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Abstract

Large-scale pre-trained language model such

as BERT has achieved great success in lan-

guage understanding tasks. However, it re-

mains an open question how to utilize BERT

for language generation. In this paper, we

present a novel approach, Conditional Masked

Language Modeling (C-MLM), to enable the

finetuning of BERT on target generation tasks.

The finetuned BERT (teacher) is exploited

as extra supervision to improve conventional

Seq2Seq models (student) for better text gen-

eration performance. By leveraging BERT’s

idiosyncratic bidirectional nature, distilling

knowledge learned in BERT can encourage

auto-regressive Seq2Seq models to plan ahead,

imposing global sequence-level supervision

for coherent text generation. Experiments

show that the proposed approach significantly

outperforms strong Transformer baselines on

multiple language generation tasks such as ma-

chine translation and text summarization. Our

proposed model also achieves new state of the

art on IWSLT German-English and English-

Vietnamese MT datasets.1

1 Introduction

Large-scale pre-trained language model, such as

ELMo (Peters et al., 2018), GPT (Radford et al.,

2018) and BERT (Devlin et al., 2019), has become

the de facto first encoding step for many natural

language processing (NLP) tasks. For example,

BERT, pre-trained with deep bidirectional Trans-

former (Vaswani et al., 2017) via masked language

modeling and next sentence prediction, has revo-

lutionized the state of the art in many language

understanding tasks, such as natural language infer-

ence (Bowman et al., 2015) and question answer-

ing (Rajpurkar et al., 2016).

1Code is available at https://github.com/ChenRocks/Distill-
BERT-Textgen.

However, beyond common practice of finetun-

ing BERT for language understanding (Wang et al.,

2019), applying BERT to language generation still

remains an open question. Text generation aims

to generate natural language sentences conditioned

on certain input, with applications ranging from

machine translation (Cho et al., 2014; Sutskever

et al., 2014; Bahdanau et al., 2015), text sum-

marization (Nallapati et al., 2016; Gehring et al.,

2017; Chen and Bansal, 2018), to image caption-

ing (Vinyals et al., 2015; Xu et al., 2015; Gan et al.,

2017). In this work, we study how to use BERT

for better text generation, which is still a relatively

unexplored territory.

Intuitively, as BERT is learned with a generative

objective via Masked Language Modeling (MLM)

during the pre-training stage, a natural assumption

is that this training objective should have learned

essential, bidirectional, contextual knowledge that

can help enhance text generation. Unfortunately,

this MLM objective is not auto-regressive, which

encumbers its direct application to auto-regressive

text generation in practice.

We tackle this challenge by proposing a novel

and generalizable approach to distilling knowledge

learned in BERT for text generation tasks. We

first propose a new Conditional Masked Language

Modeling (C-MLM) task, inspired by MLM but re-

quiring additional conditional input, which enables

finetuning pre-trained BERT on a target dataset.

In order to extract knowledge from the finetuned

BERT and apply it to a text generation model, we

leverage the finetuned BERT as a teacher model

that generates sequences of word probability logits

for the training samples, and treat the text genera-

tion model as a student network, which can effec-

tively learn from the teacher’s outputs for imitation.

The proposed approach improves text generation

by providing a good estimation on word probability

distribution for each token in a sentence, consum-
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ing both the left and the right context, the exploita-

tion of which encourages conventional text gen-

eration models to plan ahead. At inference time,

the teacher model (BERT) is not required thus the

decoding speed is as fast as the underlying student

model.

Text generation models are usually trained

via Maximum Likelihood Estimation (MLE), or

teacher forcing (Bengio et al., 2015): at each time

step, it maximizes the likelihood of the next word

conditioned on its previous ground-truth words.

This corresponds to optimizing one-step-ahead pre-

diction. As there is no explicit signal towards

global planning in the training objective, the gen-

eration model may incline to focusing on local

structure rather than global coherence. With our

proposed approach, BERT’s looking into the fu-

ture ability can act as an effective regularization

method, capturing subtle long-term dependencies

that ensure global coherence and in consequence

boost model performance on text generation.

An alternative way to leverage BERT for

text generation is to initialize the parameters of

the encoder or decoder of Seq2Seq with pre-

trained BERT, and then finetuning on the target

dataset. However, this approach requires the en-

coder/decoder to be identical to BERT, inevitably

making the final text generation model too large.

Our approach, on the other hand, is modular and

compatible to any text-generation model, and has

no restriction on model size or model architecture

(e.g., LSTM or Transformer).

