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Abstract

In many documents, such as semi-structured
webpages, textual semantics are augmented
with additional information conveyed using
visual elements including layout, font size,
and color. Prior work on information ex-
traction from semi-structured websites has re-
quired learning an extraction model specific
to a given template via either manually la-
beled or distantly supervised data from that
template. In this work, we propose a solu-
tion for “zero-shot” open-domain relation ex-
traction from webpages with a previously un-
seen template, including from websites with
little overlap with existing sources of knowl-
edge for distant supervision and websites in en-
tirely new subject verticals. Our model uses a
graph neural network-based approach to build
a rich representation of text fields on a web-
page and the relationships between them, en-
abling generalization to new templates. Exper-
iments show this approach provides a 31% F1
gain over a baseline for zero-shot extraction in
a new subject vertical.

1 Introduction

Semi-structured websites offer rich sources of high-
quality data across many areas of knowledge (Dong
et al., 2014). These websites present information
via text that is accompanied by rich visual and
layout features that can be generalized beyond a
single website. However, most prior work on infor-
mation extraction (IE) from websites has largely
ignored most of these features, instead relying only
on HTML features specific to an individual web-
site (Ferrara et al., 2014). This requires training
data for every website targeted for extraction, an
approach that cannot scale up if training data must
be manually created.

To circumvent manual data annotation, previous
work used a distant supervision process requiring
a knowledge base aligned to the website targeted
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Figure 1: Our zero-shot open-domain information ex-
traction process learns generalizable graph-based rep-
resentations of how relations are visually presented on
semi-structured websites, allowing for training on one
vertical (such University sites) and extraction from an-
other (such as Movie sites).

for extraction (Gentile et al., 2015; Lockard et al.,
2018), including for OpenlE extraction (Banko
et al., 2007; Bronzi et al., 2013; Lockard et al.,
2019). These methods, however, can only learn a
website-specific model based on seed knowledge
for the site, but cannot be generalized to the major-
ity of websites with knowledge from new verticals,
by long-tail specialists, and in different languages.

In this paper, we introduce the task of zero-shot
relation extraction from semi-structured websites,
in which a learned model is applied to extract
from a website that was not represented in its train-
ing data (Figure 1). Moreover, we introduce ZE-
ROSHOTCERES, a graph neural network model
that encodes semantic textual and visual patterns
common across different training websites and can
generalize to extract information from documents
with never-before-seen templates and topics.
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Unlike unstructured text, which can be modeled
as a sequence, or images, which can be modeled
as a two-dimensional grid of pixels, it is not obvi-
ous how to operate over the many shapes and sizes
of text fields on a semi-structured webpage. We
illustrate our intuition using the webpage snippets
in Figure 1: Despite their differences, each site
uses alignment of relation and object strings, either
vertically or horizontally, to help indicate relation-
ships; in addition, relation strings are often more
prominent than their objects, either in size or bold-
ness. Such features are semantically meaningful to
readers and often consistent from site to site; thus,
encoding them into the representation of webpages
will allow us to generalize to unseen sites.

Our model, ZEROSHOTCERES, encodes these
diverse feature types in a graph representation in
which each text field becomes a node in a graph,
connected by edges indicating layout relationships
on the page. This abstracts away the details of the
page while maintaining the core visual structure
presented to the reader. A graph neural network
is then applied to produce a new representation of
each text field, informed by the surrounding page
context. This representation is then used to extract
entities and relationships from the document. This
allows us to extract not only in the closed-domain
setting, but also allows us to conduct OpenlE on
websites about entirely new subject verticals not
seen during training.

Our contributions are threefold: (a) We intro-
duce a graph neural network model for webpage
representation that integrates multi-modal informa-
tion including visual, layout, and textual features,
enabling generalization for IE from never-before-
seen websites. (b) We propose the first approach to
enable Open Information Extraction from semi-
structured websites without prior knowledge or
training data in the subject vertical. (c) Our method
works in both OpenlE and ClosedIE settings. We
conduct evaluations showing the effectiveness of
the technique and exploring the challenges of zero-
shot semi-structured IE, achieving a 31% improve-
ment in F1 compared to an OpenlE baseline. The
graph model gives a 26% F1 boost when extracting
according to a defined schema (ClosedIE).

