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Abstract

Different texts shall by nature correspond to
different number of keyphrases. This desider-
atum is largely missing from existing neural
keyphrase generation models. In this study, we
address this problem from both modeling and
evaluation perspectives.

We first propose a recurrent generative
model that generates multiple keyphrases as
delimiter-separated sequences. Generation di-
versity is further enhanced with two novel tech-
niques by manipulating decoder hidden states.
In contrast to previous approaches, our model
is capable of generating diverse keyphrases
and controlling number of outputs.

We further propose two evaluation metrics tai-
lored towards the variable-number generation.
We also introduce a new dataset (STACKEX)
that expands beyond the only existing genre
(i.e., academic writing) in keyphrase genera-
tion tasks. With both previous and new eval-
uation metrics, our model outperforms strong
baselines on all datasets.

1 Introduction

Keyphrase generation is the task of automatically
predicting keyphrases given a source text. Desired
keyphrases are often multi-word units that sum-
marize the high-level meaning and highlight cer-
tain important topics or information of the source
text. Consequently, models that can successfully
perform this task should be capable of not only dis-
tilling high-level information from a document, but
also locating specific, important snippets therein.

To make the problem even more challenging,
a keyphrase may or may not be a substring of the
source text (i.e., it may be present or absent). More-
over, a given source text is usually associated with

∗ These authors contributed equally. The order is deter-
mined by a fidget spinner.

Dataset #Train #Valid #Test Mean Var %Pre

KP20K ≈514k ≈20k ≈20k 5.3 14.2 63.3%
INSPEC – 1500 500 9.6 22.4 78.5%

KRAPIVIN – 1844 460 5.2 6.6 56.2%
NUS – - 211 11.5 64.6 51.3%

SEMEVAL – 144 100 15.7 15.1 44.5%
STACKEX ≈298k ≈16k ≈16k 2.7 1.4 57.5%

Table 1: Statistics of various datasets. Mean and Var in-
dicate the mean and variance of target phrase numbers,
%Pre denotes percentage of present keyphrases.

a set of multiple keyphrases. Thus, keyphrase gen-
eration is an instance of the set generation problem,
where both the size of the set and the size (i.e., the
number of tokens in a phrase) of each element can
vary depending on the source.

Similar to summarization, keyphrase genera-
tion is often formulated as a sequence-to-sequence
(Seq2Seq) generation task in most prior studies
(Meng et al., 2017; Chen et al., 2018a; Ye and
Wang, 2018; Chen et al., 2018b). Conditioned on
a source text, Seq2Seq models generate phrases
individually or as a longer sequence jointed by
delimiting tokens. Since standard Seq2Seq mod-
els generate only one sequence at a time, thus to
generate multiple phrases, a common approach is
to over-generate using beam search (Reddy et al.,
1977) with a large beam width. Models are then
evaluated by taking a fixed number of top predicted
phrases (typically 5 or 10) and comparing them
against the ground truth keyphrases.

Though this approach has achieved good em-
pirical results, we argue that it suffers from two
major limitations. Firstly, models that use beam
search to generate multiple keyphrases generally
lack the ability to determine the dynamic number of
keyphrases needed for different source texts. Mean-
while, the parallelism in beam search also fails
to model the inter-relation among the generated
phrases, which can often result in diminished diver-
sity in the output. Although certain existing models
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take output diversity into consideration during train-
ing (Chen et al., 2018a; Ye and Wang, 2018), the
effort is significantly undermined during decoding
due to the reliance on over-generation and phrase
ranking with beam search.

Secondly, the current evaluation setup is rather
problematic, since existing studies attempt to match
a fixed number of outputs against a variable number
of ground truth keyphrases. Empirically, the num-
ber of keyphrases can vary drastically for different
source texts, depending on a plethora of factors
including the length or genre of the text, the granu-
larity of keyphrase annotation, etc. For the several
commonly used keyphrase generation datasets, for
example, the average number of keyphrases per
data point can range from 5.3 to 15.7, with vari-
ances sometimes as large as 64.6 (Table 1). There-
fore, using an arbitrary, fixed number k to evaluate
entire datasets is not appropriate. In fact, under
this evaluation setup, the F1 score for the oracle
model on the KP20K dataset is 0.858 for k = 5 and
0.626 for k = 10, which apparently poses serious
normalization issues as evaluation metrics.

To overcome these problems, we propose novel
decoding strategies and evaluation metrics for the
keyphrase generation task. The main contributions
of this work are as follows:

1. We propose a Seq2Seq based keyphrase gen-
eration model capable of generating diverse
keyphrases and controlling number of outputs.

2. We propose new metrics based on com-
monly used F1 score under the hypothesis
of variable-size outputs from models, which
results in improved empirical characteristics
over previous metrics based on a fixed k.

3. An additional contribution of our study is the
introduction of a new dataset for keyphrase
generation: STACKEX.

With its marked difference in genre, we expect the
dataset to bring added heterogeneity to keyphrase
generation evaluation.

2 Related Work

2.1 Keyphrase Extraction and Generation
Traditional keyphrase extraction has been studied
extensively in past decades. In most existing lit-
erature, keyphrase extraction has been formulated
as a two-step process. First, lexical features such
as part-of-speech tags are used to determine a list

of phrase candidates by heuristic methods (Witten
et al., 1999; Liu et al., 2011; Wang et al., 2016;
Yang et al., 2017). Second, a ranking algorithm
is adopted to rank the candidate list and the top
ranked candidates are selected as keyphrases. A
wide variety of methods were applied for ranking,
such as bagged decision trees (Medelyan et al.,
2009; Lopez and Romary, 2010), Multi-Layer Per-
ceptron, Support Vector Machine (Lopez and Ro-
mary, 2010) and PageRank (Mihalcea and Tarau,
2004; Le et al., 2016; Wan and Xiao, 2008). Re-
cently, Zhang et al. (2016); Luan et al. (2017); Gol-
lapalli et al. (2017) used sequence labeling models
to extract keyphrases from text; Subramanian et al.
(2017) used Pointer Networks to point to the start
and end positions of keyphrases in a source text;
Sun et al. (2019) leveraged graph neural networks
to extract keyphrases.

