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Abstract

Transfer learning improves quality for low-
resource machine translation, but it is unclear
what exactly it transfers. We perform several
ablation studies that limit information trans-
fer, then measure the quality impact across
three language pairs to gain a black-box un-
derstanding of transfer learning. Word embed-
dings play an important role in transfer learn-
ing, particularly if they are properly aligned.
Although transfer learning can be performed
without embeddings, results are sub-optimal.
In contrast, transferring only the embeddings
but nothing else yields catastrophic results.
We then investigate diagonal alignments with
auto-encoders over real languages and ran-
domly generated sequences, finding even ran-
domly generated sequences as parents yield
noticeable but smaller gains. Finally, transfer
learning can eliminate the need for a warm-
up phase when training transformer models in
high resource language pairs.

1 Introduction

Transfer learning is a common method for low-
resource neural machine translation (NMT) (Zoph
et al., 2016; Dabre et al., 2017; Qi et al., 2018;
Nguyen and Chiang, 2017; Gu et al., 2018b). How-
ever, it is unclear what settings make transfer learn-
ing successful and what knowledge is being trans-
ferred.

Understanding why transfer learning is success-
ful can improve best practices while also opening
the door to investigating ways to gain similar ben-
efits without requiring parent models. In this pa-
per, we perform several ablation studies on transfer
learning in order to understand what information is
being transferred.

We apply a black box methodology by measur-
ing the quality of end-to-end translation systems.
Typically, our experiments have a baseline that was

trained from scratch, an off-the-shelf transfer learn-
ing baseline and simplified versions of the transfer
learning scheme. If a simplified version recovers
some of the quality gains of full transfer learning,
it suggests that the simplified version has captured
some of the information being transferred. Since
information may be transferred redundantly, our
claims are limited to sufficiency rather than exclu-
sivity.

Transferring word embeddings is not straight-
forward since languages have different vocabular-
ies. Zoph et al. (2016) claimed that vocabulary
alignment is not necessary, while Nguyen and Chi-
ang (2017) and Kocmi and Bojar (2018) suggest a
joint vocabulary. We find that the vocabulary has
to be aligned before transferring the embedding
to achieve a substantial improvement. Transfer
learning without the embedding or with vocabulary
mismatches is still possible, but with lower quality.
Conversely, transferring only the word embeddings
can be worse than transferring nothing at all.

A rudimentary model of machine translation con-
sists of alignment and token mapping. We hypoth-
esize that these capabilities are transferred across
languages. To test this, we experiment with trans-
ferring from auto-encoders that learn purely diag-
onal alignment and possibly language modelling.
To remove the effect of language modelling, we
train auto-encoders on random strings sampled uni-
formly. However, all of these scenarios still have
simple copying behaviour, especially with tied em-
beddings. Therefore, we also attempt a bijective
vocabulary mapping from source to target, forcing
the model to learn the mapping as well. Curiously,
parents trained with bijectively-mapped vocabular-
ies transfer slightly better to children.

We then investigate transfer learning for high-
resource children, where the goal is reduced train-
ing time since they mainly attain the same quality.
Transfer learning primarily replaces the warm-up
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period, though only real language parents yielded
faster training.

2 Related Work

Transfer learning has been successfully used in low-
resource scenarios for NMT. Zoph et al. (2016) gain
5 BLEU points in Uzbek–English by transferring
from French–English. Their style of transfer learn-
ing copies the entire model, including word embed-
dings, ignoring the vocabulary mismatch between
parent and child. They used separate embeddings
for source and target language words, whereas tied
embeddings (Press and Wolf, 2017; Vaswani et al.,
2017) have since become the de-facto standard in
low-resource NMT. Tied embeddings provide us
with the opportunity to revisit some of their find-
ings. In Section 5, we find an English–English copy
model does work as a parent with tied embeddings,
whereas Zoph et al. (2016) reported no gains from
a copy model with untied embeddings.