The main contributions of this work are three-

fold: (i) We present a novel approach to utilizing

BERT for text generation. The proposed method

induces sequence-level knowledge into the conven-

tional one-step-ahead and teacher-forcing training

paradigm, by introducing an effective regulariza-

tion term to MLE training loss. (ii) We conduct

comprehensive evaluation on multiple text genera-

tion tasks, including machine translation and text

summarization. Experiments show that our pro-

posed approach significantly outperforms strong

Transformer baselines and is generalizable to differ-

ent tasks. (iii) The proposed model achieves new

state of the art on both IWSLT14 German-English

and IWSLT15 English-Vietnamese datasets.

2 Related Work

Pre-trained Language Models Prior to large-

scale pre-trained language model, word embed-

dings (Mikolov et al., 2013; Pennington et al.,

2014; Bojanowski et al., 2017) were widely used

for NLP tasks. Recently, CoVe (McCann et al.,

2017) introduced (conditional) language models

pre-trained on paired machine translation corpus.

ELMo (Peters et al., 2018) learned a contextual lan-

guage model on a large corpus with bidirectional

RNN. GPT (Radford et al., 2018) used unidirec-

tional Transformer to achieve better contextualized

word representation. By fine-tuning pre-trained lan-

guage models, ULMFit (Howard and Ruder, 2018)

also achieved promising results on text classifica-

tion.

In our study, we focus on BERT due to its supe-

rior performance on multiple language understand-

ing tasks. However, different from previous work

exploiting BERT for language understanding tasks,

here we aim to apply BERT to text generation. To

the best of our knowledge, this is still a relatively

unexplored space. The proposed approach is also

model-agnostic and can be applied to other pre-

trained language models as well.

BERT for Text Generation There has been some

recent attempt on applying BERT to text generation.

Specifically, Lample and Conneau (2019) trained

cross-lingual MLM and demonstrated promising

results for cross-lingual natural language infer-

ence (Conneau et al., 2018) and unsupervised

neural machine translation (NMT) (Lample et al.,

2018). Wang and Cho (2019) formulated BERT as

a Markov Random Field LM and showed prelimi-

nary results on unsupervised text generation with

improved diversity. Zhang et al. (2019a) utilized

an encoder with BERT and a two-stage decoder for

text summarization. Song et al. (2019) proposed

Masked Seq2Seq (MASS) pre-training, demonstrat-

ing promising results on unsupervised NMT, text

summarization and conversational response gener-

ation. Concurrent with our work, Ghazvininejad

et al. (2019) proposed a similar conditional MLM

for constant-time translation, and Yang et al. (2019)

studied how to fine-tune BERT for NMT.

Our approach is novel in the sense that we do

not directly use the parameters of BERT in the

Seq2Seq model. Instead, BERT acts as an effective

regularization to the MLE training loss, by proac-

tively injecting future information for predicting

the present.

Right-to-Left Generation Our work also shares a

high-level intuition with those approaches that try

to regularize left-to-right generative models with
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Figure 1: Illustration of distilling knowledge from BERT for text generation. See Section 3.2 and 3.3 for details.

a right-to-left counterpart. Specifically, Liu et al.

(2016) trained a separate reverse NMT and per-

formed joint decoding at inference time to enforce

agreement between forward and reverse models.

Twin Networks (Serdyuk et al., 2018) used a back-

ward RNN jointly trained with a forward RNN

decoder by matching their hidden states. Zhang

et al. (2019b) further extended the idea to Trans-

former with joint training, so that the forward and

the backward models iteratively improve each other.

Our proposed approach stems from a similar in-

tuition. However, we focus on using pre-trained

language model such as BERT to regularize an

auto-regressive generation model.

Knowledge Distillation Our method shares the

same loss formulation as Knowledge Distillation

(KD) proposed in Buciluǎ et al. (2006); Hinton et al.

(2015); Kim and Rush (2016), where a smaller stu-

dent model is trained on soft labels provided by

a larger teacher model. More recently, Tan et al.

(2019) applied KD to multilingual NMT, and Sun

et al. (2019) proposed patient KD for BERT model

compression. Compared with these previous stud-

ies, where both the teacher and the student are

trained on the same task, our approach is different

in the sense that the BERT teacher is not designed

to perform the student’s generation task. We focus

on using KD to leverage the learned knowledge

in BERT for text generation, while previous work

mostly focused on model compression.

3 Approach

In this section, we present our proposed approach

to distilling the knowledge in BERT for text gener-

ation in generic sequence-to-sequence (Seq2Seq)

setting. We first review Seq2Seq learning in Sec-

tion 3.1, and then describe the proposed approach

in Section 3.2 and 3.3.

