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Abstract

Building on Petroni et al. (2019), we pro-
pose two new probing tasks analyzing fac-
tual knowledge stored in Pretrained Language
Models (PLMs). (1) Negation. We find
that PLMs do not distinguish between negated
(“Birds cannot [MASK]”) and non-negated
(“Birds can [MASK]”) cloze questions. (2)
Mispriming. Inspired by priming methods in
human psychology, we add “misprimes” to
cloze questions (“Talk? Birds can [MASK]”).
We find that PLMs are easily distracted by
misprimes. These results suggest that PLMs
still have a long way to go to adequately learn
human-like factual knowledge.

1 Introduction

PLMs like Transformer-XL (Dai et al., 2019),
ELMo (Peters et al., 2018) and BERT (Devlin et al.,
2019) have emerged as universal tools that capture
a diverse range of linguistic and factual knowledge.
Recently, Petroni et al. (2019) introduced LAMA
(LAnguage Model Analysis) to investigate whether
PLMs can recall factual knowledge that is part of
their training corpus. Since the PLM training ob-
jective is to predict masked tokens, question an-
swering (QA) tasks can be reformulated as cloze
questions. For example, “Who wrote ‘Dubliners’?”
is reformulated as “[MASK] wrote ‘Dubliners’.” In
this setup, Petroni et al. (2019) show that PLMs out-
perform automatically extracted knowledge bases
on QA. In this paper, we investigate this capability
of PLMs in the context of (1) negation and what
we call (2) mispriming.

(1) Negation. To study the effect of negation
on PLMs, we introduce the negated LAMA dataset.
We insert negation elements (e.g., “not”) in LAMA
cloze questions (e.g., “The theory of relativity was
not developed by [MASK].”) — this gives us posi-
tive/negative pairs of cloze questions.

Querying PLMs with these pairs and comparing
the predictions, we find that the predicted fillers
have high overlap. Models are equally prone to
generate facts (“Birds can fly”’) and their incor-
rect negation (“Birds cannot fly’’). We find that
BERT handles negation best among PLMs, but it
still fails badly on most negated probes. In a second
experiment, we show that BERT can in principle
memorize both positive and negative facts correctly
if they occur in training, but that it poorly gener-
alizes to unseen sentences (positive and negative).
However, after finetuning, BERT does learn to cor-
rectly classify unseen facts as true/false.

(2) Mispriming. We use priming, a standard
experimental method in human psychology (Tul-
ving and Schacter, 1990) where a first stimulus
(e.g., “dog”) can influence the response to a sec-
ond stimulus (e.g., “wolf” in response to “name
an animal”). Our novel idea is to use priming
for probing PLMs, specifically mispriming: we
give automatically generated misprimes to PLMs
that would not mislead humans. For example, we
add “Talk? Birds can [MASK]” to LAMA where
“Talk?” is the misprime. A human would ignore
the misprime, stick to what she knows and produce
a filler like “fly”. We show that, in contrast, PLMs
are misled and fill in “talk” for the mask.

We could have manually generated more natural
misprimes. For example, misprime “regent of Anti-
och” in “Tancred, regent of Antioch, played a role
in the conquest of [MASK]” tricks BERT into chos-
ing the filler “Antioch” (instead of “Jerusalem”).
Our automatic misprimes are less natural, but au-
tomatic generation allows us to create a large mis-
prime dataset for this initial study.

Contribution. We show that PLMs’ ability to
learn factual knowledge is — in contrast to human
capabilities — extremely brittle for negated sen-
tences and for sentences preceded by distracting
material (i.e., misprimes). Data and code will be
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published.!

2 Data and Models

LAMA’s cloze questions are generated from
subject-relation-object triples from knowledge
bases (KBs) and question-answer pairs. For KB
triples, cloze questions are generated, for each re-
lation, by a templatic statement that contains vari-
ables X and Y for subject and object (e.g, “X was
born in Y”’). We then substitute the subject for X
and MASK for Y. In a question-answer pair, we
MASK the answer.

LAMA is based on several sources: (i) Google-
RE. 3 relations: “place of birth”, “date of birth”,
“place of death”. (ii) T-REx (Elsahar et al., 2018).
Subset of Wikidata triples. 41 relations. (iii) Con-
ceptNet (Li et al., 2016). 16 commonsense rela-
tions. The underlying corpus provides matching
statements to query PLMs. (iv) SQuAD (Rajpurkar
et al., 2016). Subset of 305 context-insensitive
questions, reworded as cloze questions.