Methods to cope with vocabulary mismatch have
improved since Zoph et al. (2016). Kocmi and
Bojar (2018) suggest that a shared vocabulary be-
tween the parent language and the child is benefi-
cial, though this requires knowledge of the child
languages when the parent is trained. Address-
ing this issue, Gheini and May (2019) proposed a
universal vocabulary for transfer learning. Their
universal vocabulary was obtained by jointly train-
ing the sub-word tokens across multiple languages
at once, applying Romanisation to languages in
non-Latin scripts. However, unseen languages may
only be representable in this universal vocabulary
with a very aggressive and potentially sub-optimal
subword segmentation. Orthogonally, Kim et al.
(2018); Lample et al. (2018); Artetxe et al. (2018);
Kim et al. (2019) use bilingual word embedding
alignment to initialise the embedding layer to tackle
low resource language pairs. In Section 4.2, we
compare a variety of vocabulary transfer methods.

Prior work (Dabre et al., 2017; Nguyen and Chi-
ang, 2017) stated that a related language is the
best parent for transfer learning. Lin et al. (2019)
explore options to choose the best parent and con-
clude that the best parent language might not nec-
essarily be related but is instead based on external
factors such as the corpus size. In Section 3, we try
two parent models in both directions to set base-
lines for the rest of the paper; an exhaustive search
is not our main purpose.

Another approach to low-resource (or even zero-

shot) NMT is through multilingual models (John-
son et al., 2016), which is similar to training the
parent and child simultaneously. A related idea
creates meta-models with vocabulary residing in a
shared semantic space (Gu et al., 2018a,b).

If there is more parallel data with a third lan-
guage, often English, then pivoting through a third
language can outperform direct translation (Cheng
et al., 2016). This approach requires enough source–
pivot and target–pivot parallel data, which is ar-
guably hard in many low resource scenarios, such
as Burmese, Indonesian, and Turkish.

Orthogonal to transfer learning, Lample et al.
(2018) and Artetxe et al. (2018) have proposed
a fully zero-shot approach for low resource lan-
guages that relies on aligning separately-trained
word embeddings to induce an initial bilingual dic-
tionary. The dictionary is then used as the basis for
a translation model. However, these methods do
not generalise to arbitrary language pairs (Søgaard
et al., 2018). Moreover, our setting presumes a
small amount of parallel data in the low-resource
pair.

3 Baseline Transfer Learning

We start with arguably the simplest form of trans-
fer learning: train a parent model then switch to
training with the child’s dataset following Zoph
et al. (2016). We attempt to initialise the embed-
ding vectors of the same tokens from the parent to
the child. We later investigate different approaches
to transferring the embeddings. As transfer learn-
ing requires a parent model, we start by sweeping
different high-resource languages for the parent
model to set a baseline.

Choosing a parent language pair is one of the
first issues to solve when performing a transfer-
learning experiment. However, this is not a simple
task. Prior work (Dabre et al., 2017; Nguyen and
Chiang, 2017) suggest that a related language is the
best option, albeit related is not necessarily well
defined. Recently, Lin et al. (2019) performed a
grid-search across various parent languages to de-
termine the best criteria for selecting the optimal
parent when performing transfer learning. Their
work showed that the best language parents might
also be determined by external factors such as the
corpus size, on top of the language relatedness. Ac-
cording to the BLEU score, the difference between
various parents is usually not that significant.

We first explore four potential parents: German
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and Russian from/to English. From each of them,
we transfer the parameters to our low-resource lan-
guage pair of {Burmese, Indonesian, Turkish} to
English. Before presenting the results, we lay out
the experimental setup used for the rest of the pa-
per.

3.1 High-Resource Datasets

We use German-English and Russian-English
datasets for our parent models. Our German-
English dataset is taken from the WMT17 news
translation task (Bojar et al., 2017). Our Russian-
English is taken from the WMT18 task (Bojar et al.,
2018). For both pairs, we preprocess the input with
byte-pair encoding (Sennrich et al., 2016b).

3.2 Low-Resource Datasets

We use the following datasets:
Burmese–English: For our My→En parallel

data, we used 18k parallel sentences from the Asian
Language Treebank (ALT) Project (Ding et al.,
2018, 2019) collected from news articles.

Indonesian–English: Id→En parallel data con-
sists of 22k news-related sentences, which are taken
from the PAN Localization BPPT corpus.1 This
dataset does not have a test/validation split. Hence
we randomly sample 2000 sentences to use as test
and validation sets. We augment our data by back-
translating (Sennrich et al., 2016a) News Crawl
from 2015. Our total training set (including the
back-translated sentences) consists of 88k pairs of
sentences.

