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Abstract

In this theme paper, we reflect on the progress of
Automated Writing Evaluation (AWE), using Ellis
Page’s seminal 1966 paper to frame the presenta-
tion. We discuss some of the current frontiers in
the field, and offer some thoughts on the emergent
uses of this technology.

1 A Minimal Case for AWE

In a seminal paper on the imminence of automated
grading of essays, Page (1966) showed that a high
correlation between holistic machine and human
scores is possible. He demonstrated automated
scoring of 276 essays written by high school stu-
dents by a system with 32 features, resulting in a
multiple R = 0.65 between machine and average
human score, after adjustment. He also provided
a thoughtful discussion of his ambitions for auto-
mated scoring and of the possible objections.

Page made the case that automated evaluation of
student writing is needed to take some of the eval-
uation load off the teachers and to provide students
evaluations of their (potentially multiple) drafts
with a fast turnaround. He then appealed to the
then-burgeoning interest and fascination with ma-
chine learning to argue for the feasibility of such
an enterprise, namely, that machines can learn how
to give the right grades to essays, if trained on an
expert-scored sample.

As part of the feasibility argument, Page em-
phasized the need to carefully define the goal so
that success can be judged appropriately. The goal
is not a “real” master analysis of the essay the way
a human reader would do but merely an imitation
that would produce a correlated result (using what
Page called proxes – approximations). Page con-
sidered this goal to be both useful and achievable.

2 Report Card: Where are We Now?

2.1 Accomplishments
Page’s minimal desiderata have certainly been
achieved – AWE systems today can score in agree-
ment with the average human rater, at least in
some contexts.1 For example, Pearson’s Intelli-
gent Essay Assessor™ (IEA) scores essays writ-
ten for the Pearson Test of English (PTE) as well
as for other contexts: “IEA was developed more
than a decade ago and has been used to evaluate
millions of essays, from scoring student writing at
elementary, secondary and university level, to as-
sessing military leadership skills.”2 Besides sole
automated scoring as for PTE, there are additional
contexts where the automated score is used in ad-
dition to a human score, such as for essays written
for the Graduate Record Examination (GRE®)3

or for the Test of English as a Foreign Language
(TOEFL®).4 Does this mean that the problem of
AWE is solved? Well, not exactly.

2.2 Needs Improvement
Page did anticipate some difficulties for AWE sys-
tems. It is instructive to see where we are with
those.

2.2.1 Originality
What about the gifted student who is off-
beat and original? Won’t he be over-
looked by the computer? (Page, 1966)

Page’s argument is that the original student is
not going to be much worse off with a com-

1It is not our goal to survey in detail techniques that un-
derlie this success. See Ke and Ng (2019) for a recent review.

2https://pearsonpte.com/the-test/
about-our-scores/how-is-the-test-scored/

3https://www.ets.org/gre/revised_general/
scores/how/

4https://www.ets.org/toefl/ibt/scores/
understand/

https://pearsonpte.com/the-test/about-our-scores/how-is-the-test-scored/
https://pearsonpte.com/the-test/about-our-scores/how-is-the-test-scored/
https://www.ets.org/gre/revised_general/scores/how/
https://www.ets.org/gre/revised_general/scores/how/
https://www.ets.org/toefl/ibt/scores/understand/
https://www.ets.org/toefl/ibt/scores/understand/
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puter than with an (average) human reader, be-
cause originality is a subjective construct. Thus,
once research uncovers objective and measurable
aspects of “original” writing, relevant features can
be added into an AWE system; finding such as-
pects, as well as measuring them, is still work
in progress. While no current operational scor-
ing system we are aware of is specifically look-
ing for originality, research into aspects of writ-
ing that are often considered original is taking
place. For example, using data from different
tests, Beigman Klebanov and Flor (2013a) and
Beigman Klebanov et al. (2018) found that the
extent of metaphor use (proportion of metaphor-
ically used words in an essay) correlates with es-
say quality; Littlemore et al. (2014) likewise found
that more skilled writers use metaphor more of-
ten. Song et al. (2016) observed a positive corre-
lation between use of parallelism – syntactically
similar and semantically related constructors, of-
ten used for emphasis or to enhance memorabil-
ity – in student essays. Some pioneering work
has been done on comparing writing that is rec-
ognized as outstanding (through receiving pres-
tigious prizes) vs writing that is “merely” good
in the domain of scientific journalism (Louis and
Nenkova, 2013). Once various indicators of orig-
inality can be successfully measured, additional
work may be necessary to incorporate these mea-
surements into scoring ecosystems since such in-
dicators may only occur infrequently. One way to
achieve this would be to compute a “macro” fea-
ture that aggregates multiple such indicators, an-
other would be to direct such essays to a human
rater for review.