2 Related Work

DOM-based ClosedIE: The conventional ap-
proach to extraction from semi-structured websites
is wrapper induction (Kushmerick et al., 1997), in

which training data for documents from a given
template is used to learn a rule-based extractor
based on DOM (i.e., HTML) features to apply
to other documents of the same template, extract-
ing relations according to a pre-defined ontology
(“ClosedIE”). Since this approach requires training
data for each template targeted for extraction, re-
cent work has focused on reducing the manual work
needed per site. Fonduer (Wu et al., 2018) provides
an interface for easily creating training data, Ver-
tex (Gulhane et al., 2011) uses semi-supervision
to minimize the number of labels needed, LODIE
(Gentile et al., 2015) and Ceres (Lockard et al.,
2018) automatically generate training data based
on distant supervision, and DIADEM (Furche et al.,
2014) identifies matching rules for specific entity

types.

DOM-based OpenlE: WEIR (Bronzi et al., 2013)
and OpenCeres (Lockard et al., 2019) offer OpenlE
approaches to DOM extraction. The latter method
uses visual features in a semi-supervised learning
setting to identify candidate pairs that are visually
similar to known (relation, object) pairs; however,
the ultimate extraction model learned is still site-
specific and based on DOM features rather than the
more generalizable visual or textual features. Pa-
supat and Liang (2014) present a zero-shot method
for extraction from semi-structured webpages, but
limit their work to extraction of entities rather than
relationships and do not consider visual elements
of the page.

Multi-modal extraction: The incorporation of vi-
sual information into IE was proposed by Aumann
et al. (2006), who attempted to learn a fitness func-
tion to calculate the visual similarity of a document
to one in its training set to extract elements like
headlines and authors. Other recent approaches
that attempt to address the layout structure of doc-
uments are CharGrid (Katti et al., 2018), which
represents a document as a two-dimensional grid of
characters, RiSER, an extraction technique targeted
at templated emails (Kocayusufoglu et al., 2019),
and that by Liu et al. (2018), which presents an
RNN method for learning DOM-tree rules. How-
ever, none of these address the OpenlE setting,
which requires understanding the relationship be-
tween different text fields on the page.

The approaches most similar to ours are Gra-
phlE (Qian et al., 2019) and the approach by Liu
et al. (2019). Both approaches involve construct-
ing a graph of text fields with edges representing
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Figure 2: A depiction of the web page representation module (left) and relation classifiers (right).

horizontal and vertical adjacency, followed by an
application of a GCN. However, neither approach
makes use of visual features beyond text field adja-
cency nor DOM features, and both only consider
extraction from a single text field rather than Ope-
nlE. In addition, they show only very limited results
on the ability of their model to generalize beyond
the templates present in the training set.

3 Problem and Approach Overview

3.1 Zero-shot relation extraction from
semi-structured websites

We address the problem of extracting entities and
the relationships between them as expressed by
never-before-seen semi-structured websites. A
semi-structured website typically belongs to a sub-
jectvertical V', where V' is a general field of knowl-
edge such as movies, finance, or sports. A semi-
structured website consists of a set of detail pages
sharing a similar template, each of which contains
a set of facts about a page topic entity €;opic. The
HTML document w defines a set of text fields 7',
which the web browser renders as a webpage ac-
cording to the instructions defined in the HTML
and any referenced auxiliary files such as CSS or
Javascript. The text fields have both textual and
visual features, described in Section 4.2.1.

3.1.1 Relation Extraction

Our goal is to extract (subject, relation, object)
knowledge triples, where the subject is e;opc, the
object is a text field ¢ € T containing the name
of an entity (or atomic attribute value), and the
relation indicates the relationship between the two
entities.

For this work, we assume the page topic entity
has already been identified, (such as by the method

proposed by Lockard et al. (2018) or by using the
HTML title tag) and thus limit ourselves to
identifying the objects and corresponding relations.
We consider the following two settings:

Relation Extraction (ClosedIE): Let R define a
closed set of relation types, including a special type
indicating “No Relation”. Relation Extraction is
the assignment of each text field ¢ to one r; € R,
which indicates the relationship between the entity
€object mentioned in ¢ and e4opic.-

Open Relation Extraction (OpenlE): Given a
pair of text fields (4, j), Open Relation Extraction is
a binary prediction of whether ¢ is a relation string
indicating a relationship between the entity e,pjec
mentioned in j and egopic.

3.1.2 Zero-shot Extraction

Unlike prior work that requires the learning of a
model specific to the semi-structured website tar-
geted for extraction, we look at zero-shot extraction.
Given a semi-structured website W targeted for ex-
traction, zero-shot extraction is the learning of a
model without any use of pages from W during
training. We consider two zero-shot settings:

Unseen-Website Zero-shot Extraction is the
learning of a model without any use of pages from
W, but with pages from some other website(s) from
vertical V' during training.