Turkish–English: Tr→En data comes from the
WMT17 news translation task (Bojar et al., 2017).
This data consists of 207k pairs of sentences. Sim-
ilar to Id→En, we add a back-translation corpus
from News Crawl 2015. Our total training data
consists of 415k sentence pairs.

For all language pairs, we use byte-pair encod-
ing (Sennrich et al., 2016b) to tokenise words into
subword units.

3.3 Training Setup

We use a standard transformer-base architec-
ture with six encoder and six decoder lay-
ers for all experiments with the default hyper-
parameters (Vaswani et al., 2017). Training and de-
coding use Marian (Junczys-Dowmunt et al., 2018),
while evaluation uses SacreBLEU (Post, 2018).

1http://www.panl10n.net/english/
OutputsIndonesia2.htm

3.4 Results

BLEU
Parent My→En Id→En Tr→En
- 4.0 20.6 19.0
En→De 17.5 27.5 20.2
En→Ru 17.8 27.4 20.3
De→En 17.3 26.3 20.1
Ru→En 17.1 26.8 20.6

Table 1: Transfer learning performance across different
language parents.

Our results on Table 1 show that there is no
clear evidence that one parent is better than an-
other. Whether the non-English languages share
a script or English is on the same side does not
have a consistent impact. The main goal of this
section was to set appropriate baselines; we primar-
ily use English→German and German→English as
the parents.

4 Transferring Embedding Information

Parent and child languages have a different vocabu-
lary, so embeddings are not inherently transferable.
We investigate what is transferred in the embed-
dings and evaluate several vocabulary combination
methods.

4.1 Are the Embeddings Transferable?
We first explore whether the embedding matrix con-
tains any transferable information. We divide the
model into embedding parameters and everything
else: inner layers. Table 2 shows what happens
when these parts are or are not transferred.

Our low-resource languages achieve better
BLEU even if we only transfer the inner layers.
In contrast, only transferring the embeddings is not
beneficial, and sometimes it is even harmful to the
performance. Finally, transferring all layers yields
the best performance.

To further investigate which part of the net-
work is more crucial to transfer, we took the best-
performing child then reset either the embeddings
or inner layers and restarted training. We explore
whether the model is capable of recovering the
same or comparable quality by retraining. We can
look at this experiment as ‘self’ transfer learning.
Results are shown in Table 3. When the inner lay-
ers are reset, self-transfer performs poorly (close
to the quality without transfer learning at all), even
though the embeddings are properly transferred.

http://www.panl10n.net/english/OutputsIndonesia2.htm
http://www.panl10n.net/english/OutputsIndonesia2.htm
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BLEU
Transferring De→En parent En→De parent
Emb. Inner My→En Id→En Tr→En My→En Id→En Tr→En avg.

Y Y 17.8 27.4 20.3 17.5 27.5 20.2 21.7
N Y 13.6 25.3 19.4 10.8 24.9 19.3 18.3
Y N 3.0 18.2 19.1 3.4 18.8 18.9 13.7
N N 4.0 20.6 19.0 4.0 20.6 19.0 14.5

Table 2: Transfer learning performance by only transferring parts of the network. Inner layers are the non-
embedding layers. N = not-transferred. Y = transferred.

BLEU
Transfer My→En Id→En Tr→En

baseline (no transfer) 4.0 20.6 19.0
transfer, train 17.8 27.4 20.3
transfer, train, reset emb, train 13.3 25.0 20.0
transfer, train, reset inner, train 3.6 18.0 19.1

Table 3: Investigating the model’s capability to restore
its quality if we reset the parameters. We use En→De
as the parent.

Conversely, the models can somewhat restore their
quality even if we reset the embedding layer. This
result further verifies that transferring the inner lay-
ers is the most critical aspect of transfer learning.

We conclude that transferring the inner layers
is critical to performance, with far more impact
than transferring the embeddings. However, the
embedding matrix has transferable information, as
long as the inner layers are included.

4.2 How to Transfer the Embeddings

Mixed recommendations exist on how to trans-
fer embeddings between languages with different
vocabularies. We compare methods from previ-
ous work, namely random assignment (Zoph et al.,
2016) and joint vocabularies (Nguyen and Chiang,
2017) with two additional embedding assignment
strategies based on the frequency and token match-
ing as a comparison. In detail, we explore:

• Exclude Embedding: We do not transfer the
embeddings at all. As such, we show that
transfer learning works without transferring
the embedding layer. In the present experi-
ment, this method acts as one of the baselines.