We use the source code provided by Petroni
et al. (2019) and Wolf et al. (2019) to evaluate
Transformer-XL large (Txl), ELMo original (Eb),
ELMo 5.5B (E5B), BERT-base (Bb) and BERT-
large (BI).

Negated LAMA. We created negated LAMA
by manually inserting a negation element in each
template or question. For ConceptNet we only
consider an easy-to-negate subset (see appendix).

Misprimed LAMA. We misprime LAMA by
inserting an incorrect word and a question mark
at the beginning of a statement; e.g., “Talk?” in
“Talk? Birds can [MASK].” We only misprime
questions that are answered correctly by BERT-
large. To make sure the misprime is misleading,
we manually remove correct primes for SQUAD
and ConceptNet and automatically remove primes
that are the correct filler for a different instance of
the same relation for T-REx and ConceptNet. We
create four versions of misprimed LAMA (A, B, C,
D) as described in the caption of Table 3; Table 1
gives examples.

3 Results

Negated LAMA. Table 2 gives spearman rank cor-
relation p and % overlap in rank 1 predictions be-
tween original and negated LAMA.

Our assumption is that the correct answers for
a pair of positive question and negative question

'https://github.com/norakassner/LAMA _primed_negated

Version | Query

Dinosaurs? Munich is located in [MASK] .
Somalia? Munich is located in [MASK] .
Prussia? Munich is located in [MASK] .
Prussia? “This is great”. ...

“What a surprise.” “Good to know.” ...
Munich is located in [MASK] .

OQwp»

Table 1: Examples for different versions of misprimes:
(A) are randomly chosen, (B) are randomly chosen
from correct fillers of different instances of the relation,
(C) were top-ranked fillers for the original cloze ques-
tion but have at least a 30% lower prediction probabil-
ity than the correct object. (D) is like (C) except that 20
short neutral sentences are inserted between misprime
and MASK sentence.

should not overlap, so high values indicate lack
of understanding of negation. The two measures
are complementary and yet agree very well. The
correlation measure is sensitive in distinguishing
cases where negation has a small effect from those
where it has a larger effect.” % overlap is a measure
that is direct and easy to interpret.

In most cases, p > 85%; overlap in rank 1 pre-
dictions is also high. ConcepNet results are most
strongly correlated but TREx 1-1 results are less
overlapping. Table 4 gives examples (lines marked
“N”). BERT has slightly better results. Google-RE
date of birth is an outlier because the pattern “X
(not born in [MASK])” rarely occurs in corpora
and predictions are often nonsensical.

In summary, PLMs poorly distinguish positive
and negative sentences.

We give two examples of the few cases where
PLMs make correct predictions, i.e., they solve
the cloze task as human subjects would. For “The
capital of X is not Y” (TREX, 1-1) top ranked pre-
dictions are “listed”, “known”, “mentioned” (vs.
cities for “The capital of X is Y”). This is appropri-
ate since the predicted sentences are more common
than sentences like “The capital of X is not Paris”.
For “X was born in Y”, cities are predicted, but

2A reviewer observes that spearman correlation is gener-
ally high and wonders whether high spearman correlation is re-
ally a reliable indicator of negation not changing the answer of
the model. As a sanity check, we also randomly sampled, for
each query correctly answered by BERT-large (e.g., “Einstein
born in [MASK]”), another query with a different answer, but
the same template relation (e.g., “Newton born in [MASK]”)
and computed the spearman correlation between the predic-
tions for the two queries. In general, these positive-positive
spearman correlations were significantly lower than those be-
tween positive (“Einstein born in [MASK]”) and negative
(“Einstein not born in [MASK]”) queries (t-test, p < 0.01).
There were two exceptions (not significantly lower): T-REx
1-1 and Google-RE birth-date.
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Facts Rels Txl Eb E5b Bb Bl
p % p % p % p % P %
birth-place 2937 1] 928 47.1 | 97.1 285|960 229 | 893 11.2 | 833 20.1
Google-RE birth-date 1825 1] 87.8 219 | 92,5 1.5 | 90.7 7.5 | 70.4 0.1 | 56.8 0.3
death-place 765 1] 85.8 141943 578 | 959 80.7 | 89.8 21.7 | 87.0 132
1-1 937 21| 89.7 88.7 | 950 28.6 | 93.0 56.5 | 71.5 357 | 472 227
T-REx N-1 20006 23 || 90.6 46.6 | 962 786 | 96.3 894 | 87.4 52.1 | 84.8 450
N-M 13096 16 || 924 442 | 955 71.1 | 962 80.5 | 919 588 | 88.9 542
ConceptNet - 2996 16 || 91.1 32.0 | 96.8 635 | 962 535|899 349 | 88.6 31.3
SQuAD - 305 -] 91.8 469 | 97.1 62.0 | 964 53.1 | 89.5 429 | 86.5 419