Unseen-Vertical Zero-shot Extraction is the
learning of a model without any use of pages from
W or of pages from any website with vertical V'
during training.

3.2 Approach Overview

Figure 2 depicts our approach for zero-shot rela-
tion extraction (detailed in Section 5) leveraging
a web page representation that will capture the
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similarities in visual and textual semantics across
websites (Section 4). Our web page representation
module first converts each page into a layout graph
(Section 4.1) that abstracts away the details of the
page structure while maintaining the adjacency re-
lationships between text fields. We represent each
text field with an initial feature vector of visual
and textual attributes. This input is passed into a
graph neural network that allows for information
to flow between nodes, producing a new text field
representation that captures contextual information
(Section 4.2).

To obtain a web page encoding, we leverage a
pre-training step with auxilliary loss function £,
that encourages the model to produce an intermedi-
ary representation useful for IE. This is performed
via a three-way classification that determines if a
text field contains a relation name, the object of
some relation, or irrelevant text (Section 4.3). Af-
ter pre-training, the weights of this GNN are frozen
and it can be applied to new pages, with its output
used as input into a relation extraction module, opti-
mized with task-specific loss function L%, where
the task is either OpenlE or ClosedIE, described in
Section 5. The resulting approach minimizes our
overall loss L£7scgres, With:

ﬁZSCEREs = Epre + Etask (1)

4 Web Page Encoder

The key idea behind our solution is to train web-
page representations to capture the fundamental
similarities in visual and textual semantics across
websites to express relations, objects, and their re-
lationships. The fundamental characteristics we
capture, generalizable across templates and verti-
cals, thus allow us to carry over our knowledge
across websites and enable zero-shot extraction.
There are two key parts in our solution. First, we
build a graph to capture the layout relationships in
a more abstract form that allows us to more easily
learn the common features across different sites
such as the fact that relation strings are often to the
left or above their objects (Section 4.1). Second,
we apply a Graph Neural Network (GNN) to learn
representations for each node capturing contextual
information about its neighborhood on the webpage
(Section 4.2), allowing information to flow through
the nodes, providing context (e.g., flowing through
“Cast” to a far-away node “Uma Thurman” via the
closer node “Ethan Hawke” in Figure 3). This

Tape (2001)
Cast

! Robert Sean Leonard <=———————————p Johnny

ma Thurman ———— Amy

Crew

Richard Linklater Director

Maryse Alberti inematographer

Figure 3: A cropped portion of the detail page from all-
movie.com for the film Tape. Arrows overlaid showing
the constructed page graph consisting of edges for each
horizontal (purple), vertical (yellow) and DOM (green)
relationship between text fields.

representation will be useful for relation extraction
as described in Section 5.

4.1 Page graph construction

We encode the layout relationships between text
fields in the form of a graph, GG, consisting of a
set of nodes IV, each corresponding to a text field,
and a set of edges E corresponding to relationships
between the text fields. The edges capture three
forms of adjacency, as shown in the example in
Figure 3:

Horizontal: Edges are added when two text fields
are horizontal neighbors on the page; that is, they
have a shared vertical location and there are no
other text fields between them.

Vertical: Edges are added when two text fields are
vertical neighbors on the page; that is, they have
an overlapping horizontal location and there are no
other text fields between them.

DOM: Edges are added when two text fields are
siblings or cousins in the DOM tree; that is, the
absolute XPaths identifying their locations differ
only at a single index value.

4.2 Graph Neural Network (GNN)

To build a representation of each text field that in-
corporates the surrounding page context, we use
Graph Attention Networks (GAT) (Velickovié et al.,
2018). The feature vector for each text field (de-
scribed below) and the page graph form the input to
a GAT, which then produces a new representation
for each text field based on the surrounding context
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in the graph. Specifically, for each text field ¢, GAT
layer [ computes a representation hﬁ as follows:

hh = a< > aing@l), (2)

JEN;

where [V; is the set of neighbors of node ¢ in the
graph, and hé-_l is the representation of node j from
the preceding layer; h? indicates the input features
for the node. (For each node, we add a self loop
to the graph; that is, including ¢ in N;.) WlG isa
learned weight matrix applied to the node features
for layer [ — 1 and o is a non-linear function, in our
case a ReLU. The attention weight «;; determines
how influenced a node’s representation is by each
of its neighbors, calculated as follows:

exp (a (aT[WERY Wéhé_l]))

ke, exb (o(aT LR WEREY) )
(3)

where a is a weight vector applied against the con-
catenation (represented by ““;”) of the two node’s
features as transformed by WlG and o is a ReL.U.
This produces a new contextualized set of features
for each node that are informed by the surround-
ing page context. We describe the original input

features for each text field in the next section.