2.2.2 Gaming
Won’t this grading system be easy to
con? Can’t the shrewd student just put
in the proxies which will get a good
grade? (Page, 1966)

Certainly, students can and do employ gam-
ing strategies to discover and exploit weaknesses
of AWE systems. Such strategies can involve
repeating the same paragraphs over and over,
varying sentence structure, replacing words with
more sophisticated variants, re-using words from
the prompt, using general academic words, pla-
giarizing from other responses or from material
found on the Internet, inserting unnecessary shell
language – linguistic scaffolding for organizing

claims and arguments, and automated generation
of essays (Powers et al., 2001; Bejar et al., 2013,
2014; Higgins and Heilman, 2014; Sobel et al.,
2014). Such strategies are generally handled by
building in filters or flags for aberrant responses
(Higgins et al., 2006; Zhang et al., 2016; Yoon
et al., 2018; Cahill et al., 2018). However, de-
velopers of AWE systems can never anticipate all
possible strategies and may have to react quickly
as new ones are discovered in use, by developing
new AWE methods to identify them. This cat-and-
mouse game is particularly rampant in the con-
text of standardized testing (§3.2). This is one of
the reasons standardized tests are often not scored
solely by an AWE system but also by a human
rater.

2.2.3 Content
We are talking awfully casually about
grading subject matter like history. Isn’t
this a wholly different sort of problem?
Aren’t we supposed to see that what the
students are saying makes sense, above
and beyond their using commas in the
right places? (Page, 1966)

Indeed, work has been done over the last decade
on automated evaluation of written responses for
their content and not their general writing quality
(Sukkarieh and Bolge, 2008; Mohler et al., 2011;
Ziai et al., 2012; Basu et al., 2013; Madnani et al.,
2013; Ramachandran et al., 2015; Burrows et al.,
2015; Sakaguchi et al., 2015; Madnani et al., 2016;
Padó, 2016; Madnani et al., 2017a; Riordan et al.,
2017; Kumar et al., 2017; Horbach et al., 2018;
Riordan et al., 2019). Scoring for content focuses
primarily on what students know, have learned, or
can do in a specific subject area such as Computer
Science, Biology, or Music, with the fluency of
the response being secondary. For example, some
spelling or grammar errors are acceptable as long
as the desired specific information (e.g., scientific
principles, trends in a graph, or details from a read-
ing passage) is included in the response. Note that
most current content scoring systems ascertain the
“correctness" of a response based on its similar-
ity to other responses that humans have deemed
to be correct or, at least, high-scoring; they do not
employ explicit fact-checking or reasoning for this
purpose.

Concerns about specific content extends to
other cases where the scoring system needs to pay
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attention to details of genre and task – not all es-
says are five-paragraph persuasive essays; the spe-
cific task might require assessing whether the stu-
dent has appropriately used specific source ma-
terials (Beigman Klebanov et al., 2014; Rahimi
et al., 2017; Zhang and Litman, 2018) or assessing
narrative (Somasundaran et al., 2018) or reflective
(Beigman Klebanov et al., 2016a; Luo and Litman,
2016), rather than persuasive, writing.

2.2.4 Feedback
Page emphasized the importance of feedback, and
considered the following to be “the sort of feed-
back that can almost be programmed right now”
(original italics):

John [. . . ], please correct the following
misspellings: believe, receive. Note the
ie/ei problem. You overuse the words in-
teresting, good, nice; then was repeated
six times. Check trite expressions. All
of your sentences are of the subject-verb
variety and all are declarative. Recon-
struct. Check subject-verb agreement in
second paragraph. You had trouble with
this in your last paper. Title lacking. Do
the following related assignments for to-
morrow . . . (Page, 1966)