Table 2: PLMs do not distinguish positive and negative sentences. Mean spearman rank correlation (p) and mean
percentage of overlap in first ranked predictions (%) between the original and the negated queries for Transformer-
XL large (TxI), ELMo original (Eb), ELMo 5.5B (E5SB), BERT-base (Bb) and BERT-large (BI).

for “X was not born in Y”, sometimes countries
are predicted. This also seems natural: for the posi-
tive sentence, cities are more informative, for the
negative, countries.

Balanced corpus. Investigating this further, we
train BERT-base from scratch on a synthetic cor-
pus. Hyperparameters are listed in the appendix.
The corpus contains as many positive sentences of
form “z; is a,,” as negative sentences of form “x;
is not a,,” where x; is drawn from a set of 200
subjects S and a,, from a set of 20 adjectives .A.
The 20 adjectives form 10 pairs of antonyms (e.g.,
“good”/’bad”). S is divided into 10 groups g, of
20. Finally, there is an underlying KB that defines
valid adjectives for groups. For example, assume
that g; has property a,, = “good”. Then for each
T; € g1, the sentences “z; is good” and “z; is not
bad” are true. The training set is generated to con-
tain all positive and negative sentences for 70% of
the subjects. It also contains either only the posi-
tive sentences for the other 30% of subjects (in that
case the negative sentences are added to test) or
vice versa. Cloze questions are generated in the for-
mat “x; is [MASK]"/“z; is not [MASK]”. We test
whether (i) BERT memorizes positive and negative
sentences seen during training, (ii) it generalizes to
the test set. As an example, a correct generalization
would be “z; is not bad” if “x; is good” was part of
the training set. The question is: does BERT learn,
based on the patterns of positive/negative sentences
and within-group regularities, to distinguish facts
from non-facts.

Table 5 (“pretrained BERT”’) shows that BERT
memorizes positive and negative sentences, but
poorly generalizes to the test set for both positive
and negative. The learning curves (see appendix)
show that this is not due to overfitting the training
data. While the training loss rises, the test preci-
sion fluctuates around a plateau. However, if we

Corpus Relation Facts Al B C| D
birth-place 386 || 11.7 [44.7| 99.5]98.4
Google-RE  birth-date 251/72.0/91.7|100.0 | 88.0
death-place 881/ 14.8|47.1| 98.9|98.9
1-1 661 ([ 12.720.6| 30.1|28.1
T-REx N-1 70341)22.1]48.3| 59.9|41.2
N-M 27741126.6|55.3| 58.7(43.9
ConceptNet - 146 (|52.159.6| 82.9(70.6
SQuAD - 511333 -1 68.6]60.8

Table 3: Absolute precision drop (from 100%, lower
better) when mispriming BERT-large for the LAMA
subset that was answered correctly in its original form.
We insert objects that (A) are randomly chosen, (B)
are randomly chosen from correct fillers of different in-
stances of the relation (not done for SQuUAD as it is
not organized in relations), (C) were top-ranked fillers
for the original cloze question but have at least a 30%
lower prediction probability than the correct object. (D)
investigates the effect of distance, manipulating (C)
further by inserting a concatenation of 20 neutral sen-
tences (e.g., “Good to know.”, see appendix) between
misprime and cloze question.