4.2.1 Initial text field features

For each text field on the page, we produce an
initial feature vector containing both visual feature
vector V' and textual feature vector 7. We define
the input feature vector h? for text field i as:

by = [T(i); V (i)] )

(2

[73%2]

where “;” represents concatenation.

Visual Features: A numeric feature vector is con-
structed representing the bounding box coordinates
of the text field, the height and width of the bound-
ing box, and the font size, along with one-hot fea-
tures representing the typeface, font weight, font
style, color, and text alignment.

Textual Features: In ClosedIE, to capture its se-
mantics, the textual content of the text field is
processed with a pre-trained BERT (Devlin et al.,
2018) model. To produce a representation of the
entire text field, we simply average the BERT-Base
output for each token in the text field. For OpenlE,

since the goal is to generalize to entirely new sub-
ject verticals that may contain text not seen during
training, only a single textual feature is used': the
percent of pages on the site on which the string
in the text field appears. This frequency measure
helps differentiate relation strings, which are likely
to be common, from object strings, which are more
likely to be rare.

4.3 Pre-Training Web Page Encoder

To encourage the GNN weights to capture the fea-
tures necessary to represent relationships on the
page, we use a pre-training step to learn the GNN
representation before incorporating it into the ex-
traction model. The pre-training task is a simplified
form of the OpenlE task. To speed up training by
avoiding the pairwise decisions necessary for Ope-
nlE, we instead perform a multi-class classification
of each text field into a class ¢ in the set {Relation,
Object, Other}:

P <c|h§; 9) = softmax (Wprehé) (5)

where h! is the output of the GNN for the text field,
Wpre is a weight matrix, and 6 comprises W and
Wpre. Given a training set with 7' text fields, each
with a ground truth class y?"®, we minimize the
cross-entropy 1oss Lp¢:

T
Lpre = - Z Ing (yipre|hé7 9) (6)
=1

To discourage overfitting to spurious details in the
small number of websites in our training set, we
freeze the GNN weights after pre-training and do
not update them during the full OpenlE training.
After pre-training we discard the linear layer W,
since it is not needed for subsequent steps; instead,
we directly use the GNN output h'.

5 Relation Extraction Model

Once we have the new representation h} of each
text field ¢ produced by the above GNN process,
we can perform our final classification.

5.1 OpenlE

For OpenlE, the classification decision must be
made over a pair of text fields, ¢ and j, the first
containing the candidate relation string and the
second containing the candidate object string. To

'This feature is also used during ClosedIE
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avoid examining all possible pairs of fields, we first
apply the candidate pair identification algorithm
from Lockard et al. (2019), which filters down to a
set of potential pairs based on physical and layout
distance between text fields.

For each candidate pair, we concatenate the
GNN-produced contextual features h' for both text
fields with the original features h° for both text
fields (since some information can be diluted in
the GNN), as well as a pairwise feature vector that
simply contains the horizontal and vertical distance
between the two text fields, and pass them into a
binary classifier:

E — FNN ([h?; h?; hi: hé;pairwise@j], 901E>
(7)

where FNN is a feed-forward neural network with
parameters 6977, “;” indicates concatenation, and

OI E is the predlcted probability that the two text
ﬁelds constitute a (relation, object) pair. We then
optimize for cross-entropy loss across training ex-
amples 1" with yOI B — 1 if the pair is positive:

Z yOIE log r;

OIE)

oI
T

Loie =

+(1-
5.2 ClosedIE

For ClosedIE, we perform a multi-class classifica-
tion using the contextual representation produced
by the GNN (hﬁ) along with the original features
(h?) for text field ¢:

log (1—rP™#), (8)

rC1E — FNN ([0 1] 6€7)  (9)

where FNN is a feed-forward neural network pa-
rameterized by #“F, «;” indicates concatenation,
and TCI Eis the predlcted probability of relation r
in set R. We optimize for cross entropy loss Lorg:

Lcig = — Zlogp( IE|h?,hi,901E) (10)

where yCI  is the true class for example 7. For both

ClosedIE and OpenlE we use one hidden layer in
the feed-forward network.