Today a substantial amount of writing feedback,
particularly about spelling and grammar, is incor-
porated into widely used text editors such as Mi-
crosoft Word, Google Docs, and Overleaf. Ded-
icated writing assistance software such as ETS’s
Writing Mentor®5 (Burstein et al., 2018), ASU’s
Writing Pal6 (Roscoe and McNamara, 2013; Allen
et al., 2014), ETS’ Criterion®7 (Burstein et al.,
2004), Grammarly’s Writing Assistant,8 Cam-
bridgeEnglish’s Write & Improve,9 Ginger’s Es-
say Checker,10 TurnItIn’s Revision Assistant,11

Vantage Learning’s MY Access!,12 Pearson’s
My Writing Lab Writing Practice Module and
WriteToLearn™13,14 typically go beyond grammar

5https://mentormywriting.org/
6http://www.adaptiveliteracy.com/writing-pal
7http://www.ets.org/criterion
8https://www.grammarly.com/
9https://writeandimprove.com/

10https://www.gingersoftware.com/essay-checker
11https://www.turnitin.com/products/

revision-assistant
12http://www.vantagelearning.com/products/

my-access-school-edition/
13https://www.pearsonmylabandmastering.com
14http://wtl.pearsonkt.com

and spelling.15 Such tools provide feedback on
discourse structure (Criterion), topic development
and coherence (Writing Mentor), tone (Writing
Assistant, Rao and Tetreault (2018)), thesis rele-
vance (Writing Pal), sentence “spicing” through
suggestions of synonyms and idioms (Ginger’s
Sentence Rephraser), and style & argumentation-
related feedback (Revision Assistant).

Can we then put a green check-mark against
Page’s agenda for automated feedback, which
“may magnify and disseminate the best human
capacities to criticize, evaluate, and correct”?
Alas, not yet; research on effectiveness of auto-
mated feedback on writing is inconclusive (En-
glert et al., 2007; Shermis et al., 2008; Grimes and
Warschauer, 2010; Choi, 2010; Roscoe and Mc-
Namara, 2013; Wilson and Czik, 2016; Wilson,
2017; Bai and Hu, 2017; Ranalli et al., 2017). One
potential reason for the different outcomes is dif-
ference in user populations – feedback that works
for L1 writers might not work for L2 writers; dif-
ferences in ages, skill levels, presence or absence
of learning disabilities could all play a role. Ad-
justment of the evaluation methodology to the spe-
cific purpose of the writing assistance tool is an-
other issue for consideration; we will return to this
issue in §4.

3 Going off the Page

So far, Page’s outline of the promises and chal-
lenges of AWE have provided a good framework
for surveying the field. There are also a number
of developments that were not mapped on Page’s
chart; we turn to reviewing those next.

3.1 Assessing writing in multiple languages

In order to advance the work on understanding
and assessing writing quality, there is clearly a
need for a multi-lingual perspective, since meth-
ods developed for one language or dialect may
not work for another. This consideration does not
appear in Page (1966), yet it is an active line of
subsequent work. While most of the research we
cited so far has been on English, various aspects
of writing evaluation, e.g., annotation, detection
of various types of errors, and building AWE sys-
tems, have been researched for a variety of lan-
guages: Song et al. (2016), Rao et al. (2017),
Shiue et al. (2017) worked with data in Chinese,

15Writing Pal does not provide specific grammar and
spelling feedback.

https://mentormywriting.org/
http://www.adaptiveliteracy.com/writing-pal
http://www.ets.org/criterion
https://www.grammarly.com/
https://writeandimprove.com/
https://www.gingersoftware.com/essay-checker
https://www.turnitin.com/products/revision-assistant
https://www.turnitin.com/products/revision-assistant
http://www.vantagelearning.com/products/my-access-school-edition/
http://www.vantagelearning.com/products/my-access-school-edition/
https://www.pearsonmylabandmastering.com
http://wtl.pearsonkt.com
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Lorenzen et al. (2019) in Danish, Berggren et al.
(2019) in Norwegian, Amorim and Veloso (2017)
in Portuguese, Stymne et al. (2017) in Swedish,
Berkling (2018) and Weiss and Meurers (2019)
in German, Mezher and Omar (2016) in Arabic,
Kakkonen et al. (2005) in Finnish, Loraksa and
Peachavanish (2007) in Thai, Lemaire and Dessus
(2001) in French, and Ishioka and Kameda (2006)
in Japanese. The list is by no means exhaustive;
see Flor and Cahill (2020) for a recent review.