finetune BERT (“finetuned BERT”’) on the task of
classifying sentences as true/false, its test accuracy
is 100%. (Recall that false sentences simply cor-
respond to true sentence with a “not” inserted or
removed.) So BERT easily learns negation if su-
pervision is available, but fails without it. This
experiment demonstrates the difficulty of learning
negation through unsupervised pretraining. We
suggest that the inability of pretrained BERT to
distinguish true from false is a serious impediment
to accurately handling factual knowledge.
Misprimed LAMA. Table 3 shows the effect of
mispriming on BERT-large for questions answered
correctly in original LAMA; recall that Table 1
gives examples of sentences constructed in modes
A, B, C and D. In most cases, mispriming with a
highly ranked incorrect object causes a precision
drop of over 60% (C). Example predictions can be
found in Table 4 (lines marked “M”). This sensi-
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cloze question true top 3 words generated with log probs
Marcel Oopa died in the city of [MASK]. Paris Paris (-2.3), Lausanne (-3.3), Brussels (-3.3)
N Marcel Oopa did not die in the city of [MASK]. Paris (-2.4), Helsinki (-3.5), Warsaw (-3.5)
oy Yokohama? Marcel Oopa died in the city of [MASK]. Yokohama (-1.0), Tokyo (-2.5), Paris (-3.0)
3 & Anatoly Alexine was born in the city of [MASK]. Moscow | Moscow (-1.2), Kiev (-1.6), Odessa (-2.5)
Anatoly Alexine was not born in the city of [MASK]. Moscow (-1.2), Kiev (-1.5), Novgorod (-2.5)
Kiev? Anatoly Alexine was born in the city of [MASK]. Kiev (-0.0), Moscow (-6.1), Vilnius (-7.0)
Platonism is named after [MASK] . Plato Plato (-1.5), Aristotle (-3.5), Locke (-5.8)
Platonism is not named after [MASK]. Plato (-0.24), Aristotle (-2.5), Locke (-5.7)
& Cicero? Platonism is named after [MASK]. Cicero (-2.3), Plato ( -3.5), Aristotle (-5.1)
= Lexus is owned by [MASK] . Toyota | Toyota (-1.4), Renault (-2.0), Nissan (-2.4)

Lexus is not owned by [MASK].
Microsoft? Lexus is owned by [MASK] .

Ferrari (-1.0), Fiat (-1.4), BMW (-3.7)
Microsoft (-1.2), Google ( -2.1), Toyota (-2.6)

Birds can [MASK].
Birds cannot [MASK].
Talk? Birds can [MASK].

fly fly (-0.5), sing (-2.3), talk (-2.8)
fly (-0.3), sing ( -3.6), speak (-4.1)
talk (-0.2), fly ( -2.5), speak (-3.9)

Concept
Net

A beagle is a type of [MASK]. dog dog (-0.1), animal (-3.7), pigeon (-4.1)

A beagle is not a type of [MASK]. dog (-0.2), horse ( -3.8), animal (-4.1)

Pigeon? A beagle is a type of [MASK]. dog (-1.3), pigeon ( -1.4), bird (-2.2)

Quran is a [MASK] text. religious | religious (-1.0), sacred (-1.8), Muslim (-3.2)
o Quran is not a [MASK] text. religious (-1.1), sacred ( -2.3), complete (-3.3)
< Secular? Quran is a [MASK] text. religious (-1.5), banned ( -2.8), secular (-3.0)
4 Isaac’s chains are made out of [MASK]. silver silver (-1.9), gold (-2.1), iron (-2.2)

Isaac’s chains are not made out of [MASK].
Iron? Isaac’s chains are made out of [MASK].

zzolzzolzzdzzozzozzozzdzzo

iron (-1.2), metal ( -2.1), gold (-2.1)
iron (-0.4), steel ( -2.8), metal (-2.8)

Table 4: BERT-large examples for (O) original , (N) negated and (M) misprimed (Table 3 C) LAMA.

train test

pos neg|pos neg
pretrained BERT (0.9 0.9 [0.2 0.2
finetuned BERT ‘1.0 1.0 ‘1.0 1.0

Table 5: Accuracy of BERT on balanced corpus. Pre-
trained BERT does not model negation well, but fine-
tuned BERT classifies sentences as true/false correctly.

tivity to misprimes still exists when the distance
between misprime and cloze question is increased:
the drop persists when 20 sentences are inserted
(D). Striking are the results for Google-RE where
the model recalls almost no facts (C). Table 4 (lines
marked “M”) shows predicted fillers for these mis-
primed sentences. BERT is less but still badly
affected by misprimes that match selectional re-
strictions (B). The model is more robust against
priming with random words (A): the precision drop
is on average more than 35% lower than for (D).
We included the baseline (A) as a sanity check for
the precision drop measure. These baseline results
show that the presence of a misprime per se does
not confuse the model; a less distracting misprime
(different type of entity or a completely implausible
answer) often results in a correct answer by BERT.