6 Experimental Setup

6.1 Dataset

For both OpenlE and ClosedIE, our primary dataset
is the extended version (Lockard et al., 2019) of the

SWDE dataset (Hao et al., 2011), which contains
gold labels for OpenlE extractions for 21 English-
language websites (each with one template) in three
subject verticals (Movie, NBA, and University),
with between 400 and 2,000 pages per site. We
generated ClosedIE labels by converting the Ope-
nlE labels to ClosedIE labels via manual alignment
of OpenlE relations between websites, giving a set
of 18 relations for the Movie vertical, 14 for NBA,
and 13 for University. More information on train-
ing data creation and a complete listing of ClosedIE
relations is available in the Appendix.

We used three SWDE Movie sites (AMCTY,
AllMovie, and IMDDb) as a development set and did
not evaluate on them for the reported results.

6.2 Experimental Settings

For each model tested (both our own and the base-
lines), we classify the training setting into the fol-
lowing categories indicating the level of vertical or
site-specific knowledge used, in decreasing level
of difficulty.

* Level I-Unseen-Vertical Zero-shot (OpenlE
only): A model is trained on sites from two of
the three verticals (e.g. NBA and University) and
applied to sites from the other vertical (Movie).
This is the hardest case and is important when
we wish to extract knowledge from new verticals
where we do not have any prior knowledge or
annotations.

* Level II-Zero-shot with Vertical Knowledge:
A model is trained on all sites but one (spanning
Movie, NBA, and University) and then applied
to the held-out site. As in cross-validation, exper-
iments are repeated with each site having a turn
being held out. It is easier than Level I but is still
important for a new website that may not have
data overlapping with other websites in the same
vertical. For the ClosedIE setting, we train only
on in-vertical sites.

* Level III-Site-specific Knowledge: This is the
traditional setting used by two of our baselines
where we have seed knowledge overlapping with
the website data to allow training a specific model
for the website. Whereas Level I-II are both
zero-shot settings, Level Il is not, as it allows
site-specific training data via weak supervision.
(We do not present results using full supervision
from manual annotations since it is known from
prior work (e.g., Gulhane et al. (2011)) that full
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supervision from the target website yields highly
accurate semi-structured extractors; we note that
ZSCERES also achieves comparable results (~
0.95 F1) in this setting.

We repeated our experiments 10 times and we
report the results averaged across the runs. For
OpenlE, we follow the “lenient” scoring method
for SWDE introduced by Lockard et al. (2019),
scoring an extraction as correct if the relation string
matches any of acceptable surface forms listed by
the ground truth for that object.

Models are constructed in PyTorch (Paszke et al.,
2017), with graph functions implemented in DGL
(Wang et al., 2019) and optimization performed us-
ing Adam (Kingma and Ba, 2014) and a batch size
of 20. For OpenlE, we use a hidden layer size of
25 for the GAT and 100 for the feed-forward layer.
For ClosedIE, we use a hidden layer size of 200
for all layers. We use a 2-layer GAT and dropout
of 0.25. We obtain visual features by rendering
the page using the headless Chrome browser and

querying the values using Selenium?.

Extraction Threshold: Since our zero-shot set-
ting means we cannot use a development set of
pages from the target site to tune the decision
threshold, we instead set the threshold for each
experiment to the value that attains the optimal F1
on the experiments where other sites were held-out.

OpenlE Postprocessing Rules: To ensure consis-
tency among the extracted values, we keep only
the highest confidence extraction in the case that
the same text field is extracted as both a relation
and object, or if multiple relations are extracted
for the same object. In addition, some pages in
the dataset contain relational tables, from which
we sometimes extract the column headers as rela-
tions with the column contents as objects. While
we believe a post-processing step could potentially
recover these relational contents from our extrac-
tions, the SWDE data does not contain ground truth
for such facts. Instead, we apply the heuristics de-
scribed by (Cafarella et al., 2008) to identify these
tables and remove them from our extractions.

6.3 Baselines and Models

We compare against several baselines:

Colon Baseline (OpenlE) This is a heuristic tech-
nique that identifies all text fields ending in a colon

https://www.seleniumhqg.org

(“:”) and assumes they are relation strings, then ex-
tracts the text field to the right or below, whichever
is closer, as the object. We consider it as Level I
knowledge since it requires no training.

WEIR (OpenlE) This approach by Bronzi et al.
(2013) discovers relations by aligning multiple
pages about the same entity. Because it requires
sites to be grouped by vertical and uses a gazetteer
list of entity names for the alignment, it has Level
III knowledge.