3.1 Sequence-to-Sequence Learning

Seq2Seq learning (Sutskever et al., 2014) aims

to generate a sequence of discrete output Y =
(y1, . . . , yN ) of length N , conditioned on a se-

quence of discrete input X = (x1, . . . , xM ) of

length M . A Seq2Seq model learns parameters

θ to estimate the conditional likelihood Pθ(Y |X),
typically trained via Maximum Likelihood Estima-

tion (MLE), or equivalently, minimizing the cross-

entropy loss:

Lxe(θ) = − logPθ(Y |X) (1)

= −
N
∑

t=1

logPθ(yt|y1:t−1, X) ,

where each conditional probability can be calcu-

lated via an attention-based recurrent neural net-

work (RNN) (Bahdanau et al., 2015; Luong et al.,

2015), Transformer (Vaswani et al., 2017), or any

other neural sequence-generation models.

3.2 Finetune BERT with Conditional MLM

This generic Seq2Seq learning framework is the

state of the art on a wide range of text generation

tasks. Using modern deep neural networks, the

conditional probabilities can be readily modeled as

a sequence of classifications over the word vocabu-

lary. However, during training, in order to generate

the t-th token yt, the model only sees a partial sen-

tence y1:t−1 from the ground-truth training data.

Intuitively, it is reasonable to assume that a bidirec-

tional model can be more informative than a left-
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to-right generation model, since additional context

from the right (or future) is also incorporated to pre-

dict the current word. Unfortunately, this additional

information is not utilized in a standard Seq2Seq

model, since it can only be trained in a left-to-right

manner, where the future context is masked out to

prevent each word from indirectly “seeing itself ”.

To compensate this single-directional limitation of

Seq2Seq setting, we propose a new conditional lan-

guage model (C-MLM) to enable the finetuning of

BERT on target generation task, in hope that the

finetuned bidirectional BERT can be utilized for

better text generation.

BERT (Devlin et al., 2019) is a deep bidirec-

tional Transformer trained via Masked Language

Modeling (MLM).2 In a similar setting, where the

input is a sequence pair (X,Y ),3 15% of the tokens

are randomly masked. Formally, we denote the

masked token sets as Xm and Y m, and the disjoint

counterpart (i.e., the unmasked tokens) as Xu and

Y u, respectively. The trained BERT model aims to

estimate the joint probability:

P (xm1 , . . . , xmi , ym1 , . . . , ymj |Xu, Y u) , (2)

where i and j denote the number of masked tokens

in X and Y , respectively. Each xm⋆ ∈ Xm, and

each ym⋆ ∈ Y m. Eqn. (2) can be trained with the

standard word-level cross-entropy loss.

We aim to marry MLM pre-training with

Seq2Seq learning, to leverage bidirectional lan-

guage model for text generation. To this end, we

propose a conditional-MLM, a variant of MLM

that allows further finetuning of pre-trained BERT

on target dataset. For example, for machine trans-

lation, X and Y represent the source and the target

sentence, respectively. We first concatenate them

together and randomly mask 15% of the tokens

only in Y , then train the network to model the joint

probability:

P (ym1 , . . . , ymj |X,Y u) . (3)

The above C-MLM objective is similar to the

conditional language modeling (LM) objective in

Eqn. (1), but conditional LM only permits pre-

dicting a word based on its left context. C-MLM

is also related to Masked Seq2Seq (MASS) pre-

training (Song et al., 2019). However, in MASS,

2Besides MLM, Devlin et al. (2019) also introduced the
next sentence prediction task for training BERT. We omit this
task since it is unrelated to our work.

3The two sequences are consecutive paragraphs sampled
from a very large corpus such as Wikipedia.

the encoder takes a sentence with randomly masked

fragment (several consecutive tokens) as input, and

the decoder tries to predict this masked fragment,

which is different from our model design. The final

goal is also different: MASS focuses on Seq2Seq

pre-training, while we focus on leveraging BERT

for text generation. In our experiments, we observe

that the C-MLM task can obtain high accuracy and

good generalization on word prediction. However,

it is not feasible to generate sequential output di-

rectly from C-MLM. Instead, we use knowledge

distillation to distill the knowledge learned from

the finetuned BERT into a Seq2Seq model for di-

rect text generation, which will be explained in the

next sub-section.