The main drawback of keyphrase extraction is
that sometimes keyphrases are absent from the
source text, thus an extractive model will fail pre-
dicting those keyphrases. Meng et al. (2017) first
proposed the CopyRNN, a neural model that both
generates words from vocabulary and points to
words from the source text. Based on the Copy-
RNN architecture, Chen et al. (2018a); Zhao and
Zhang (2019) leveraged attention to help reducing
duplication and improving coverage. Ye and Wang
(2018) proposed semi-supervised methods by lever-
aging both labeled and unlabeled data for training.
Chen et al. (2018b); Ye and Wang (2018) proposed
to use structure information (e.g., title of source
text) to improve keyphrase generation performance.
Chan et al. (2019) introduced RL to the keyphrase
generation task. Chen et al. (2019a) retrieved simi-
lar documents from training data to help producing
more accurate keyphrases.

2.2 Sequence to Sequence Generation

Sequence to Sequence (Seq2Seq) learning was first
introduced by Sutskever et al. (2014); together
with the soft attention mechanism of (Bahdanau
et al., 2014), it has been widely used in natural
language generation tasks. Gülçehre et al. (2016);
Gu et al. (2016) used a mixture of generation and
pointing to overcome the problem of large vo-
cabulary size. Paulus et al. (2017); Zhou et al.
(2017) applied Seq2Seq models on summary gen-
eration tasks, while Du et al. (2017); Yuan et al.
(2017) generated questions conditioned on docu-
ments and answers from machine comprehension
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datasets. Seq2Seq was also applied on neural sen-
tence simplification (Zhang and Lapata, 2017) and
paraphrase generation tasks (Xu et al., 2018).

3 Model Architecture

Given a piece of source text, our objective is to
generate a variable number of multi-word phrases.
To this end, we opt for the sequence-to-sequence
(Seq2Seq) (Sutskever et al., 2014) framework as
the basis of our model, combined with attention
and pointer softmax mechanisms in the decoder.

Since each data example contains one source
text sequence and multiple target phrase sequences
(dubbed ONE2MANY, and each sequence can be
of multi-word), two paradigms can be adopted for
training Seq2Seq models. The first one (Meng
et al., 2017) is to divide each ONE2MANY data ex-
ample into multiple ONE2ONE examples, and the
resulting models (e.g., CopyRNN) can generate
one phrase at once and must rely on beam search
technique to produce more unique phrases.

To enable models to generate multiple phrases
and control the number to output, we propose the
second training paradigm ONE2SEQ, in which we
concatenate multiple phrases into a single sequence
with a delimiter 〈sep〉, and this concatenated se-
quence is then used as the target for sequence gen-
eration during training. An overview of the model’s
structure is shown in Figure 1.1

Notations

In the following subsections, we use w to denote
input text tokens, x to denote token embeddings,
h to denote hidden states, and y to denote output
text tokens. Superscripts denote time-steps in a
sequence, and subscripts e and d indicate whether a
variable resides in the encoder or the decoder of the
model, respectively. The absence of a superscript
indicates multiplicity in the time dimension. L
refers to a linear transformation and Lf refers to
it followed by a non-linear activation function f .
Angled brackets, 〈〉, denote concatenation.

3.1 Sequence to Sequence Generation

We develop our model based on the standard
Seq2Seq (Sutskever et al., 2014) model with at-
tention mechanism (Bahdanau et al., 2014) and
pointer softmax (Gülçehre et al., 2016). Due to

1We release the code, datasets and model outputs for repro-
ducing our results in https://github.com/memray/
OpenNMT-kpg-release.

space limit, we describe this basic Seq2Seq model
in Appendix A.

3.2 Mechanisms for Diverse Generation

There are usually multiple keyphrases for a given
source text because each keyphrase represents cer-
tain aspects of the text. Therefore keyphrase di-
versity is desired for the keyphrase generation.
Most previous keyphrase generation models gener-
ate multiple phrases by over-generation, which is
highly prone to generate similar phrases due to the
nature of beam search. Given our objective to gen-
erate variable numbers of keyphrases, we need to
adopt new strategies for achieving better diversity
in the output.

Recall that we represent variable numbers of
keyphrases as delimiter-separated sequences. One
particular issue we observed during error analysis
is that the model tends to produce identical tokens
following the delimiter token. For example, sup-
pose a target sequence contains n delimiter tokens
at time-steps t1, . . . , tn. During training, the model
is rewarded for generating the same delimiter token
at these time-steps, which presumably introduces
much homogeneity in the corresponding decoder
states ht1d , . . . , h

tn
d . When these states are subse-

quently used as inputs at the time-steps immedi-
ately following the delimiter, the decoder naturally
produces highly similar distributions over the fol-
lowing tokens, resulting in identical tokens being
decoded. To alleviate this problem, we propose two
plug-in components for the sequential generation
model.