OpenCeres (OpenlE) This applies the model by
Lockard et al. (2019), which requires a knowledge
base matching some facts presented on the target
website, using Level III knowledge.

ZSCERES-FFNN (Feed-forward neural net-
work): This model takes the same features and
training data as the full ZSCERES model but re-
moves the GNN component, with versions tested
with both Level I (ZSCERES-FFNN Unseen-
Vertical) and Level II (ZSCERES-FFNN Unseen-
Website) knowledge.

ZSCERES-GNN: This applies the full model de-
scribed in Section 4.2, with versions tested with
both Level I (ZSCERES-GNN Unseen-Vertical)
and Level II (ZSCERES-GNN Unseen-Website)
knowledge.

7 Experimental Results

7.1 OpenlE

Level-I Knowledge: Table 1 shows that ZSCERES
is able to extract facts in entirely new subject verti-
cals 31% more accurately than the colon baseline.
Across all SWDE sites (micro-averaging across
all extractions), ZSCERES-GNN achieves an F1
of 0.45, in comparison with 0.43 for ZSCERES-
FFNN, showing that the additional information pro-
vided by the page encoder allows for a better repre-
sentation of the relationships between text fields.

By successfully learning general patterns of rela-
tional presentation on webpages, ZSCERES-GNN
is able to train solely on a set of 16 websites
about Movies and NBA players, and then extract
from University websites more accurately than the
WEIR and OpenCeres systems, which take advan-
tage of Level III knowledge to learn models spe-
cific to those University sites. While OpenCeres’s
rich vertical knowledge allows it to attain better
results in Movie and NBA, ZSCERES-GNN still
posts much stronger results than the other baselines
in these two verticals.
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System Site-specific Level Movie NBA University Average

Model P R F1 P R F1 P R F1 F1
OpenCeres Yes o 071 084 0.77 074 048 0.58 0.65 0.29 0.40 0.58
WEIR Yes m 0.14 0.10 0.12 0.08 0.17 0.11 0.13 0.18 0.15 0.13
ZSCERES-FFNN Unseen-Website No I 037 05 045 035 049 041 047 059 0.52 0.46
ZSCERES-GNN Unseen-Website No I 049 0.51 050 047 039 042 050 049 0.50 0.47
Colon Baseline No 1 047 0.19 027 051 033 040 046 0.31 0.37 0.35
ZSCERES-FFNN Unseen-Vertical No 1 042 038 040 044 046 045 050 045 048 0.44
ZSCERES-GNN Unseen-Vertical No 1 043 042 042 048 049 048 049 045 047 0.46

Table 1: With no vertical knowledge, ZSCERES-GNN achieves 65% higher recall and comparable precision in all
verticals compared to the colon baseline. Even in comparison to approaches that use vertical knowledge to learn
site-specific OpenlE models, ZSCERES achieves an F1 seven points higher in the University vertical.

—— Unseen Website
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Figure 4: For OpenlE, using the full SWDE set (ex-
cept the test site), including in-vertical training data (i.e.
Level II knowledge), allows for 5-10 point gains in pre-
cision at equivalent recall compared to using only out-
of-vertical training data (Level I).

System Knowledge Level P R Fl
ZSCERES-FFNN IT 045 049 046
ZSCERES-GNN I 0.62 055 0.58

Table 2: For ClosedIE, using the pre-trained GNN adds
12 F1 points in comparison to the baseline lacking con-
textual information.

Level-II Knowledge: Figure 4 shows that adding
the in-vertical sites to the training set (but still with-
holding the test site) allows the model to achieve
performance better than the Level I training set that
uses only out-of-vertical data.

7.2 ClosedIE

Table 2 shows the results for ClosedIE extraction.
ZSCERES-GNN attains an overall F1 of 0.58 av-
eraged across the three verticals. This signifi-
cantly outperforms the feed-forward model that
did not use the GNN, which attained an F1 of 0.46.
While our performance on this dataset is far below
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Figure 5: Performance on the ClosedIE Movie vertical
increases significantly as more sites are added to the
training data.