3.2 Standardized Testing

The use of automated evaluation technology en-
visioned by Page was as a service to reduce
a teacher’s burden; to eventually “lift from the
shoulders of the English teacher, that brave and
harried soul, his perpetual pressure of unassigned
papers, or his unassuaged guilt.” While such use
has certainly been made (Burstein et al., 2004;
Grimes and Warschauer, 2010), the most visi-
ble use case for AWE technology has arguably
evolved to be in the context of standardized test-
ing, be it for a test of English such as TOEFL® or
PTE, a broader, more advanced psychometric ex-
amination such as the GRE® or GMAT, or for pro-
fessional licensure such as AICPA or PRAXIS®.

This development of often high-stakes usage
has led to somewhat different challenges from
those that Page had anticipated. These challenges
generally fall under the purview of the field of ed-
ucational measurement (Bennett and Bejar, 1998;
Clauser et al., 2002; Williamson et al., 2012): How
to ensure that the automatic scores assigned to test
takers are (1) valid, i.e., they actually measure the
skill that the test developer designed the test to
measure, (2) defensible, i.e., there is a reasonably
clear explanation of why test takers received the
particular scores they did, and (3) fair to all the test
takers. We address each of these challenges sep-
arately below. Note that an additional challenge
of high-stakes usage, not elaborated on here, is
how to architect scoring systems for large-scale,
low-latency use which requires them to be reli-
able, scalable, flexible, and attentive to the choice
of software and application frameworks (Madnani
et al., 2018).

3.2.1 Construct Validity
Page declares that he is not after “generating mea-
sures of what the true characteristics of the es-
says are, as ordinarily discussed by human raters”
but rather is content “to settle for the correlates of

these true characteristics.” Page seems to do away
rather quickly with trying to measure the actual
thing – the set of all and only “true characteristics
of essays”, or trins. Why is that? He explains:

Notwithstanding the wonders of the
computer, we have to develop a strategy
in order to tell the computer what to do.
The difficult part is the development of
this strategy. It is difficult because we do
not really understand what the psycho-
logical components are in the judgment
of essays. It is easy enough to get per-
sons to expound authoritatively on such
judgment, but the fuzziness and inutil-
ity of their thinking becomes at once ev-
ident when the effort is made to trans-
late it into a computer program. (Page,
1966)

Page’s argument is that we do not know pre-
cisely enough what the human raters are doing to
try and implement that. Some work on rater cogni-
tion has already been done in the early 1950s and
1960s, e.g., in the context of the College Entrance
Examination Board’s development of the General
Composition Test. Diederich et al. (1961) had 53
distinguished individuals from various academic
disciplines and beyond (English, Social Science,
Natural Science, Law, Writers and Editors, Busi-
ness Executives) sort student essays “in order of
merit”, with no definition thereof, instructing read-
ers as follows:

Use your own judgment as to what con-
stitutes “writing ability.” Do not as-
sume that we want you to do this or that.
We want you to use whatever hunches,
intuitions, or preferences you normally
use in deciding that one piece of writ-
ing is better than another. You need not
even act as a representative of your field,
since individuals in any field have vary-
ing tastes and standards.

Readers were also asked to a write brief com-
ments on anything that they liked or disliked about
the essay, on as many essays as possible. For
the study, a sample of U.S. college freshmen were
asked to write essays in response to four topics as
part of homework. A total of 300 essays address-
ing two topics were chosen for the analyses, sam-
pled so as to make sure that the full range of abil-
ities is represented (approximated via SAT Verbal
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scores). The researchers performed a factor anal-
ysis on the matrix of pairwise correlations among
the readers, and identified groups of readers (fac-
tors) that represent five “schools of thought” about
writing quality. Analyzing the comments made
by readers who belong to the different “schools of
thought”, they identified five categories that were
each prioritized by one of the groups of readers:

1. Ideas (including relevance, clarity, quantity,
development, persuasiveness)

2. Form (including spelling, organization, anal-
ysis, coherence)

3. Flavor (including style, originality, quality of
ideas, interest, sincerity)

4. Mechanics (including punctuation, grammar,
sentence structure, phrasing)

5. Wording (including felicity of expression,
comments on specific word choices, cliches)

It is based on such findings above that general
scoring criteria have emerged (Deane, 2013) and
morphed into scoring rubrics. These are explicit
criteria set by and for human raters for evaluating
essays. For example, to score highly on the GRE®