3.2.1 Semantic Coverage
We propose a mechanism called semantic coverage
that focuses on the semantic representations of gen-
erated phrases. Specifically, we introduce another
uni-directional recurrent model GRUSC (dubbed
target encoder) which encodes decoder-generated
tokens yτ , where τ ∈ [0, t), into hidden states htSC.
This state is then taken as an extra input to the
decoder GRU, modifying equation of the decoder
GRU to:

htd = GRUd(〈xtd, htSC〉, ht−1d ). (1)

If the target encoder were to be updated with the
training signal from generation (i.e., backpropagat-
ing error from the decoder GRU to the target en-
coder), the resulting decoder is essentially a 2-layer
GRU with residual connections. Instead, inspired

https://github.com/memray/OpenNMT-kpg-release
https://github.com/memray/OpenNMT-kpg-release
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Figure 1: The architecture of the proposed model for improving keyphrase diversity. A represents last states of
a bi-directional source encoder; B represents the last state of target encoder; C indicates decoder states where
target tokens are either delimiters or end-of-sentence tokens. During orthogonal regularization, all C states are
used; during target encoder training, we maximize mutual information between states A with B. Red dash arrow
indicates a detached path, i.e., no back-propagation through such path.

by previous representation learning works (Lo-
geswaran and Lee, 2018; van den Oord et al., 2018;
Hjelm et al., 2018), we train the target encoder in
an self-supervised fashion (Figure 1). Specifically,
due to the autoregressive nature of the RNN-based
decoder, we follow Contrastive Predictive Coding
(CPC) (van den Oord et al., 2018), where a Noise-
Contrastive Estimation(NCE) loss is used to maxi-
mize a lower bound on mutual information. That is,
we extract target encoder’s final hidden state vec-
tor hMSC, where M is the length of target sequence,
and use it as a general representation of the target
phrases. We train by maximizing the mutual infor-
mation between these phrase representations and
the final state of the source encoder hTe as follows.
For each phrase representation vector hMSC, we take
the encodings HT

e = {hTe,1, . . . , hTe,N} of N dif-
ferent source texts, where hTe,true is the encoder
representation for the current source text, and the
remaining N − 1 are negative samples (sampled at
random) from the training data. The target encoder
is trained to minimize the classification loss:

LSC = −log
g(hTe,true, h

M
SC)∑

i∈[1,N ] g(h
T
e,i, h

M
SC)

,

g(ha, hb) = exp(h>a Bhb)

(2)

where B is bi-linear transformation.
The motivation here is to constrain the overall

representation of generated keyphrase to be seman-
tically close to the overall meaning of the source
text. With such representations as input to the de-
coder, the semantic coverage mechanism can poten-
tially help to provide useful keyphrase information
and guide generation.

3.2.2 Orthogonal Regularization
We also propose orthogonal regularization, which
explicitly encourages the delimiter-generating de-
coder states to be different from each other. This
is inspired by Bousmalis et al. (2016), who use
orthogonal regularization to encourage representa-
tions across domains to be as distinct as possible.
Specifically, we stack the decoder hidden states cor-
responding to delimiters together to form matrix
H = 〈ht1d , . . . , h

tn
d 〉 and use the following equation

as the orthogonal regularization loss:

LOR =
∥∥∥H>H � (1− In)

∥∥∥
2
, (3)

where H> is the matrix transpose of H , In is the
identity matrix of rank n, � indicates element wise
multiplication, ‖M‖2 indicates L2 norm of each
element in a matrix M . This loss function prefers
orthogonality among the hidden states ht1d , . . . , h

tn
d

and thus improves diversity in the tokens following
the delimiters.

3.2.3 Training Loss
We adopt the widely used negative log-likelihood
loss in our sequence generation model, denoted as
LNLL. The overall loss we use for optimization is:

L = LNLL + λOR · LOR + λSC · LSC, (4)

where λOR and λSC are hyper-parameters.

3.3 Decoding Strategies
According to different task requirements, various
decoding methods can be applied to generate the
target sequence y. Prior studies Meng et al. (2017);
Yang et al. (2017) focus more on generating ex-
cessive number of phrases by leveraging beam
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search to proliferate the output phrases. In con-
trast, models trained under ONE2SEQ paradigm
are capable of determining the proper number of
phrases to output. In light of previous research
in psychology (Van Zandt and Townsend, 1993;
Forster and Bednall, 1976), we name these two de-
coding/search strategies as Exhaustive Decoding
and Self-terminating Decoding, respectively, due
to their resemblance to the way humans behave in
serial memory tasks. Simply speaking, the major
difference lies in whether a model is capable of
controlling the number of phrases to output. We
describe the detailed decoding strategies used in
this study as follows:

3.3.1 Exhaustive Decoding
As traditional keyphrase tasks evaluate models with
a fixed number of top-ranked predictions (say F-
score @5 and @10), existing keyphrase generation
studies have to over-generate phrases by means
of beam search (commonly with a large beam size,
e.g., 150 and 200 in (Chen et al., 2018b; Meng et al.,
2017), respectively), a heuristic search algorithm
that returns K approximate optimal sequences. For
the ONE2ONE setting, each returned sequence is
a unique phrase itself. But for ONE2SEQ, each
produced sequence contains several phrases and ad-
ditional processes (Ye and Wang, 2018) are needed
to obtain the final unique (ordered) phrase list.

It is worth noting that the time complexity of
beam search is O(Bm), where B is the beam
width, and m is the maximum length of gener-
ated sequences. Therefore the exhaustive decoding
is generally very computationally expensive, es-
pecially for ONE2SEQ setting where m is much
larger than in ONE2ONE. It is also wasteful as we
observe that less than 5% of phrases generated by
ONE2SEQ models are unique.

3.3.2 Self-terminating Decoding
An innate characteristic of keyphrase tasks is that
the number of keyphrases varies depending on the
document and dataset genre, therefore dynamically
outputting a variable number of phrases is a de-
sirable property for keyphrase generation models
2. Since our model is trained to generate a vari-
able number of phrases as a single sequence joined
by delimiters, we can obtain multiple phrases by
simply decoding a single sequence for each given

2Note this is fundamentally different from other NLG tasks.
In specific, the number of keyphrases is variable, the length of
each keyphrase is also variable.

source text. The resulting model thus implicitly
performs the additional task of dynamically es-
timating the proper size of the target phrase set:
once the model believes that an adequate number
of phrases have been generated, it outputs a special
token </s> to terminate the decoding process.

One notable attribute of the self-terminating
decoding strategy is that, by generating a set of
phrases in a single sequence, the model conditions
its current generation on all previously generated
phrases. Compared to the exhaustive strategy (i.e.,
phrases being generated independently by beam
search in parallel), our model can model the depen-
dency among its output in a more explicit fashion.
Additionally, since multiple phrases are decoded
as a single sequence, decoding can be performed
more efficiently than exhaustive decoding by con-
ducting greedy search or beam search on only the
top-scored sequence.