• Frequency Assignment: We can transfer the
embedding information regardless of the vo-
cabulary mismatch. However, the toolkit sorts
the words based on their frequency; therefore,

embeddings are also transferred in that par-
ticular order. Regardless, we can determine
whether word frequency information is trans-
ferred.

• Random Assignment: Zoph et al. (2016)
suggest that randomly assigning a parent word
embedding to each child word is sufficient,
relying on the model to untangle the permu-
tation. This approach is simple and language-
agnostic, thus universally applicable. We shuf-
fle the vocabulary to achieve a random assign-
ment.

• Joint Vocabulary: Nguyen and Chiang
(2017) suggest that it is better to use a shared
vocabulary between the parent and child lan-
guage. This can be obtained by training a joint
BPE token. To achieve this, we transfer the
word embedding information of the common
tokens. Since tied embeddings are used, we
share the same vocabulary between the target
and source of both the parent and the child lan-
guage. One drawback of this technique is that
we must prepare the vocabulary in advance.
Therefore, switching the parent or the child
might require us to re-train the model.

• Token Matching: We assign the embeddings
with the same token first and randomise the
rest. This approach is designed to allow some
word embeddings to be transferred correctly
without the need to re-train the parent with
every experiment, as in the case of joint vo-
cabulary.

The different strategies are illustrated in Figure 1.
Prior experiments in Section 4.1 demonstrate

that we can apply transfer learning even if we only
transfer the inner layers. Curiously, random assign-
ment and frequency assignment are not better than
excluding the embeddings, except for Burmese to
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Figure 1: Illustration of various strategies on how to transfer the embedding vector.

BLEU
De→En parent En→De parent

Embedding My→En Id→En Tr→En My→En Id→En Tr→En avg.
- 4.0 20.6 19 4.0 20.6 19 14.5
Exclude embedding 13.6 25.3 19.4 10.8 24.9 19.3 18.3
Frequency assign 14.2 24.4 19.4 13.9 24.3 19.4 19.2
Random assign 13.9 24.6 19.2 13.8 23.9 19.3 19.0
Token matching 17.8 27.4 20.3 17.5 27.5 20.2 21.7
Joint vocabulary 18.5 27.5 20.9 18.5 28.0 19.6 22.0

Table 4: Transfer learning performance with different ways to handle the embedding layer.

English transferred from English to German. There-
fore, the information in the embedding is lost when
transferred to the incorrect token. From these re-
sults, we conclude that the model is incapable of
untangling the embedding permutation as stated
by Zoph et al. (2016).

Transfer learning yields better results when we
attempt to transfer the embeddings to the correct
tokens. In the joint vocabulary setting, not every
token is observed in the parent language dataset;
therefore, only a section of the embedding layer
is correctly trained. However, we still observe
a significant improvement over the random and
frequency-based assignment.

We can also transfer the embedding vectors by
matching and assigning the word embedding with
the same tokens. Vocab matching achieves com-
parable results to joint vocabulary, except for the
lowest-resource language, Burmese. Therefore,
this simple matching can be used as a cheaper alter-
native over a joint vocabulary. On top of that, this
approach is more efficient as we do not transfer
and wastefully reserve extra memory for tokens
that will not be seen in the child language.

These results suggest that word information
stored in the embedding layer is transferable, as
long as the vectors are assigned correctly. There-
fore, better ways of handling the embedding layer

transfer are joint BPE and token matching, as they
further improve the performance of the child lan-
guage pair.

5 Transferring Structural Information

To understand what information is being trans-
ferred with transfer learning, we test the parent
model’s performance on the child language with-
out any additional training.

When a pre-trained model is transferred to an-
other language pair, the model has not yet seen the
child language vocabulary. When presented with
an input in a new language, the model is unable
to translate correctly. However, as we can see in
Table 5, the model manages to perform diagonal
alignment properly, albeit it is mostly copying the
input (on average of 75% of the time).

Based on this observation, we see that fallback
copying behaviour, including monotonic alignment,
is transferred. This can be useful for named entity
translation (Currey et al., 2017). To test our claim,
we prepare parents that implicitly learn to copy or
transform input tokens diagonally.