3.3 Knowledge Distillation for Generation

Our inspiration springs from the observation that

the probability distribution of the masked word

ymt is estimated using both yu1:t−1 and yut+1:N

from Y u. In other words, the distribution for a

given word P (ymt |X,Y u) contains information

from both backward and forward contexts, which

is a desirable benefit for providing sequence-level

global guidance. This probability distribution can

be considered as soft targets for a text generation

model to mimic from, which potentially contains

more useful and fine-grained information than the

usual hard-assigned, one-hot label, therefore en-

hancing conventional left-to-right generation mod-

els to look into the future.

In a knowledge distillation setting, the BERT

model can be considered as a teacher, while the

Seq2Seq model acts as a student. Specifically, the

Seq2Seq model can be trained with the following

objective function:

Lbidi(θ) = −
∑

w∈V

[

Pφ(yt = w|Y u, X)· (4)

logPθ(yt = w|y1:t−1, X)
]

,

where Pφ(yt) is the soft target estimated by the

finetuned BERT with learned parameters φ, and

V denotes the output vocabulary. Note that φ is

fixed during the distillation process. An illustration

of this learning process is provided in Figure 1,

which aims to match the word probability distri-

bution Pθ(yt) provided by the student with Pφ(yt)
provided by the teacher (i.e., distillation).

To further improve the Seq2Seq student model,

hard-assigned labels are also utilized. The final
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model is trained with the following compound ob-

jective:

L(θ) = αLbidi(θ) + (1− α)Lxe(θ) , (5)

where α is a hyper-parameter for tuning the rel-

ative importance of the two training targets: soft

estimation from finetuned BERT, and ground-truth

hard label. Note that our proposed approach only

has a minimal requirement on the architecture of

the incorporated Seq2Seq model. As long as the

model is trained to estimate word-level probability

as in Eqn. (1), it can be trained jointly with the

proposed objective function Eqn. (5).

At a higher level, the additional loss term Lbidi

can be interpreted as a sequence-level objective

function. Our auto-regressive (or causal) model

θ tries to predict the probability distribution that

matches the estimation the bidirectional teacher

model predicts, hence encouraging the planning of

future (right context) for generation.

4 Experiments

In this section, we describe our experiments on

two well-studied text generation tasks: machine

translation, and abstractive text summarization.

4.1 Datasets

Machine Translation We consider two rela-

tively small-scale datasets, IWSLT15 English-

Vietnamese (En-Vi, 113k training samples) and

IWSLT14 German-English (De-En, 160k training

samples), and one medium-scale dataset, WMT14

English-German (En-De, 4.5M training samples).

For IWSLT15 En-Vi, we use the pre-processed

dataset provided by Luong and Manning (2015).

We use tst2012 as dev set and test on tst2013. For

IWSLT14 De-En, we follow the pre-processing

steps and the same train/dev/test split as in Wu et al.

(2019). For WMT14 En-De, we follow the pre-

processing steps in Vaswani et al. (2017) for fair

comparison. We use newstest2013 as the dev set

and newstest2014 as the test set. We report BLEU

scores (Papineni et al., 2002) for evaluation of MT

performance following the Moses script.4

Abstractive Summarization For summarization,

we conduct experiments on the Gigaword sum-

marization dataset (Rush et al., 2015). Note that

4For fair comparison to previous work, we report
tokenized BLEU scores using https://github.com/moses-
smt/mosesdecoder/blob/master/scripts/generic/multi-
bleu.perl, and for WMT14 En-De, we further split the
compound words after tokenization.

the original train/valid/test split of Gigaword is

3.8M/190k/2k. In our experiments, we observed

severe distribution mismatch between the valida-

tion and test data. See Table 4, 5, and Sec. 4.4 for

detailed discussion. Therefore, we further sampled

5k/5k dev/test-dev splits from the validation set and

tuned hyper-parameters on the dev set only. We re-

port ROUGE scores (Lin, 2004) on test-dev for the

evaluation of our proposed approach, and include

results on the standard test split for the comparison

with prior work.

4.2 Implementation Details

Our implementation is based on the Py-

Torch (Paszke et al., 2017) version of Open-

NMT (Klein et al., 2018) seq2seq toolkit. We use

the ‘base’ model of 6-layer Transformer with 512-

hidden 8-head attention blocks and 2048-hidden

feed-forward layer for all experiments, with label

smoothing regularization (LSR) (Szegedy et al.,

2016) of 0.1.5 We batch examples with similar

sequence length, and count batch size by the

number of tokens. For MT we use the pre-trained

BERT-base-multilingual-cased model, and for

summarization we use BERT-base-uncased as the

starting point of BERT finetuning.6 We use the

corresponding pre-trained byte-pair-encoding (Sen-

nrich et al., 2016) shipped together with the BERT

model for tokenization.