4 Evaluating Keyphrase Generation

Formally, given a source text, suppose that a
model predicts a list of unique keyphrases Ŷ =
(ŷ1, . . . , ŷm) ordered by the quality of the predic-
tions ŷi, and that the ground truth keyphrases for
the given source text is the oracle set Y . When only
the top k predictions Ŷ:k = (ŷ1, . . . , ŷmin(k,m)) are
used for evaluation, precision, recall, and F1 score
are consequently conditioned on k and defined as:

P@k =
|Ŷ:k ∩ Y|
|Ŷ:k|

, R@k =
|Ŷ:k ∩ Y|
|Y|

,

F1@k =
2 ∗ P@k ∗R@k
P@k +R@k

.

(5)
As discussed in Section 1, the number of gen-

erated keyphrases used for evaluation can have a
critical impact on the quality of the resulting eval-
uation metrics. Here we compare three choices of
k and the implications on keyphrase evaluation for
each choice:
• F1@k: where k is a pre-defined constant (usu-
ally 5 or 10). Due to the high variance of the
number of ground truth keyphrases, it is often that
|Ŷ:k| ≤ k < |Y|, and thus R@k — and in turn
F1@k — of an oracle model can be smaller than
1. This undesirable property is unfortunately preva-
lent in the evaluation metrics adopted by all exist-
ing keyphrase generation studies to our knowledge.

A simple remedy is to set k as a variable number
which is specific to each data example. Here we
define two new metrics:
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Kp20K Inspec Krapivin NUS SemEval

Model @5 @10 @O @5 @10 @O @5 @10 @O @5 @10 @O @5 @10 @O

Abstractive Neural

CopyRNN (Meng et al.) 32.8 25.5 – 29.2 33.6 – 30.2 25.2 – 34.2 31.7 – 29.1 29.6 –
CopyRNN* 31.7 27.3 33.5 24.4 28.9 29.0 30.5 26.6 32.5 37.6 35.2 40.6 31.8 31.8 31.7

CorrRNN (Chen et al.) - - - - - - 31.8 27.8 - 35.8 33.0 - 32.0 32.0 -
ParaNetT +CoAtt (Zhao and Zhang) 36.0 28.9 - 29.6 35.7 - 32.9 28.2 - 36.0 35.0 - 31.1 31.2 -
catSeqTG-2RF1† (Chan et al.) 32.1 - 35.7 25.3 - 28.0 30.0 - 34.8 37.5 - 25.5 28.7 - 29.8
KG-KE-KR-M† (Chen et al.) 31.7 28.2 38.8 25.7 28.4 31.4 27.2 25.0 31.7 28.9 28.6 38.4 20.2 22.3 30.3

CatSeq (Ours) 31.4 27.3 31.9 29.0 30.0 30.7 30.7 27.4 32.4 35.9 34.9 38.3 30.2 30.6 31.0
CatSeqD (Ours) 34.8 29.8 35.7 27.6 33.3 33.1 32.5 28.5 37.1 37.4 36.6 40.6 32.7 35.2 35.7

Extractive IR

TfIdf (Hasan and Ng) 7.2 9.4 6.3 16.0 24.4 20.8 6.7 9.3 6.8 11.2 14.0 12.2 8.8 14.7 11.3
TextRank (Mihalcea and Tarau) 18.1 15.1 18.4 28.6 33.9 33.5 18.5 16.0 21.1 23.0 21.6 23.8 21.7 22.6 22.9

KEA (Witten et al.) 4.6 4.4 5.1 2.2 2.2 2.2 1.8 1.7 1.7 7.3 7.1 8.1 6.8 6.5 6.6
Maui (Medelyan et al.) 0.5 0.5 0.4 3.5 4.6 3.9 0.5 0.7 0.6 0.4 0.6 0.6 1.1 1.4 1.1

Extractive Neural

DivGraphPointer (Sun et al.) 36.8 29.2 - 38.6 41.7 - 46.0 40.2 - 40.1 38.9 - 36.3 29.7 -

w/ Additional Data

Semi-Multi (Ye and Wang) 32.8 26.4 - 32.8 31.8 - 32.3 25.4 - 36.5 32.6 - 31.9 31.2 -
TG-Net (Chen et al.) 37.2 31.5 - 31.5 38.1 - 34.9 29.5 - 40.6 37.0 - 31.8 32.2 -

Table 2: Performance (F1-score) of present keyphrase prediction on scientific publications datasets. Best/second-
best performing score in each column is highlighted with bold/underline. We also list results from literature where
models that are not directly comparable (i.e., models leverage additional data and pure extractive models). Note
model names with † represent its F1@O is computed by us using existing works’ released keyphrase predictions.3

• F1@O: O denotes the number of oracle (ground
truth) keyphrases. In this case, k = |Y|, which
means for each data example, the number of pre-
dicted phrases taken for evaluation is the same as
the number of ground truth keyphrases.
• F1@M: M denotes the number of predicted
keyphrases. In this case, k = |Ŷ| and we simply
take all the predicted phrases for evaluation without
truncation.

By simply extending the constant number k to
different variables accordingly, both F1@O and
F1@M are capable of reflecting the nature of vari-
able number of phrases for each document, and a
model can achieve the maximum F1 score of 1.0 if
and only if it predicts the exact same phrases as the
ground truth. Another merit of F1@O is that it is
independent from model outputs, therefore we can
use it to compare existing models.

5 Datasets and Experiments

In this section, we report our experiment results
on multiple datasets and compare with existing
models. We use CatSeq to refer to the delimiter-

3We acknowledge that F1@O scores of Chan et al. (2019)
and Chen et al. (2019a) might be not completely compara-
ble with ours. This is due to additional post-processing and
filtering methods might have been applied in different work.
We elaborate the data pre-processing and evaluation protocols
used in this work in Appendix E.

concatenated sequence-to-sequences model de-
scribed in Section 3; CatSeqD refers to the model
augmented with orthogonal regularization and se-
mantic coverage mechanism.