We can create a copy sequence model (or auto-
encoder) model by giving the model the same sen-
tences for both source and target. We pick an En-
glish monolingual dataset. We also use a Chinese
monolingual corpus to explore whether the chosen
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Parent Shared Example
En→De Id→En src: Bank Mandiri bisa masuk dari mikro hingga korporasi .

out: Bank Mandiri bisa memperingatkan dari cen@@ hingga korporasi .
alignment: 0-0 1-1 3-3 5-5 6-6 7-7 9-2 9-4 9-8 9-9

De→En Id→En src: Bank Mandiri bisa masuk dari mikro hingga korporasi .
out: seperti Mandiri bisa masuk a mikro hingga korporasi .
alignment: 2-2 3-0 3-1 3-3 3-9 5-5 6-6 7-7 7-8 9-4

Table 5: Output example of transferred model without fine tuning. The model performs monotonic alignment.

monolingual language matters. Besides, we can ar-
tificially create a random sequence for the training
set. The random sequence is useful to determine
whether any language-specific information is be-
ing transferred, as such information is absent in a
random sequence.

To simulate the translation behaviour better, we
also prepare a substitution parallel corpus. We
transform every token into another based on a pre-
determined 1:1 mapping. We create a substitution
corpus for both the English and the synthetic cor-
pus. With tied embeddings, the substitution corpus
should help the model translate one token into an-
other, instead of just copying. Table 6 illustrates
the 6 monolingual/synthetic parents that we use for
this experiment.

We perform transfer learning experiments from
every monolingual and synthetic parent to all three
child languages, as summarised in Table 7. For
comparison, we also provide the result of trans-
fer learning with an actual translation model as a
parent. We notice that there is no improvement in
transfer learning for the Turkish model in terms of
the final BLEU. However, upon further investiga-
tion, transfer learning has an impact on the con-
vergence speed, thus signalling information being
transferred. To measure this, we capture the vali-
dation BLEU score for Tr→En after 10k training
steps.

In general, transferring from any monolingual
or synthetic parent yields better BLEU (or faster
convergence for Turkish) compared to training
from scratch. Although, the improvement is sub-
optimal when compared with transfer learning from
a proper parent. However, we can use these gains
to measure the information transferred in transfer
learning.

In general using monolingual English is better
than using monolingual Chinese. In monolingual
English, we can transfer the embedding informa-
tion correctly with token matching. Therefore, con-

sistent with our previous experiment, embedding
information is transferred.

Using a Chinese parent is better than using ran-
dom sequences. Our random sequence is uniformly
sampled independently for each token. There-
fore, unlike a real monolingual corpus, learning
language modelling from this random sequence
is impossible. Thus, we conclude that the model
transfers some statistical properties of natural lan-
guages.

Transferring from a random sequence copy
model yields better result compared to training the
model from scratch. While the improvement is min-
imal, we can see that a naı̈ve model that performs
copying is better as a model initialisation. More-
over, substitution sequence parent models perform
better than their copying counterparts. We suspect
that copy models with tied embeddings converge
to a local optimum that is a poorer initialisation for
other translation models, compared to the substitu-
tion models.

Transfer learning with an actual NMT system
as a parent still outperforms the monolingual and
synthetic parents, albeit they are initially a copy
model. We argue that the monolingual parents per-
form nearly perfectly at the copying task, and have
perfect diagonal alignment, and therefore overfit to
this artificial setting when used as a parent.

6 Transfer Learning for High-Resource
Languages

Transfer learning can be used to initialise a model
even if final quality does not change. Compared to
random initialisation, we argue that a pre-trained
model functions as better initialisation. Therefore,
since we initialise the model better, it should con-
verge faster. This behaviour was already presented
in Table 7, where the transferred model converges
more rapidly. However, we should explore this be-
haviour in a setting where faster training matters
more: when training high-resource language pairs.
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Parent Type
Mono copy sequence src: Madam President , on a point of order .
(En→En) tgt: Madam President , on a point of order .
Mono substitution sequence src: Click write , ideologies rotate sful ECHO recommended struggle
(EnS →En) tgt: Madam President , on a point of order .
Mono copy sequence src: 保持点神秘感。
(Zh→Zh) tgt: 保持点神秘感。
Mono substitution sequence src:比赛漂亮家宝1503知识产权
(ZhS →Zh) tgt: 保持点神秘感。
Random copy sequence src: 1 3 2 1 1
(Rand→Rand) tgt: 1 3 2 1 1
Random substitution sequence src: 2 4 3 2 2
(RandS →Rand) tgt: 1 3 2 1 1

Table 6: Monolingual and random parents with their sentence example.