For all training methods of all Transformer mod-

els, the learning rate schedule is set to lr = η ·
d−0.5
model ·min(step−0.5, step ·warmup steps−1.5),

where dmodel = 512 is the attention representation

size (Vaswani et al., 2017). For all BERT fine-

tuning, we follow Devlin et al. (2019) and use a

triangular learning rate schedule with maximum

learning rate η. The parameters are updated with

the Adam optimizer (Kingma and Ba, 2015). In

the distillation stage, we pre-compute BERT’s pre-

diction logits of the training data7 and use top-K

distillation (Tan et al., 2019) to reduce computation

overhead and memory footprint, where K is set to

8 across all the experiments.8

5Our method can also be viewed as a ‘learned LSR’. The
results reported of our proposed method are trained together
with regular LSR, showing the effectiveness of our teacher.

6BERT pre-trained models are available at
https://github.com/google-research/bert. Our finetun-
ing implementation is modified from code available at
https://github.com/huggingface/pytorch-pretrained-BERT.

7The masking strategy is described in the supplementary.
8We also tune the temperature T for the softmax applied

at the teacher’s logits. Different from the original KD, we
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De-En Models dev test

Our Implementations

Transformer (base) 35.27 34.09

+ BERT teacher 36.93 35.63

Other Reported Results

ConvS2S + MRT‡ 33.91 32.85

Transformer (big)⋄ - 34.4†

Lightweight Conv⋄ - 34.8†

Dyn. Convolution⋄ - 35.2†

Table 1: BLEU scores for IWSLT14 German-English

translation. (†) tuned with checkpoint averaging. (‡)

from Edunov et al. (2018). (⋄) from Wu et al. (2019).

En-Vi Models tst2012 tst2013

Our Implementations

RNN 23.37 26.80

+ BERT teacher 25.14 27.59

Transformer (base) 27.03 30.76

+ BERT teacher 27.85 31.51

Other Reported Results

RNN† - 26.1

Seq2Seq-OT⋆ 24.5 26.9

ELMo⋄ - 29.3

CVT⋄ - 29.6

Table 2: BLEU scores for IWSLT15 English-

Vietnamese translation. (†) from Luong et al. (2017).

(⋆) from Chen et al. (2019). (⋄) from Clark et al.

(2018).

For the detailed values of the hyper-parameters

for each experiment, please refer to the supplemen-

tary material. We found it necessary to train longer

with Lbidi, since it is still improving after the step

at which the baseline Transformer starts to plateau.

At inference time, we use beam search with beam

size 4 and length penalty (Wu et al., 2016) of 0.6

across all the models. All the hyper-parameters

are tuned on the development set. Note that our

Transformer baselines achieve higher scores than

the reference implementation on each dataset (in

most cases comparable to the state-of-the-art).

4.3 Results on Machine Translation

We first validate our proposed text generation ap-

proach on machine translation task. Experimental

results are summarized in Table 1, 2 and 3, which

show that our model significantly improves over

the strong Transformer baseline across all three

do not apply the same T on the student. In preliminary ex-
periment we found high T of Seq2Seq results in much worse
performance. We hypothesize the low-entropy nature of condi-
tioned text generation is not suitable for temperature scaling.

En-De Models NT2013 NT2014

Our Implementations

Transformer (base) 25.95 26.94

+ BERT teacher 26.22 27.53

Other Reported Results

Transformer (base)⋄ 25.8 27.3†

Transformer (big)⋆‡ 26.5 29.3†

Dyn. Convolution•‡ 26.9±0.2 29.7†

Table 3: BLEU scores for WMT14 English-German

translation. (†) tuned with checkpoint averaging. (‡)

trained on WMT16, a slightly different version of train-

ing data. (⋄) from Vaswani et al. (2017). (⋆) from Ott

et al. (2018). (•) from Wu et al. (2019).

datasets. Note that our baseline is the ‘base’ model

of Transformer, which has 44M trainable parame-

ters, and the reference implementation by Wu et al.

(2019) of the ‘big’ model with 176M parameters.9

For IWSLT German-English translation, our

method improves over the Transformer baseline by

1.54 BLEU points, and achieves new state of the

art. Our approach outperforms previously-reported

results such as ConvS2S+MRT, a convolutional-

based model (Gehring et al., 2017) with minimum

risk training (Edunov et al., 2018), and Lightweight

and Dynamic Convolution (Wu et al., 2019). Note

that Wu et al. (2019) also tuned checkpoint averag-

ing, which creates a soft ensemble effect. And their

model has roughly the same amount of parameters

as Transformer (big).