To construct target sequences for training
CatSeq and CatSeqD, ground truth keyphrases
are sorted by their order of first occurrence in the
source text. Keyphrases that do not appear in the
source text are appended to the end. This order
may guide the attention mechanism to attend to
source positions in a smoother way. Implementa-
tion details can be found in Appendix D. As for the
pre-processing and evaluation, we follow the same
steps as in (Meng et al., 2017). More details are
provide in Appendix E for reproducing our results.

We include a set of existing models (Meng
et al., 2017; Chen et al., 2018a; Chan et al., 2019;
Zhao and Zhang, 2019; Chen et al., 2019a) as
baselines, they all share same behavior of ab-
stractive keyphrase generation with our proposed
model. Specially for computing existing model’s
scores with our proposed new metrics (F1@O
and F1@M), we implemented our own version
of CopyRNN (Meng et al., 2017) based on their
open sourced code, denoted as CopyRNN*. We
also report the scores of models from Chan et al.
and Chen et al. based on their publicly released
outputs.

We also include a set of models that use sim-
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Present Absent

Model F1@5 F1@10 F1@O R@10 R@50

TfIdf 8.0 8.9 5.2 - -
TextRank 12.1 10.1 11.6 - -

KEA 4.9 4.8 5.3 - -
Maui 35.8 23.3 51.8 - -

CopyRNN* 44.2 30.3 66.2 48.8 66.0
CatSeq 48.3 45.5 63.5 40.7 42.2
CatSeqD 48.7 43.9 65.6 54.8 65.7

Table 3: Model performance on STACKEX dataset.

ilar strategies but can not directly compare with.
This includes four non-neural extractive models:
TfIdf (Hasan and Ng, 2010), TextRank (Mihalcea
and Tarau, 2004), KEA (Witten et al., 1999), and
Maui (Medelyan et al., 2009); one neural extractive
model (Sun et al., 2019); and two neural models
that use additional data (e.g., title) (Ye and Wang,
2018; Chen et al., 2019b).

In Section 5.3, we apply the self-terminating de-
coding strategy. Since no existing model supports
such decoding strategy, we only report results from
our proposed models. They can be used for com-
parison in future studies.

5.1 Experiments on Scientific Publications
Our first dataset consists of a collection of scientific
publication datasets, namely KP20K, INSPEC,
KRAPIVIN, NUS, and SEMEVAL, that have been
widely used in existing literature (Meng et al., 2017;
Chen et al., 2018a; Ye and Wang, 2018; Chen et al.,
2018b; Chan et al., 2019; Zhao and Zhang, 2019;
Chen et al., 2019a; Sun et al., 2019). KP20K, for
example, was introduced by Meng et al. (2017)
and comprises more than half a million scientific
publications. For each article, the abstract and title
are used as the source text while the author key-
words are used as target. The other four datasets
contain much fewer articles, and thus used to test
transferability of our model.

We report our model’s performance on the
present-keyphrase portion of the KP20K dataset in
Table 2.4 To compare with previous works, we pro-
vide compute F1@5 and F1@10 scores. The new
proposed F1@O metric indicates consistent rank-
ing with F1@5/10 for most cases. Due to its target
number sensitivity, we find that its value is closer to
F1@5 for KP20K and KRAPIVIN where average
target keyphrases is less and closer to F1@10 for
the other three datasets.

4We show experiment results on absent data in Ap-
pendix B.

KP20K STACKEX

Model F1@O F1@M F1@O F1@M

Greedy Search

CatSeq 33.1 32.4 59.2 56.3
CatSeqD 33.4 33.9 59.6 59.3

Top Ranked Sequence in Beam Search

CatSeq 24.3 25.1 52.4 52.7
CatSeqD 31.9 33.4 56.5 57.0

Table 4: F1@O and F1@M when generating variable
number of keyphrases (self-terminating decoding).

From the result we can see that our CatSeqD
outperform existing abstractive models on most
of the datasets. Our implemented CopyRNN*
achieves better or comparable performance against
the original model, and on NUS and SemEval the
advantage is more salient.

As for the proposed models, both CatSeq and
CatSeqD yield comparable results to CopyRNN,
indicating that ONE2SEQ paradigm can work well
as an alternative option for the keyphrase genera-
tion task. CatSeqD outperforms CatSeq on all
metrics, suggesting the semantic coverage and or-
thogonal regularization help the model to generate
higher quality keyphrases and achieve better gener-
alizability. To our surprise, on the metric F1@10
for KP20K and KRAPIVIN (average number of
keyphrases is only 5), where high-recall models
like CopyRNN are more favored, CatSeqD is still
able to outperform ONE2ONE baselines, indicating
that the proposed mechanisms for diverse genera-
tion are effective.

5.2 Experiments on The STACKEX Dataset

Inspired by the StackLite tag recommendation task
on Kaggle, we build a new benchmark based on
the public StackExchange data5. We use questions
with titles as source, and user-assigned tags as tar-
get keyphrases. We provide details regarding our
data collection in Appendix C.

Since oftentimes the questions on StackEx-
change contain less information than in scientific
publications, there are fewer keyphrases per data
point in STACKEX (statistics are shown in Table 1).
Furthermore, StackExchange uses a tag recommen-
dation system that suggests topic-relevant tags to
users while submitting questions; therefore, we
are more likely to see general terminology such as

5https://archive.org/details/stackexchange, we choose 19
computer science related topics from Oct. 2017 dump.
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Model KP20K Inspec Krapivin NUS SemEval

CatSeq 31.9 30.7 32.3 38.3 31.0
+ Orth. Reg. 31.1 29.3 31.0 36.5 29.5
+ Sem. Cov. 32.9 32.1 34.5 40.2 32.9

CatSeqD 35.7 33.1 37.1 40.6 35.7

Table 5: Ablation study with F1@O scores on five sci-
entific publication datasets.