OpenlE F1  ClosedIE F1
Full Model 0.71 0.73
No GNN 0.68 (0.031) 0.63(0.10)
No pre-training 0.66 (0.05 1) 0.73
No DOM edges 0.65 (0.06 ]) 0.58 (0.15])
No spatial edges 0.65 (0.06 )) 0.62(0.11)
No visual features 0.55(0.16 ) 0.73
No BERT features - 0.10(0.63 )
Add BERT features  0.68 (0.03 |) -

Table 3: Ablations on the Movie development set.

the state-of-the-art for semi-structured ClosedIE
(above 0.9 for all verticals), prior systems all learn
site-specific models based on manual labeling or
prior knowledge aligned to the website, while we
have only Level II Knowledge available.

Figure 5 shows how adding additional training
data improves performance in the Movie vertical. It
appears that adding additional training sites would
further improve the performance.
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7.3 Ablation Study

Table 3 shows the contributions of different ele-
ments of the model in the OpenlE and ClosedIE
settings as calculated on the development set of
three sites in the Movie vertical. These ablations
show that the GNN helps in both settings, with
a larger effect in ClosedIE, which is likely due
to sharing the rich information about the text of
nearby text fields.

Pre-training is important in OpenlE but does not
have a significant effect for ClosedIE. This is not
surprising given that the pre-training task is closely
related to the OpenlE task. Both DOM and spatial
adjacency edges contribute to the success of the
page layout graph for the GNN. In the ClosedIE
setting, the text and layout relationships alone will
generally contain sufficient information to make
an extraction, while in OpenlE the visual elements
(such as whether text is bold or underlined) are a
strong source of consistency across websites.

7.4 Error Analysis

OpenlE: To understand what cases our ZSCERES-
GNN model is missing, we sampled 100 error cases
in each vertical from the Unseen- Vertical experi-
ment and manually examined them. Some exam-
ples of both erroneous and correct extractions are
shown in Table 4 in the Appendix. False positives
were largely due to the presence of two different
types of n-ary relationships on the page.

The first class of errors involving n-ary relation-
ships, making up 43% of all false positives, were
where several facts have a multi-way relationship
with the page topic, but individually the fields are
not meaningful. For example, the NBA site US-
AToday includes a “Latest notes” section with links
to several articles relevant to the page topic en-
tity, mentioning the date, headline, and summary.
We extract all of these objects with the “Latest
notes” relation, but to obtain meaningful knowl-
edge it would be necessary to additionally asso-
ciate the correct date, headline, and summary with
each other. While we can envision methods for do-
ing this via post-processing, the SWDE benchmark
considers these to be errors.

In the second class, ZSCERES correctly ex-
tracted (relation, object) pairs, but from page sec-
tions that contain facts about entities other than
the page topic. For example, on the MatchCollege
site, a section of “Similar Local Colleges” contains
some of the same relations presented for the page

topic, in similar formatting. These types of errors
made up another 6% of false positives.

Of the remaining errors, 33% were due to the ex-
traction of pairs where the extracted relation did not
represent a relationship, while another 14% were
due to the extraction of pairs with a correct relation
string and incorrect object. Most false negatives
occurred in long vertical lists, where some values
were extracted, but not all.

ClosedIE: False negatives were most likely to oc-
cur on long lists of values (such as cast lists), where
values toward the bottom of the list were sometimes
missed. Recall also suffered on relations where the
relation name varied significantly from site to site,
or where ambiguity existed. For example, the string
“Produced by” is used by some sites to indicate the
producer of the film, while on other sites it indi-
cates the production company.

8 Conclusion

We have introduced a zero-shot method for learn-
ing a model for relation extraction from semi-
structured documents that generalizes beyond a
single document template. Moreover, this approach
enables OpenlE extraction from entirely new sub-
ject verticals where no prior knowledge is avail-
able. By representing a webpage as a graph defined
by layout relationship between text fields, with
text fields associated with both visual and textual
features, we attain a 31% improvement over the
baseline for new-vertical OpenlE extraction. Fu-
ture extensions of this work involve a more general
pre-training objective allowing for the learned rep-
resentations to be useful in many tasks as well as
distantly or semi-supervised approaches to benefit
from more data.
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A Appendix

A.1 ClosedIE Label Mappings

SWDE provides OpenlE labels for all binary rela-
tions between the objects mentioned on the page
and the page topic entity. These labels include
the relation string used to indicate the relationship,
sometimes including multiple acceptable surface
forms if there is more than one applicable string for
the relation (usually due to more or less specific ver-
sions of the relation). The original SWDE data only
includes ClosedIE labels for a small subset of rela-
tion types. To create ClosedIE ground truth for all
relations on the sites, we examined all OpenlE rela-
tions across the SWDE sites and grouped them into
a set of relations that each represented the same fun-
damental idea. In some cases, we chose to map rela-
tions into a somewhat more general category, such
as mapping “Associate Producer” and “Executive
Producer” into the same “Producer” concept. After
obtaining this set, we eliminated all relations that
appeared on fewer than 3 websites in the dataset.
The set of relations used for the ClosedIE experi-
ments is given in Table 5. The full mapping of Ope-
nlE to ClosedIE relations can be found at https:
//github.com/cdlockard/expanded_swde.