For IWSLT English-Vietnamese translation,

since most prior work experimented with RNN

models, we also report RNN-based results here.

This also suggests that our method is model-

agnostic. Our best model outperforms Seq2Seq-

OT (Chen et al., 2019) that utilizes optimal trans-

port for sequence-level training, as well as the

ELMo and CVT results reported in Clark et al.

(2018).10 For WMT14 English-German transla-

tion, our method still improves over the well-tuned

Transformer baseline. We also report the scores

of Transformer (big) and state-of-the-art Dynamic

Convolution model (Wu et al., 2019) for reference.

4.4 Results on Abstractive Summarization

Table 4 and Table 5 show the results of our ap-

proach on abstractive summarization task, where

9Parameter counts exclude word embedding and final lin-
ear projection, which mostly depends on the vocabulary size.
BERT-base has 86M trainable parameters.

10The CVT results used a much larger RNN and CNN-
based character embedding, as well as a customized structure.
Therefore, we did not try to use RNN to match their results.
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GW Models R-1 R-2 R-L

Dev

Transformer (base) 46.64 24.37 43.17

+ BERT teacher 47.35 25.11 44.04

Test-Dev

Transformer (base) 46.84 24.80 43.58

+ BERT teacher 47.90 25.75 44.53

Table 4: ROUGE F1 scores for Gigaword abstractive

summarization on our internal test-dev split.

GW Models R-1 R-2 R-L

Seq2Seq† 36.40 17.77 33.71

CGU‡ 36.3 18.0 33.8

FTSumg
⋆ 37.27 17.65 34.24

E2Tcnn
⋄ 37.04 16.66 34.93

Re3Sum• 37.04 19.03 34.46

Trm + BERT teacher 37.57 18.59 34.82

Table 5: ROUGE F1 scores for Gigaword abstractive

summarization on the official test set (Trm: Trans-

former). (†) from Nallapati et al. (2016). (‡) from Lin

et al. (2018). (⋆) from Cao et al. (2018b). (⋄) from Am-

playo et al. (2018). (•) from Cao et al. (2018a).

R-1, R-2, and R-L denote F1 scores of ROUGE-

1, ROUGE-2, and ROUGE-L, respectively. Our

method shows improvement on all the metrics, as

shown in Table 4. We observe a large gap between

dev and test scores, which suggests that the data in

the test set is very different from that in the vali-

dation set, as mentioned in Section 4.1. Given the

fact that the official test split contains only 1,951

noisy examples,11 we believe that our results on

the dev/test-dev sets further strengthens our claim.

On the test split, our best model is comparable

to state-of-the-art models that use much more com-

plex architectures specifically designed for summa-

rization. CGU (Lin et al., 2018) augmented convo-

lutional gating units. FTSumg (Cao et al., 2018b)

leveraged extra information extraction and depen-

dency parsing features. E2Tcnn (Amplayo et al.,

2018) utilized entities provided by an external en-

tity linking system. Re3Sum (Cao et al., 2018a)

carefully designed a retrieve-and-rerank pipeline

with human-written soft templates. Despite that

our model has no summarization-specific model

design, we still achieve comparable performance

to these models on all the metrics.

11When we manually inspected the test set data, we found
many corrupted examples such as extremely short input arti-
cles, meaningless summary, and dominating unknown words.

Methods De-En En-Vi

(dev) (tst2012)

Transformer (base) 35.27 27.03

Trm + BERTl2r 35.20 26.99

Trm + BERTsm 36.32 27.68

Trm + BERT 36.93 27.85

Table 6: Ablation study. (Trm: Transformer)

4.5 Ablation Study

There are several possible factors that could con-

tribute to the performance gain: additional param-

eters of BERT, extra data (pretraining corpus) of

BERT, and the bidirectional nature. To better un-

derstand the key contributions of our method, we

conduct an ablation study described in the follow-

ing. We finetune 2 extra teachers: BERTsm and

BERTl2r. For BERTsm, we use a smaller BERT

(6 layers) for C-MLM finetuning, which has ap-

proximately the same number of parameters as

Transformer-base.12 For BERTl2r, we use the full

BERT model but finetune it using left-to-right LM

as in the conventional Seq2Seq model. Next, we

apply the proposed KD method to train the Trans-

former on En-Vi and De-En MT tasks. Results

are shown in Table 6. BERTsm still works well

though the full BERT provides further improve-

ment. On the other hand, BERTl2r slightly hurts

the performance. We hypothesize that it generates

noisy learning targets for the student, hence the per-

formance drop. Empirically, we show that the bidi-

rectional knowledge could be more important than

the extra parameters, while the pre-trained weights

remain useful for more stable C-MLM training.