Linux and Java6. This characteristic challenges
models with respect to their ability to distill major
topics of a question rather than selecting specific
snippets from the text.

We report our models’ performance on
STACKEX in Table 3. Results show CatSeqD per-
forms the best in general; on the absent-keyphrase
generation tasks, it outperforms CatSeq by a large
margin.

5.3 Generating Variable Number Keyphrases

One key advantage of our proposed model is the
capability of predicting the number of keyphrases
conditioned on the given source text. We thus con-
duct a set of experiments on KP20K and STACKEX
present keyphrase generation tasks, as shown in
Table 4, to study such behavior. We adopt the self-
terminating decoding strategy (Section 3.3), and
use both F1@O and F1@M (Section 4) to evalu-
ate.

In these experiments, we use beam search as in
most Natural Language Generation (NLG) tasks,
i.e., only use the top ranked prediction sequence as
output. We compare the results with greedy search.
Since no existing model is capable of generating
variable number of keyphrases, in this subsection
we only report performance on such setting from
CatSeq and CatSeqD.

From Table 4 we observe that in the variable
number generation setting, greedy search outper-
forms beam search consistently. This may be-
cause beam search tends to generate short and
similar sequences. We can also see the resulting
F1@O scores are generally lower than results re-
ported in previous subsections, this suggests an
over-generation decoding strategy may still benefit
from achieving higher recall.

6 Analysis and Discussion

6.1 Ablation Study

We conduct an ablation experiment to study the
effects of orthogonal regularization and semantic
coverage mechanism on CatSeq. As shown in
Table 5, semantic coverage provides significant
boost to CatSeq’s performance on all datasets.
Orthogonal regularization hurts performance when
is solely applied to CatSeq model. Interestingly,
when both components are enabled (CatSeqD),
the model outperforms CatSeq by a noticeable
margin on all datasets, this suggests the two com-
ponents help keyphrase generation in a synergistic
way. One future direction is to apply orthogonal
regularization directly on target encoder, since the
regularizer can potentially diversify target represen-
tations at phrase level, which may further encour-
age diverse keyphrase generation in decoder.

6.2 Visualizing Diversified Generation

To verify our assumption that target encoding and
orthogonal regularization help to boost the diver-
sity of generated sequences, we use two metrics,
one quantitative and one qualitative, to measure
diversity of generation.

First, we simply calculate the average unique
predicted phrases produced by both CatSeq and
CatSeqD in experiments shown in Section 5.1
(beam size is 50). The resulting numbers are
20.38 and 89.70 for CatSeq and CatSeqD re-
spectively. Second, from the model running on the
KP20K validation set, we randomly sample 2000
decoder hidden states at k steps following a delim-
iter (k = 1, 2, 3) and apply an unsupervised clus-
tering method (t-SNE (van der Maaten and Hinton,
2008)) on them. From the Figure 2 we can see that
hidden states sampled from CatSeqD are easier to
cluster while hidden states sampled from CatSeq
yield one mass of vectors with no obvious distinct
clusters. Results on both metrics suggest target en-
coding and orthogonal regularization indeed help
diversifying generation of our model.

6.3 Qualitative Analysis

To illustrate the difference of predictions between
our proposed models, we show an example cho-
sen from the KP20K validation set in Appendix F.
In this example there are 29 ground truth phrases.
Neither of the models is able to generate all of the

6One example is shown in Appendix F.
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Figure 2: t-SNE results on decoder hidden states. Up-
per row: CatSeq; lower row: CatSeqD; column k
shows hidden states sampled from tokens at k steps fol-
lowing a delimiter.

keyphrases, but it is obvious that the predictions
from CatSeq all start with “test”, while predic-
tions from CatSeqD are diverse. This to some
extent verifies our assumption that without the tar-
get encoder and orthogonal regularization, decoder
states following delimiters are less diverse.

7 Conclusion and Future Work

We propose a recurrent generative model that se-
quentially generates multiple keyphrases, with two
extra modules that enhance generation diversity.
We propose new metrics to evaluate keyphrase gen-
eration. Our model shows competitive performance
on a set of keyphrase generation datasets, including
one introduced in this work. In future work, we
plan to investigate how target phrase order affects
the generation behavior, and further explore set
generation in an order invariant fashion.
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A Sequence to Sequence Generation

A.1 The Encoder-Decoder Model
Given a source text consisting of N words
w1
e , . . . , w

N
e , the encoder converts their correspond-

ing embeddings x1e, . . . , x
N
e into a set of N real-

valued vectors he = (h1e, . . . , h
N
e ) with a bidirec-

tional GRU (Cho et al., 2014):

hte,fwd = GRUe,fwd(x
t
e, h

t−1
e,fwd),

hte,bwd = GRUe,bwd(x
t
e, h

t+1
e,bwd),

hte = 〈hte,fwd, h
t
e,bwd〉.

(6)

Dropout (Srivastava et al., 2014) is applied to both
xe and he for regularization.

The decoder is a uni-directional GRU, which
generates a new state htd at each time-step t from
the word embedding xtd and the recurrent state
ht−1d :

htd = GRUd(x
t
d, h

t−1
d ).7 (7)

The initial state h0d is derived from the final en-
coder state hNe by applying a single-layer feed-
forward neural net (FNN):

h0d = Ltanh
0 (hNe ). (8)

Dropout is applied to both the embeddings xd and
the GRU states hd.