BLEU
Parent My→En Id→En Tr→En Tr(10k)

- 4.0 20.6 19.0 14.3
De→En 17.8 27.4 20.3 20.2
En→En 10.4 23.3 18.5 16.0
EnS →En 12.3 23.8 19.0 16.5
Zh→Zh 8.3 22.5 18.8 16.3
ZhS →Zh 11.2 23.5 19.0 16.3
Rnd→Rnd 6.2 21.9 19.0 15.2
RndS →Rnd 7.9 22.0 19.3 15.1

Table 7: Transfer learning performance on monolin-
gual and synthetic parents. We also measure the vali-
dation BLEU of Tr→En after 10k updates.

For this experiment, we take an English-to-
Russian model as a parent for an English-to-
German model. We align the embedding with the
same BPE tokens instead of using a joint vocab-
ulary since this would require re-training the par-
ent. We also attempt to exclude the embedding
completely. These choices are practical in a real-
world scenario, especially when we measure for
efficiency.

In Table 8, we show that transfer learning does
not improve the model’s final quality. However,
we can see both from the Table, and visually in
Figure 2, that transfer learning speeds up the con-
vergence by up to 1.4x, assuming the parent model
has been prepared before.

In the early stage of training, the gradients pro-
duced are quite noisy, which is particularly harmful
to the transformer model (Popel and Bojar, 2018).
Therefore, training transformer models usually re-
quire a precise warm-up setup. However, transfer

Parent BLEU Num. Steps
to 34 BLEU

Baseline 35.6 48k
+ no warm-up 0.0 -
En→EnS 35.4 60k (0.8x faster)

En→Ru 35.7 40k (1.2x faster)

+ token matching 35.7 34k (1.4x faster)

+ no warm-up 35.6 22k (2.1x faster)

Table 8: Transfer learning effect to the model’s quality
of high-resource language. We also measure the time
to reach a near-convergence level of 34 BLEU.

learning can be used as a better initialisation, thus
skipping the noisy early training. To further con-
firm this, we remove the learning rate warm-up to
observe the impact of a pre-trained model.

As shown in Figure 2, the pre-trained model re-
mains capable of learning under more aggressive
hyperparameters. On the other hand, the model
without pre-training fails to learn. This result is con-
gruent with the findings of Platanios et al. (2019),
who found that warm-up in the Transformer can be
removed with curriculum learning.

7 Conclusion

We demonstrate that the internal layers of the net-
work are the most crucial for cross-lingual trans-
fer learning. The embeddings contain transferable
information, as long as the vectors are mapped
correctly and the inner layers are also transferred.
While not as optimal, we can still perform transfer
learning by excluding the embedding. In trans-
fer learning, we can also transfer the alignment.
Transferred parents without fine-tuning will align
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Figure 2: Transfer learning effect on the convergence of a high-resource system. Transfer learning removes the
need for warm-up.

the input diagonally and copy most of the tokens.
We further demonstrate that transfer learning still
functions with a simple copy model, even with an
artificial dataset—albeit with a reduced quality.

From a theoretical perspective, our results in-
dicate that while transfer learning is effective in
our scenario, it performed less “transfer” than pre-
viously thought. Therefore, a promising research
direction to investigate would involve the devel-
opment and assessment of improved initialisation
methods that would more efficiently yield the ben-
efits of the model transfer.

From a practical perspective, our results indi-
cate that we can initialise models with a pre-trained
model regardless of the parent language or vocab-
ulary handling. With this perspective in mind, we
can use transfer learning as a better initialisation,
resulting in the child model having more stable
gradients from the onset of training. Therefore,
models can train and converge faster, which is use-
ful in high-resource settings. With transfer learning,
the model can be trained with more aggressive hy-
perparameters—such as removing the learning rate
warm-up entirely—to further improve the conver-
gence speed. This result further highlights the use
of transfer learning as a better model initialisation.
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