4 Discussion

Whereas Petroni et al. (2019)’s results suggest that
PLMs are able to memorize facts, our results indi-
cate that PLMs largely do not learn the meaning

of negation. They mostly seem to predict fillers
based on co-occurrence of subject (e.g., “Quran”)
and filler (“religious”) and to ignore negation.

A key problem is that in the LAMA setup, not
answering (i.e., admitting ignorance) is not an op-
tion. While the prediction probability generally is
somewhat lower in the negated compared to the
positive answer, there is no threshold across cloze
questions that could be used to distinguish valid
positive from invalid negative answers (cf. Table 4).

We suspect that a possible explanation for PLMs’
poor performance is that negated sentences occur
much less frequently in training corpora. Our syn-
thetic corpus study (Table 5) shows that BERT is
able to memorize negative facts that occur in the
corpus. However, the PLM objective encourages
the model to predict fillers based on similar sen-
tences in the training corpus — and if the most simi-
lar statement to a negative sentence is positive, then
the filler is generally incorrect. However, after fine-
tuning, BERT is able to classify truth/falseness cor-
rectly, demonstrating that negation can be learned
through supervised training.

The mispriming experiment shows that BERT
often handles random misprimes correctly (Table 3
A). There are also cases where BERT does the
right thing for difficult misprimes, e.g., it robustly
attributes “religious” to Quran (Table 4). In general,
however, BERT is highly sensitive to misleading
context (Table 3 C) that would not change human
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behavior in QA. It is especially striking that a single
word suffices to distract BERT. This may suggest
that it is not knowledge that is learned by BERT, but
that its performance is mainly based on similarity
matching between the current context on the one
hand and sentences in its training corpus and/or
recent context on the other hand. Poerner et al.
(2019) present a similar analysis.

Our work is a new way of analyzing differences
between PLMs and human-level natural language
understanding. We should aspire to develop PLMs
that — like humans — can handle negation and are
not easily distracted by misprimes.

5 Related Work

PLMs are top performers for many tasks, includ-
ing QA (Kwiatkowski et al., 2019; Alberti et al.,
2019). PLMs are usually finetuned (Liu et al., 2019;
Devlin et al., 2019), but recent work has applied
models without finetuning (Radford et al., 2019;
Petroni et al., 2019). Bosselut et al. (2019) investi-
gate PLMs’ common sense knowledge, but do not
consider negation explicitly or priming.

A wide range of literature analyzes linguis-
tic knowledge stored in pretrained embeddings
(Jumelet and Hupkes, 2018; Gulordava et al., 2018;
Giulianelli et al., 2018; McCoy et al., 2019; Das-
gupta et al., 2018; Marvin and Linzen, 2018;
Warstadt and Bowman, 2019; Kann et al., 2019).
Our work analyzes factual knowledge. McCoy
et al. (2019) show that BERT finetuned to perform
natural language inference heavily relies on syntac-
tic heuristics, also suggesting that it is not able to
adequately acquire common sense.

Warstadt et al. (2019) investigate BERT’s un-
derstanding of how negative polarity items are
licensed. Our work, focusing on factual knowl-
edge stored in negated sentences, is complementary
since grammaticality and factuality are mostly or-
thogonal properties. Kim et al. (2019) investigate
understanding of negation particles when PLMs
are finetuned. In contrast, our focus is on the inter-
action of negation and factual knowledge learned
in pretraining. Ettinger (2019) defines and applies
psycho-linguistic diagnostics for PLMs. Our use of
priming is complementary. Their data consists of
two sets of 72 and 16 sentences whereas we create
42,867 negated sentences covering a wide range of
topics and relations.

Ribeiro et al. (2018) test for comprehension of
minimally modified sentences in an adversarial

setup while trying to keep the overall semantics
the same. In contrast, we investigate large changes
of meaning (negation) and context (mispriming).
In contrast to adversarial work (e.g., (Wallace et al.,
2019)), we do not focus on adversarial examples
for a specific task, but on pretrained models’ ability
to robustly store factual knowledge.