A.2 Attentive Decoding
When generating token yt, in order to better in-
corporate information from the source text, an at-
tention mechanism (Bahdanau et al., 2014) is em-
ployed to infer the importance αt,i of each source
word wie given the current decoder state htd. This
importance is measured by an energy function with
a 2-layer FNN:

energy(htd, h
i
e) = L1(L

tanh
2 (〈htd, hie〉)). (9)

The output over all decoding steps t thus define a
distribution over the source sequence:

αt = softmax(energy(htd, he)). (10)

These attention scores are then used as weights
for a refined representation of the source encodings,
which is then concatenated to the decoder state htd
to derive a generative distribution pa:

pa(y
t) = Lsoftmax

3 (Ltanh
4 (〈htd,

∑
i

αt,i · hie〉)),

(11)
7During training (with teacher forcing), wt

d is the ground
truth target token at previous time-step t−1; during evaluation,
wt

d = yt−1, is the prediction at the previous time-step.

where the output size of L3 equals to the target
vocabulary size. Subscript a indicates the abstrac-
tive nature of pa since it is a distribution over a
prescribed vocabulary.

A.3 Pointer Softmax

We employ the pointer softmax (Gülçehre et al.,
2016) mechanism to switch between generating a
token yt (from a vocabulary) and pointing (to a
token in the source text). Specifically, the pointer
softmax module computes a scalar switch st at each
generation time-step and uses it to interpolate the
abstractive distribution pa(yt) over the vocabulary
(see Equation 11) and the extractive distribution
px(y

t) = αt over the source text tokens:

p(yt) = st · pa(yt) + (1− st) · px(yt), (12)

where st is conditioned on both the attention-
weighted source representation

∑
i α

t,i · hie and
the decoder state htd:

st = Lsigmoid
5 (tanh(L6(

∑
i

αt,i · hie) + L7(h
t
d))).

(13)

B Experiment Results on KP20K Absent
Subset

Generating absent keyphrases on scientific publi-
cation datasets is a rather challenging problem. Ex-
isting studies often achieve seemingly good perfor-
mance by measuring recall on tens and sometimes
hundreds of keyphrases produced by exhaustive de-
coding with a large beam size — thus completely
ignoring precision.

We report the models’ Recall@10/50 scores on
the absent portion of five scientific paper datasets
in Table 6 to be in line with previous studies.

The absent keyphrase prediction highly prefers
recall-oriented models, therefore CopyRNN with
beam size of 200 is innately proper for this task
setting. However, from the results we observe that
with the help of exhaustive decoding and diverse
mechanisms, CatSeqD is able to perform compa-
rably to CopyRNN model, and it generally works
better for top predictions. Even though the trend of
models’ performance somewhat matches what we
observe on the present data, we argue that it is hard
to compare different models’ performance on such
scale. We argue that STACKEX is better testbeds
for absent keyphrase generation.
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Kp20K Inspec Krapivin NUS SemEval

Model R@10 R@50 R@10 R@50 R@10 R@50 R@10 R@50 R@10 R@50

CopyRNN (Meng et al., 2017) 11.5 18.9 5.1 10.1 11.6 19.5 7.8 14.4 4.9 7.5
CopyRNN* (Meng et al., 2017) 3.3 8.7 4.0 8.3 4.0 8.1 2.4 8.1 0.5 2.6

CatSeq (ours) 6.0 6.2 2.8 2.9 7.0 7.4 3.7 3.1 2.5 2.5
CatSeqD (ours) 11.7 15.1 5.2 7.1 12.0 14.5 8.4 11.0 4.6 6.3

Table 6: Performance of absent keyphrase prediction on scientific publications datasets. Best/second-best perform-
ing score in each column is highlighted with bold/underline.

C STACKEX Data Collection

We download the public data dump from https:

//archive.org/details/stackexchange, and
choose 19 computer science related topics from
Oct. 2017 dump. We select computer science
forums (CS/AI), using “title” + “body” as source
text and “tags” as the target keyphrases. After
removing questions without valid tags, we collect
330,965 questions. We thus randomly select
16,000 for validation, and another 16,000 as
test set. Note some questions in StackExchange
forums contain large blocks of code, resulting in
long texts (sometimes more than 10,000 tokens
after tokenization), this is difficult for most neural
models to handle. Consequently, we truncate texts
to 300 tokens and 1,000 tokens for training and
evaluation splits respectively.

D Implementation Details

Implementation details of our proposed models are
as follows. In all experiments, the word embed-
dings are initialized with 100-dimensional random
matrices. The number of hidden units in both the
encoder and decoder GRU are 150. The number
of hidden units in target encoder GRU is 150. The
size of vocabulary is 50,000. In all experiments,
we use a dropout rate of 0.1.

The numbers of hidden units in MLPs described
in Section 3 are as follows. During negative sam-
pling, we randomly sample 16 samples from the
same batch, thus target encoding loss in Equation 2
is a 17-way classification loss. In CatSeqD, we
select both λOR and λSC in Equation 4 from [0.01,
0.03, 0.1, 0.3, 1.0] using validation sets. The se-
lected values are listed in Table 7.

We use Adam (Kingma and Ba, 2014) as the step
rule for optimization. The learning rate is 1e−3.
The model is implemented using PyTorch (Paszke
et al., 2017) and OpenNMT (Klein et al., 2017).

For exhaustive decoding, we use a beam size of
50 and a maximum sequence length of 40.

Experiment Setting λOR λSC

Table 2 1.0 0.03

Table 3 0.03 0.1

Table 4, KP20K Greedy 1.0 0.3

Table 4, KP20K Top Rank 1.0 0.3

Table 4, STACKEX Greedy 1.0 0.3

Table 4, STACKEX Top Rank 1.0 0.3

Table 5, CatSeq + Orth. Reg. 0.3 0.0

Table 5, CatSeq + Sem. Cov. 0.0 0.03

Table 5, CatSeqD Same as Table 2

Table 6 Same as Table 2

Table 7: Semantic coverage and orthogonal regulariza-
tion coefficients.

Following Meng et al. (2017), lowercase and
stemming are performed on both the ground truth
and generated keyphrases during evaluation.

We leave out 2,000 data examples as validation
set for both KP20K and STACKEX and use them
to identify optimal checkpoints for testing. And all
the scores reported in this paper are from check-
points with best performances (F1@O) on valida-
tion set.