Issue essay-writing task,16 one typically:

• articulates a clear and insightful position on
the issue in accordance with the assigned task

• develops the position fully with compelling
reasons and/or persuasive examples

• sustains a well-focused, well-organized anal-
ysis, connecting ideas logically

• conveys ideas fluently and precisely, using ef-
fective vocabulary and sentence variety

• demonstrates superior facility with the con-
ventions of standard written English (i.e.,
grammar, usage and mechanics), but may
have minor errors

In the current practice of automated scoring of
standardized tests, developers of a scoring engine
often need to provide a construct validity argu-
ment in order to show that what the system is mea-
suring is actually aligned with the “writing con-
struct” – the actual set of writing skills that the
test is supposed to measure.

16https://www.ets.org/gre/revised_general/
prepare/analytical_writing/issue/scoring_guide

Some of the items in a human-oriented scoring
rubrics are amenable to reasonably direct imple-
mentation, often with the help of human-annotated
gold standard data such as misspellings (Flor,
2012; Flor and Futagi, 2013) and specific gram-
mar errors (Rozovskaya and Roth, 2010; Leacock
et al., 2014). It might be the case that the system
would miss some grammar errors and declare an
error where there is none, but a grammar assess-
ment system can be built for identifying specific,
observable instances of errors that a human reader
focused on Mechanics would likely pick upon.

For other items in a rubric, one might need to
drill down, articulate a reliable guideline for hu-
mans to assess that particular aspect of the es-
say, annotate a substantial enough number of es-
says using the guidelines to make machine learn-
ing possible, and then find automatically measur-
able properties of essays that would provide infor-
mation relevant to that particular aspect of essay
quality. This would be a mix between what Page
called a prox and a trin, in that a particular, in-
trinsically interesting, aspect of an essay can be
identified reliably by humans, and an automated
system can learn how to approximate that partic-
ular construct. Such approaches have been devel-
oped for organization (well-organized) (Burstein
et al., 2003), coherence (well-focused, conveys
ideas fluently) (Burstein et al., 2010; Somasun-
daran et al., 2014), grammaticality (facility with
conventions) (Heilman et al., 2014), thesis clar-
ity (clarity) (Persing and Ng, 2013) as well as as-
pects of scoring rubrics that are more task-specific,
e.g., argumentation (clear position, with com-
pelling reasons) (Stab and Gurevych, 2014; Ghosh
et al., 2016; Beigman Klebanov et al., 2017; Stab
and Gurevych, 2017; Carlile et al., 2018), use of
evidence in the context of source-based writing
(Rahimi et al., 2017).

Finally, for some rubric items, it is not clear ex-
actly how to reliably translate the relevant aspect
of the writing construct into annotations guide-
lines, and so proxes might be employed. For
example, consider Page’s argument for captur-
ing “diction” (appropriate word choice) through
word frequency – a writer who can use many dif-
ferent words, including rarer and often semanti-
cally nuanced ones, is likelier to make precise
word choices than a writer who uses a more lim-
ited vocabulary. Attempts to capture topicality
(Beigman Klebanov et al., 2016b) or development

https://www.ets.org/gre/revised_general/prepare/ analytical_writing/issue/scoring_guide
https://www.ets.org/gre/revised_general/prepare/ analytical_writing/issue/scoring_guide
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(Beigman Klebanov and Flor, 2013b; Somasun-
daran et al., 2016) through properties of vocab-
ulary distribution without human annotation of
topicality and development exemplify such ap-
proaches.

3.2.2 Model Interpretability
Recent research has shown that more sophisti-
cated machine learning models might perform
better than simple regression-based models when
it comes to predictive accuracy (Chen and He,
2013; Cummins et al., 2016; Taghipour and Ng,
2016; Alikaniotis et al., 2016; Dong et al., 2017;
Dasgupta et al., 2018; Jin et al., 2018). How-
ever, unlike linear regression where stakehold-
ers can understand how much each feature used
in the model contributed to the predicted score,
many of the more complex models are essen-
tially “black boxes” and do not really lend them-
selves to post-hoc interpretability (Lipton, 2016).
Although interpretability is an active area of re-
search in the machine learning literature (Ribeiro
et al., 2016; Koh and Liang, 2017; Doshi-Velez
and Kim, 2017), it currently lags behind the re-
search on machine learning methods. For this
reason, some automated scoring systems used for
high-stakes standardized testing – like ETS’s e-
Rater (Attali and Burstein, 2006) – still use some
variant of least squares linear regression as the ma-
chine learning model to predict test taker scores.

