrats”

... ... ...
40 “komeito” 40 “republican jewish coalition”* 40 “young voters”*
41 “centrist liberal democrats” 41 “british parliament”* 41 “bjp”
42 “aipac”* 42 “tea party patriots”* 42 “religious”*
43 “aam aadmi party” 43 “centrist liberal democrats” 43 “congress”*
44 “ennahda” 44 “federal government”* 44 “lib dem”

{“democratic party”,
“republican party”,

“labor party”}

... ...

Table 6: Expanded entity sets for two sample queries, with erroneous entities colored red and marked with a “*”.

quality templates from text corpus for new relation
prediction. Comparing with previous work, in this
paper, we show that probing pre-trained language
model works for entity set expansion task, and we
propose a new entity set expansion framework that
combines corpus-independent LM probing with
corpus-specific context information for better ex-
pansion performance.

6 Conclusions

In this paper, we propose a new entity set expan-
sion framework that can use a pre-trained LM to
generate candidate class names for the seed set,
rank them according to the provided text corpus,
and guide the entity selection process with the se-
lected class names. Extensive experiments on the
Wiki and APR datasets demonstrate the effective-
ness of our framework on both class name predic-
tion and entity set expansion. In the future, we
plan to expand the method scope from expanding
concrete entity sets to more abstract concept sets.
For example, we may expand the set {“machine
translation”, “information extraction”, “syntactic
parsing”} to acquire more NLP task concepts.
Another interesting direction is to generate a class
name hierarchy via language model probing.
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