4.6 Generation for Different Lengths

We next analyze the effect of our proposed ap-

proach on different output lengths. We plot the

BLEU scores on MT w.r.t. different output genera-

tion lengths N on the development set.13 Results

are provided in Figure 2 and Figure 3. For IWSLT

German-English dataset (Figure 2: Left), we can

see a shared trend that the proposed Lbidi objec-

tive gains higher BLEU points on longer transla-

tion pairs. For WMT English-German (Figure 3),

we can see that although the proposed method

performs much worse when the output sentences

12We still use the pretrained weights of BERT, otherwise
the C-MLM does not converge very well.

13For Gigaword summarization, almost all summaries are
short sentences (less than 0.5% of the summaries contain more
than 16 words), so we omit the analysis.



7900

Figure 2: BLEU scores on IWSLT German-English and English-Vietnamese for different output lengths.

Reference my mother says that i started reading at the age of two , although i think four is probably close to the truth .
Transformer my mother says that i started reading with two years , but i think that four of them probably correspond to the

truth . (39.6)
Ours my mother says that i started reading at the age of two , but i think four is more likely to be the truth . (65.2)

Reference we already have the data showing that it reduces the duration of your flu by a few hours .
Transformer we ’ve already got the data showing that it ’s going to crash the duration of your flu by a few hours . (56.6)
Ours we already have the data showing that it reduces the duration of your flu by a few hours . (100.0)

Reference we now know that at gombe alone , there are nine different ways in which chimpanzees use different objects
for different purposes .

Transformer we know today that alone in gombe , there are nine different ways that chimpanzees use different objects
in different ways . (35.8)

Ours we now know that in gombe alone , there are nine different ways that chimpanzees use different objects
for different purposes . (71.5)

Table 7: Qualitative examples from IWSLT German-English translation. Numbers inside the parenthesis are

sentence-level BLEU scores. Red word is where the baseline Transformer makes a mistake without consider-

ing the possible future phrase and fails to recover. On the other hand, our model makes the right decision at the

blue word, hence generates more coherent sentence. Please refer to Section 4.7 for detailed explanation.

Figure 3: BLEU scores on WMT English-German for

different output lengths.

are very short, it achieves relatively consistent

improvement on longer cases, hence resulting in

overall BLEU improvement. For IWSLT English-

Vietnamese (Figure 2: Right), we see a similar

trend when the length N > 24.

4.7 Qualitative Examples

In Table 7, we show some translation examples on

IWSLT German-English dataset. In the first exam-

ple, the baseline Transformer cannot recover from

‘with’ and ‘of ’, which renders the full sentence

not making much sense. “I started reading with...”

would make sense from the left context; however, if

the model also considers the right context “the age

of two”, the word ‘with’ would be assigned with

lower probability by the soft labels provided by the

BERT teacher. Even though at test-time the model

cannot ‘look ahead’, the soft-targets at training-

time prevents the over-confidence of the model on

one-hot label; hence the better generalization at the

test-time. Similarly, other examples show that our

model can generate text more coherently w.r.t. the

context on the right (underlined in Table 7), thus

making more accurate and natural translation.

5 Conclusion

In this work, we propose a novel and generic ap-

proach to utilizing pre-trained language models to
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improve text generation without explicit parame-

ter sharing, feature extraction, or augmenting with

auxiliary tasks. Our proposed Conditional MLM

mechanism leverages unsupervised language mod-

els pre-trained on large corpus, and then adapts to

supervised sequence-to-sequence tasks. Our distil-

lation approach indirectly influences the text gen-

eration model by providing soft-label distributions

only, hence is model-agnostic. Experiments show

that our model improves over strong Transformer

baselines on multiple text generation tasks such as

machine translation and abstractive summarization,

and achieves new state-of-the-art on some of the

translation tasks. For future work, we will explore

the extension of Conditional MLM to multimodal

input such as image captioning.
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A Implementaion Details and

Hyper-parameter Values

We run all experiments on single GPU of NVIDIA

Titan RTX or V100 except for WMT En-De we use

4 V100s for training. Note that for large batch sizes

that do not fit in GPU memory, we use the gradient

accumulation tricks as in Ott et al. (2018). Batch

sizes are counted in number of tokens. Note that all

the hyper-parameters are tuned on the development

set only.