3.3 Increased Attention to Fairness
It would probably not be an overstatement to say
that fairness in AI is quickly becoming its own
sub-field, with a new annual ACM conference on
Fairness, Accountability, and Transparency hav-
ing been inaugurated in 201817 and relevant re-
search appearing at many impactful publication
venues, such as Science (Caliskan et al., 2017),
NIPS (Pleiss et al., 2017; Kim et al., 2018), ICML
(Kearns et al., 2018), ACL (Hovy and Spruit,
2016; Sun et al., 2019; Sap et al., 2019), KDD
(Speicher et al., 2018), AAAI (Zhang and Barein-
boim, 2018), and others (Dwork et al., 2012; Ha-
jian and Domingo-Ferrer, 2013). There is also re-
cent work that examines fairness and ethical con-
siderations when using AI in an education (May-
field et al., 2019; Gardner et al., 2019).

In the context of assessment, fairness consider-
ations dictate that the test reflects the same con-
struct(s) for the entire test taking population, that

17https://facctconference.org/

scores from the test have the same meaning for all
the test taking population, and that a fair test does
not offer undue advantages (or disadvantages) to
some individuals because of their characteristics –
such as those associated with race, ethnicity, gen-
der, age, socioeconomic status, or linguistic or cul-
tural background – or the test characteristics itself,
e.g., the different prompts shown to different test-
takers at test time.

The educational measurement community has
long been studying fairness in automated scor-
ing (Williamson et al., 2012; Ramineni and
Williamson, 2013; AERA, 2014) and recent
progress made by the NLP community towards en-
hancing the usual accuracy-based evaluations with
some of these psychometric analyses – from com-
puting indicators of potential biases in automatic
scores across various demographic sub-groups to
computing new metrics that incorporate measure-
ment theory to produce more reliable indicators
of system performance – is quite promising (Mad-
nani et al., 2017b; Loukina et al., 2019).

3.4 Pervasiveness of Technology

Page’s gedankenexperiment on the potential of au-
tomated essay evaluation in a classroom context
no doubt appeared audacious in 1966 but noth-
ing back then could have prepared his readers to
the pervasiveness of technology we are experienc-
ing today. Today you can very literally carry your
AWE system in your pocket; you can even carry
several. You can use them (almost) at any time and
at any place – not only in classrooms, but at home,
at work, and even while texting with a friend.

This is perhaps the biggest issue that Page’s vi-
sion did not address: the possibility of universal
availability and the concomitant co-optation of a
tool beyond its original intended purpose. Much
like the calculator – invented by Blaise Pascal to
help his father with the tedious arithmetic of tax
collection – ended up “freeing” people from the
burden of figuring out their intended tip at a restau-
rant through mental arithmetic, a future writing aid
meant to help a student improve his argument writ-
ing assignment for a class could end up being used
by a lawyer for composing his closing argument.
Since such usages are on the horizon, we should
consider the implications now.

https://facctconference.org/
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4 Discussion

Once an invention is out in the open, it is difficult
to predict what specific uses people would put it
to. How do we go about evaluating the tool if we
don’t know what the user’s goal is? While it isn’t
possible to anticipate all specific uses, it is possi-
ble, we believe, to consider the types of uses that
suggest different evaluation strategies. From the
current vantage point, we see three types of uses.

4.1 Support Consequential Decision Making

The first use is where a consequential decision
about the writer or a related entity (such as a class
or a school) is being made based on the written
product. This use is exemplified by the applica-
tion of automated scoring in a standardized testing
context to decide on admissions to an institution
of higher education or the granting of a profes-
sional licenses; other cases such as course place-
ment decisions, coursework grading, or even ex-
tension of a job offer (where the submission of a
writing sample is a part of the job application pro-
cess) would belong to this type of use. In all such
cases, the automated system needs to provide valid
and fair scores (or other types of feedback), since
the livelihood or professional trajectory of people
might depend on the outcome. We have dealt with
the particulars of this case in detail in §3.2.