In Section 6.2, we use the default parameters for
t-SNE in sklearn (learning rate is 200.0, number of
iterations is 1000, as defined in 8).

E Dataset and Evaluation Details

We strictly follow the data pre-processing and eval-
uation protocols provided by Meng et al. (2017).

We pre-process both document texts and ground-
truth keyphrases, including word segmentation,
lowercasing and replacing all digits with symbol
<digit>. In the datasets, examples with empty
ground-truth keyphrases are removed.

8https://scikit-learn.org/stable/
modules/generated/sklearn.manifold.TSNE.
html

https://archive.org/details/stackexchange
https://archive.org/details/stackexchange
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
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We evaluate models’ performance on predicting
present and absent phrases separately. Specifically,
we first lowercase the text, then we determine the
presence of each ground-truth keyphrase by check-
ing whether it is a sub-string of the source text (we
use Porter Stemmer 9). To evaluate present phrase
performance, we compute Precision/Recall/F1-
score (see 14-16 for formulas) for each document
taking only present ground-truth keyphrases as tar-
get and ignore the absent ones.

P@k =
#(correct@k)

min{k,#(pred)}
(14)

R =
#(correct@k)

#(target)
(15)

F1@k =
2 ∗ P@k ∗R
P@k +R

(16)

where #(pred) and #(target) are the number
of predicted and ground-truth keyphrases respec-
tively; and #(correct@k) is the number of correct
predictions among the first k results.

We report the macro-averaged scores over doc-
uments that have at least one present ground-truth
phrases (corresponding to the column #PreDoc in
Table 8), and similarly to the case for absent phrase
evaluation.

F Examples of KP20K and STACKEX
with Model Prediction

See Table 9 and Figure 3.

9https://www.nltk.org/api/nltk.stem.
html#module-nltk.stem.porter

https://www.nltk.org/api/nltk.stem.html#module-nltk.stem.porter
https://www.nltk.org/api/nltk.stem.html#module-nltk.stem.porter
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Dataset #Doc #KP #PreDoc #PreKP #AbsDoc #AbsKP

KP20K 19,987 105,181 19,048 66,595 16,357 38,586
INSPEC 500 4,913 497 3,858 381 1,055
KRAPIVIN 460 2,641 437 1,485 417 1,156
NUS 211 2,461 207 1,263 195 1,198
SEMEVAL 100 1,507 100 671 99 836
STACKEX 16,000 43,131 13,475 24,809 10,984 18,322
DUC 308 2,484 308 2,421 38 63

Table 8: Statistics on number of documents and keyphrases of each test set. #Doc#KP denotes the number of
documents/ground-truth keyphrases in the dataset. #PreKP/#AbsKP denotes the number of present/absent ground-
truth keyphrases, and #PreDoc/#AbsDoc denotes the number of documents that contain at least one present/absent
ground-truth keyphrase.

Source Integration of a Voice Recognition System in a Social Robot Human-robot interaction

Human-robot interaction ( HRI ) (1) is one of the main fields in the study and research of robotics. Within this
field, dialogue systems and interaction by voice play an important role. When speaking about human-robot natural
dialogue we assume that the robot has the capability to accurately recognize what the human wants to transmit

verbally and even its semantic meaning, but this is not always achieved. In this article we describe the steps and
requirements that we went through in order to endow the personal social robot Maggie , developed at the
University Carlos III of Madrid, with the capability of understanding the natural language spoken by any human.
We have analyzed the different possibilities offered by current software/hardware alternatives by testing them in
real environments. We have obtained accurate data related to the speech recognition capabilities in different
environments, using the most modern audio acquisition systems and analyzing not so typical parameters such as
user age, gender, intonation, volume, and language. Finally, we propose a new model to classify recognition
results as accepted or rejected, based on a second automatic speech recognition ( ASR ) opinion.This new
approach takes into account the precalculated success rate in noise intervals for each recognition framework,
decreasing the rate of false positives and false negatives.

CatSeq voice recognition system ; social robot ; human robot interaction ; voice recognition ; hri ; speech recognition ;
automatic speech recognition ; noise intervals ; noise ; human robot ; automatic speech ; natural language

CatSeqD human robot interaction ; voice recognition ; social robotics ; social robots ; integration ; speech recognition ;
hri ; social robot ; robotics ; voice recognition system ; recognition ; asr ; automatic speech recognition ;

Ground Truth asr ; automatic speech recognition ; dialogue ; human robot interaction ; maggie ; social robot ;
speech recognition ; voice recognition ;

Table 9: Example from KP20K validation set, and predictions generated by CatSeq and CatSeqD models.
.
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Figure 3: Example from the STACKEX dataset, we show the screenshot of the original web page to better present
the example. Note the input to the model is the entire question (including the code), we removed the format
information in the dataset. Also note on the bottom of the screenshot it shows the 3 keyphrases (in this example all
absent) which we collected as the ground-truth keyphrases in our dataset.
Ground Truth: javascript ; jquery ; event handling
CatSeq Prediction: javascript; c#; jquery; php; linq; comparative review; ecmascript 6; asp . js; beginner;
strings; performance; datetime
CatSeqD Prediction: javascript ; jquery ; performance ; event handling ; array ; twitter bootstrap ; beginner ;
algorithm ; indexarray ; optimization ; event programming ; datetime ; comparative review ; ecmascript 6 ; indexof
; dry ; php ; r ; java ; coffeescript ; combinatorics ; dom ; html ; event tracking ; strings ; python ; ruby ; natural
language processing ; animation ; angular . js ; homework ; parameters ; jquery ui ; functional programming ;
google app engine ; . net ; python 2 . 7 ; c# ; php5 ; validation ; regex ; parsing ; formatting ; hash table ; object
oriented ; web scraping ; python 3 . x ; python 3 . x programming ; python 2 . net ; python 2 . 6 ; python 2 . sql ;
mysql ; object oriented design ; actionscript