To compute the logits (soft labels) from teacher,

we repeat a training pair for 7 times and create a

circular mask as illustrated in Figure 4. This mask

approximates the 15% masking rate of the BERT

training. From the masked positions we can obtain

soft probabilities predicted by the BERT teacher

for each output tokens y. These logits are pre-

computed once for the training set so that we do

not have to repeatedly sample random masks and

run forward pass of BERT while training.

IWSLT De-En For C-MLM fine-tuning, we

train for 100k steps with 5k warmup steps, η =
5 · 10−5, and batch size of 16k tokens. For

baseline model, we train for 50k steps with 4k

warmup steps and batch size of 6k tokens. The

learning rate η is set to 1. For the proposed model,

we train for 100k steps with 8k warmup steps

and batch size of 6k tokens. The learning rate η

is set to 2, α = 0.5, and T = 10. Seq2Seq model

uses dropout (Srivastava et al., 2014) of 0.3 in both

cases.

IWSLT En-Vi For C-MLM fine-tuning and base-

line Transformer, the hyper-parameters are iden-

tical to that of IWSLT De-En. For the pro-

posed model, we train for 100k steps with 8k

warmup steps and batch size of 6k tokens. The

learning rate η is set to 2, α = 0.1, and T = 5.

Dropout is still 0.1.

WMT En-De For C-MLM fine-tuning, we train

for 100k steps with 5k warmup steps, η =
5 · 10−5, and batch size of 512k tokens. For

baseline model, we train for 30k steps with 4k

warmup steps and batch size of 384k tokens. The

learning rate η is set to 4. Since this is our largest

dataset and training is slow, for the proposed model

we use the baseline Transformer to initialize the

Seq2Seq student. For the proposed model, we con-

tinue training for 50k steps with 4k warmup steps

and batch size of 64k tokens. The learning rate η is

Figure 4: Illustration of the masking strategy for com-

puting the teacher soft labels. Gray slashed boxes de-

note the [MASK] positions.

set to 2, α = 0.1, and T = 5. Seq2Seq model uses

dropout of 0.1 in both cases.

Gigaword For C-MLM fine-tuning, we train for

100k steps with 5k warmup steps, η = 5 · 10−5,

and batch size of 64k tokens. For baseline model,

we train for 50k steps with 4k warmup steps and

batch size of 40k tokens. The learning rate η is

set to 1. For the proposed model, we train for 70k

steps with 4k warmup steps and batch size of 36k

tokens. The learning rate η is set to 2, α = 0.1,

and T = 10. Seq2Seq model uses dropout of 0.1

in both cases.

B Additional Generation Examples

We show Gigaword summarization examples in

Table 9 and extra En-DE generation examples in

Table 8. Qualitatively, our Transformer + BERT

Teacher outperforms baseline Transformer and gen-

erate more coherent sentences.
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Reference the political climate in the u.s. at the time was tense , and there were debates going on about immigration .
Transformer the political climate in the u.s. was back then , and there was constant disasters . (29.5)
Ours the political climate in the united states at the time was tense , and there were ongoing shifting debates .

(57.3)

Reference it would be immoral to leave these young people with a climate system spiraling out of control .
Transformer it would be immoral to let these young people leave a climate system that was out of control . (44.6)

Ours it would be immoral to leave these young people with a climate system out of control . (84.3)

Reference the tahltan have called for the creation of a tribal heritage reserve which will set aside the largest protected
area in british columbia .

Transformer tahltan demands the institution of a tribe in british columbia that should make the largest protection area in
british columbia . (19.9)

Ours the tahltan demands to build a tribe reserve that should be the largest protected area in british columbia .
(32.2)

Table 8: Qualitative examples from IWSLT German-English translation. Numbers inside the parenthesis are

sentence-level BLEU scores. Red word is where the baseline Transformer makes a mistake without consider-

ing the possible future phrase and fails to recover. On the other hand, our model makes the right decision at the

blue word, hence generates more coherent sentence. Please refer to Section 4.6 in the main paper for detailed

explanation.

Reference china offers tax exemptions for laid-off
workers

Transformer china encourages laid-off workers to seek
employment

Ours china offers tax exemptions to laid-off
workers

Reference swiss police arrest britons who allegedly
ran rental car racket

Transformer three britons arrested in swiss luxury hotel

Ours swiss police arrest three britons in rental
car racket case

Reference south korea stocks extend declines as kia
concerns intensify

Transformer south korean stocks fall for #th time in #
days ; kia leads

Ours south korean stocks fall as kia troubles in-
tensify

Table 9: Qualitative examples from the Gigaword sum-

marization dataset. Baseline model suffers from early

mistakes. Our model generates more coherent sum-

maries.