4.2 Create a Better Written Product

The second type of use is one where the focus is on
the final product, namely, the actual piece of writ-
ing produced following the writer’s use of AWE
technology. In this context, it does not much mat-
ter exactly what part of the final product is due to
the human and which part is due to the machine –
perhaps the machine only corrected misspellings,
or suggested improvements for the human to vet,
or maybe the human only contributed the very first
ideation, and the machine has done the rest. Per-
haps all the human writer contributed was the the-
sis (‘I think school should start at 8 rather than
7’) and then clicked ‘submit’ to get back an essay
making a cogent and convincing case in support
of the thesis. Mining large textual databases for
arguments and evaluating them are feasible today
as recently demonstrated by IBM’s Debater tech-
nology18 (Rinott et al., 2015; Levy et al., 2017;
Gretz et al., 2019); introduce some figuration to

18https://www.research.ibm.com/
artificial-intelligence/project-debater/

make it more appealing (Veale et al., 2017; Veale,
2018) and storify it (Riegl and Veale, 2018; Rad-
ford et al., 2019), et voilà!

This type of use is essentially a machine’s aug-
mentation of human ability, and is hinted at, for
example, in a customer testimonial for Gram-
marly: “Grammarly allows me to get those com-
munications out and feel confident that I’m putting
my best foot forward. Grammarly is like a little su-
perpower, especially when I need to be at 110%.”
The human presumably remains at the same level
of ability, but the product of the machine-human
collaboration is superior to what the human alone
could have produced.

In this context, the primary evaluation criterion
for AWE is the fitness of the resulting communi-
cation to its purpose, or, at least, some evidence
of improvement of the product over the human’s
first draft. Indeed, measurements of improve-
ment across drafts and evidence of students’ mak-
ing corrections following feedback are often used
for evaluation (Attali, 2004; Lipnevich and Smith,
2008; Foltz et al., 2014; Chapelle et al., 2015).

Within the product-centered evaluation
paradigm, there could be various specific objec-
tives other than the improvement of the holistic
quality of the piece of writing; it could be an
increase in the speed of production, or the maxi-
mization of click-through rate in an advertisement
text, for example.

4.3 Help the User Learn to Write Better

The third type of use for AWE software is to help
the writer improve his or her writing skill. Scores
or other types of feedback are designed, in this
context, to provide tutoring or guidance, not for
fixing specific problems in the current piece of
writing but to help the user learn more general
skills that would make the first draft of their next
essay better than the first draft of their current es-
say.

Evaluation of a tool though a demonstration of
skill-improvement – the efficacy of the tool – is a
complicated endeavor. To demonstrate that the ob-
served improvement in skill is specifically due to
the use of the writing tool, and not due to some-
thing else happening in students’ life and educa-
tion at the same time requires a research design
that can take other potential sources of variation
in outcomes into account, such as the one used
in randomized controlled studies often used to as-

https://www.research.ibm.com/artificial-intelligence/project-debater/
https://www.research.ibm.com/artificial-intelligence/project-debater/
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sess interventions, including in education (Con-
nolly et al., 2018); some such studies have been
performed with respect to AWE tools (Rock, 2007;
Wilson and Roscoe, 2020). A tool that allows for
monitoring of improvement in skill (even if the im-
provement is due to other factors such as school in-
struction or participation in some activity or com-
munity) could also be useful in the broader context
of skill-oriented use, as the learner and the teacher
would be able to tell that improvement is happen-
ing, even if we do not know exactly why. Improve-
ment in important aspects of learning such as mo-
tivation and self-efficacy could also provide value
to the learner (Grimes and Warschauer, 2010; Wil-
son and Roscoe, 2020).

4.4 Relationships between Types of Use

One could argue that an ideal automated writing
assistant would support all the different goals at
once – help one produce better writing, help one
learn, and do both in a psychometrically responsi-
ble fashion – benefits are not restricted to certain
types of users more than others – so that decision-
making based on the outcome of the usage of the
tool can also be supported.