A.2 Training Data Creation

The Extended SWDE dataset provides ground truth
extractions of OpenlE predicate and object strings
for the webpages it contains. However, it does
not specify which text fields on the page were the
source of the extractions. To create training data,
we need to label a specific text field. It is usually
the case that each ground truth string matches only
one text field, so there is no ambiguity, but in cases
where multiple text fields have the same value, we
must disambiguate which one to use. We did this by
identifying all matching text fields for the ground
truth predicate and object and chose the pair in
which the predicate and object strings have the
closest Euclidean distance on the rendered page.
While this is generally a safe assumption, there
are still occasional errors in the training data. In
particular, we observed that the NBA vertical had
considerably more ambiguous cases since most re-
lations are numerical and the pages often contained
large tables of numbers. We hypothesize that this
may explain why performance on the NBA vertical
is lower when using Unseen-Website training data
compared to the Unseen-Vertical setting (Table 1).
During testing, we applied the same standard

used by prior work on the dataset and accepted an
answer as correct if it matched the ground truth
string, regardless of which text field produced the
extraction.
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Extraction

Vertical Site Correct Notes
Page Topic Relation Object
Movie Hollywood Spanish Fly Costume Designer Jose Maria de Cos- Yes
sio
Movie Metacritic Saving Face Reviewed by Maitland McDon- Yes
agh
NBAPlayer ESPN Jameer Nelson Birth Place Chester, PA Yes
NBAPlayer MSNCA Matt Bonner College Florida Yes
University ~ CollegeProwler  Spring Arbor University Admission Difficulty Average Yes
University ~ MatchCollege Menlo College College Credits Accepted AP Credit Yes
Movie RottenTomatoes ~ Slow Burn Tomatometer Percentage ~ 97% No Subject of relation is not
page topic but is an un-
related recently released
film
Movie RottenTomatoes ~ Ginger Snaps 2 WHAT’S HOT ON RT Trailer: Santa has a No Extracted relation string is
bloody Xmas not a relation
Movie Metacritic The Constant Gardener User Panel Options The Constant Gar- No Extracted relation string is
dener not a relation
University ~ CollegeProwler ~ Minnesota School of Business CP Top 10 Lists Best Performance No Link to article not related
Venues to page topic, but is a
“Similar School”
University ~ MatchCollege Maric College Highest Degree Associate’s No Subject of relation is not
page topic
NBAPlayer FoxSports Tony Parker Latest News Mon. Dec 6, 2010 No n-ary object
NBAPlayer MSNCA Gilbert Arenas Birthplace 215 No Erroneous extraction of

weight for birthplace (both
text fields are nearby)

Table 4: Selected OpenlE Extractions from ZSCERES-GNN with Level I training (no knowledge of the subject

vertical).
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Vertical Relation

movie movie.aka
movie movie.box _office
movie movie.budget
movie movie.country
movie movie.directed_by
movie movie.distributor
movie movie.genre
movie movie.language
movie movie.produced_by
movie movie.production_company
movie movie.rating
movie movie.release_date
movie movie.runtime
movie movie.starring
movie movie.synopsis
movie movie.written_by
movie movie.year
nbaplayer nbaplayer.age
nbaplayer nbaplayer.assists
nbaplayer nbaplayer.birthdate
nbaplayer nbaplayer.birthplace
nbaplayer nbaplayer.college
nbaplayer nbaplayer.draft
nbaplayer nbaplayer.experience
nbaplayer nbaplayer.field_goal_percentage
nbaplayer nbaplayer.height
nbaplayer nbaplayer.points
nbaplayer nbaplayer.position
nbaplayer nbaplayer.rebounds
nbaplayer nbaplayer.weight
university university.application_fee
university university.calendar_system
university university.control
university university.enrollment
university university.in_state_tuition
university university.out_state_tuition
university university.phone
university university.religious_affiliation
university university.setting
university university.tuition

university  university.undergraduate_enrollment

university university.website

Table 5: A listing of ClosedIE relation types mapped from OpenlE labels in SWDE
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