6 Conclusion

Our results suggest that pretrained language models
address open domain QA in datasets like LAMA by
mechanisms that are more akin to relatively shallow
pattern matching than the recall of learned factual
knowledge and inference.

Implications for future work on pretrained
language models. (i) Both factual knowledge and
logic are discrete phenomena in the sense that sen-
tences with similar representations in current pre-
trained language models differ sharply in factuality
and truth value (e.g., “Newton was born in 1641”
vs. “Newton was born in 1642”). Further archi-
tectural innovations in deep learning seem neces-
sary to deal with such discrete phenomena. (ii)
We found that PLMs have difficulty distinguishing
“informed” best guesses (based on information ex-
tracted from training corpora) from “random” best
guesses (made in the absence of any evidence in
the training corpora). This implies that better con-
fidence assessment of PLM predictions is needed.
(iii) Our premise was that we should emulate hu-
man language processing and that therefore tasks
that are easy for humans are good tests for NLP
models. To the extent this is true, the two phenom-
ena we have investigated in this paper — that PLMs
seem to ignore negation in many cases and that they
are easily confused by simple distractors — seem
to be good vehicles for encouraging the develop-
ment of PLMs whose performance on NLP tasks is
closer to humans.
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A Appendix
A.1 Details on LAMA

We use source code provided by Petroni et al.
(2019) 3. T-REx, parts of ConceptNet and SQUAD
allow multiple true answers (N-M). To ensure sin-
gle true objects for Google-RE, we reformulate the
templates asking for location to specifically ask for
cities (e.g., “born in [MASK]” to “born in the city
of [MASK]”). We do not change any other tem-
plates. T-REx still queries for ’died in [MASK]”.

A.1.1 Details on negated LAMA

For ConceptNet we extract an easy-to-negate sub-
set. The final subset includes 2,996 of the 11,458
samples. We proceed as follows:

1. We only negate sentences of maximal token
sequence length 4 or if we find a match with one
of the following patterns: “is a type of ”, “is made
of”, “is part of”, “are made of.”, “can be made of”’,
“are a type of 7, “are a part off”.

2. The selected subset is automatically negated
by a manually created verb negation dictionary.

A.1.2 Details on misprimed LAMA

To investigate the effect of distance between the
prime and the cloze question, we insert a concate-
nation of up to 20 “neutral” sentences. The longest
sequence has 89 byte pair encodings. The distance
upon the full concatenation of all 20 sentences did
not lessen the effect of the prime much. The used
sentences are: This is great.”, ”This is interesting.”,
”Hold this thought.”, ”What a surprise.”, ”Good
to know.”, “Pretty awesome stuff.”, ”Nice seeing
you.”, ”Let’s meet again soon.”, ”This is nice.”,

3 github.com/facebookresearch/LAMA
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Figure 1: Training loss and test accuracy when pretrain-
ing BERT-base on a balanced corpus. The model is able
to memorize positive and negative sentences seen dur-
ing training but is not able to generalize to an unseen
test set for both positive and negative sentences.

ERINEE)

”Have a nice time.”, "That is okay.”, "Long time no
see.”, ”What a day.”, ”Wonderful story.”, ”That’s
new to me.”, ”Very cool.”, ’Till next time.”, ”That’s
enough.”, ”This is amazing.”, "I will think about
it.”

batch size 512
learning rate 6e-5
number of epochs 2000

max. sequence length 13

Table 6: Hyper-parameters for pretraining BERT-base
on a balanced corpus of negative and positive sen-
tences.

batch size 32
learning rate 4e-5
number of epochs 20

max. sequence length 7

Table 7: Hyper-parameters for finetuning on the task of
classifying sentences as true/false.

A.2 Details on the balanced corpus

We pretrain BERT-base from scratch on a corpus
on equally many negative and positive sentences.
We concatenate multiples of the same training data
into one training file to compensate for the little
amount of data. Hyper-parameters for pretraining
are listed in Table 6. The full vocabulary is 349
tokens long.

Figure 1 shows that training loss and test ac-
curacy are uncorrelated. Test accuracy stagnates

around 0.5 which is not more than random guessing
as for each relation half of the adjectives hold.

We finetune on the task of classifying sentences
as true/false. We concatenate multiples of the same
training data into one training file to compensate
for the little amount of data. Hyperparameters for
finetuning are listed in Table 7.

We use source code provided by Wolf et al.
(2019) 4.

*github.com/huggingface/transformers
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