Indeed, the uses are not necessarily mutually
exclusive. For example, the human augmentation
and consequential decision use cases could apply
at the same time. It is possible that, at some future
point in time, spelling will be deemed to lie out-
side of the construct targeted by the consequential
assessment of writing and spell-correction soft-
ware will be made available to test-takers. How-
ever, this would require a careful examination of
the impact of correction on the distributions and
interpretations of the scores. In particular, Choi
and Cho (2018) found that manually-vetted cor-
rection of spelling errors yielded a significant in-
crease in scores assigned to the essays by trained
raters, and that, even after controlling for the er-
ror quantity and quality predictors, the magnitude
of the average gain in the score was smaller for
responses with higher original scores. Add to the
mix the finding that automated spelling correction
system is more accurate on essays that are of better
quality to begin with (Flor, 2012), and it’s likely
that the automated assessment of an automatically
spell-corrected version of an essay might show an
unexpected relationship with original scores that
would need to be closely examined for bias or for
an increase in construct-irrelevant variance.

It is also possible that the effect of using a tool
optimized for one use case could be the opposite
of what another use case requires. If ‘use it or lose
it’ has any truth to it, a potential consequence of
extensive, consistent, and pervasive human aug-
mentation for producing superior written products
is an adverse impact on the skill of the human in
the human-machine team. If the near universal
adoption of calculators is any guide, once a skill
(long division) can be reliably outsourced to a ma-
chine, humans stop valuing it in daily practice and,
therefore, might set out to lose it in the long run.19

Spelling is a likely candidate writing skill where
reliable access to high quality correction software
could make humans stop worrying about it rather
than invest effort in improving it.

Many of the tools mentioned in §2.2.4 seem to
position themselves somewhere between the skill-
improvement and the product-improvement use
cases, perhaps assuming that quantity will even-
tually turn into quality, namely, extensive work
on improving the written product might lead to
internalization and generalization of the skill to
new contexts. This might or might not be true.
Feedback that helps the user fix an error quickly
by pointing it out and by suggesting a correction
might be good in a product-oriented context, but
not in a skill-oriented context; letting the user pin-
point and fix the error himself or herself might
be a better skill-development strategy (Hyland and
Hyland, 2006). According to Graham and Perin
(2007) meta-analysis of writing interventions for
adolescents, explicit grammar instruction tended
to be ineffective; this finding is cited by the devel-
opers for Writing Pal to support their decision to
forgo giving explicit feedback on grammar (Mc-
Namara et al., 2013), in contrast to most other
AWE systems that do provide such feedback.

5 Summary & Conclusion

In his visionary paper from 1966, Ellis Page pro-
vided a proof-of-concept demonstration of the
possibility of automated grading of essays, as well

191989 Curriculum and Evaluation Standards for School
Mathematics from the National Council of Teachers of Math-
ematics recommend in the Summary of Changes to Content
and Emphasis in K-4 Mathematics (p.21) decreasing the at-
tention devoted to long division specifically and to “com-
plex paper-and-pencil computations” in general; the recom-
mendation for grades 5-8 is likewise to decrease emphasis
on “tedious paper-and-pencil computations” (p.71). https:
//archive.org/details/curriculumevalua00nati. The
document has sparked substantial controversy, including with
regards to long division (Klein and Milgram, 2000).

https://archive.org/details/curriculumevalua00nati
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as outlined some potential challenges to its adop-
tion. Subsequent research and practice have deliv-
ered on Page’s minimum desiderata for an AWE
system; current research is working to address the
outstanding challenges dealing with a variety of
languages, content domains, and writing tasks.

The field of AWE has thus progressed accord-
ing to the trajectory charted by Page to a large ex-
tent, though not completely. In particular, while
Page imagined the main use case of AWE to be
in the service of a harried English teacher and his
feedback-thirsty students, in reality, the most visi-
ble use case has arguably evolved to be automated
scoring of essays for standardized testing, which,
in turn, has led to new challenges, such as ensuring
the validity and fairness of scores.

The other development that Page could not an-
ticipate is the sheer pervasiveness of technology in
people’s daily lives; AWE software can be made
available not only in classrooms to be used under
the watchful eye of the English teacher, but (al-
most) anywhere and at any time, including on mo-
bile devices. While it is difficult to predict specific
uses people would find for such software, we out-
lined a number of types of use, depending on the
goal: (a) consequential decision making about the
user; (b) delivery of the best possible written prod-
uct in partnership with the user; and (c) assisting
the user in improving her writing skills. We be-
lieve that we, as researchers, can help users find
value in our technology by considering the goals,
engaging partners from other relevant disciplines,
and designing the tools as well as their evaluations
to focus on specific types of use.
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