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Abstract
Recent work has questioned the importance of
the Transformer’s multi-headed attention for
achieving high translation quality. We push
further in this direction by developing a “hard-
coded” attention variant without any learned
parameters. Surprisingly, replacing all learned
self-attention heads in the encoder and decoder
with fixed, input-agnostic Gaussian distribu-
tions minimally impacts BLEU scores across
four different language pairs. However, ad-
ditionally hard-coding cross attention (which
connects the decoder to the encoder) signifi-
cantly lowers BLEU, suggesting that it is more
important than self-attention. Much of this
BLEU drop can be recovered by adding just a
single learned cross attention head to an oth-
erwise hard-coded Transformer. Taken as a
whole, our results offer insight into which com-
ponents of the Transformer are actually impor-
tant, which we hope will guide future work
into the development of simpler and more ef-
ficient attention-based models.

1 Introduction

The Transformer (Vaswani et al., 2017) has be-
come the architecture of choice for neural machine
translation. Instead of using recurrence to contextu-
alize source and target token representations, Trans-
formers rely on multi-headed attention mechanisms
(MHA), which speed up training by enabling paral-
lelization across timesteps. Recent work has called
into question how much MHA contributes to trans-
lation quality: for example, a significant fraction
of attention heads in a pretrained Transformer can
be pruned without appreciable loss in BLEU (Voita
et al., 2019; Michel et al., 2019), and self-attention
can be replaced by less expensive modules such as
convolutions (Yang et al., 2018; Wu et al., 2019).

In this paper, we take this direction to an ex-
treme by developing a variant of MHA without

* Authors contributed equally.

Standard Transformer: scaled dot product of 
learned query and key vectors

Jane went to the office

Ours: fixed Gaussian distributions 
centered around nearby tokens

Figure 1: Three heads of learned self-attention (top)
as well as our hard-coded attention (bottom) given the
query word “to”. In our variant, each attention head is a
Gaussian distribution centered around a different token
within a local window.

any learned parameters (Section 3). Concretely,
we replace each attention head with a “hard-coded”
version, which is simply a standard normal distri-
bution centered around a particular position in the
sequence (Figure 1).1 When we replace all encoder
and decoder self-attention mechanisms with our
hard-coded variant, we achieve almost identical
BLEU scores to the baseline Transformer for four
different language pairs (Section 4).2

These experiments maintain fully learned MHA
cross attention, which allows the decoder to con-
dition its token representations on the encoder’s
outputs. We next attempt to additionally replace
cross attention with a hard-coded version, which re-
sults in substantial drops of 5-10 BLEU. Motivated
to find the minimal number of learned attention

1In Figure 1, the hard-coded head distribution
centered on the word “to” (shown in green) is
[0.054, 0.24, 0.40, 0.24, 0.054].

2Our code is available at https://github.com/
fallcat/stupidNMT

https://github.com/fallcat/stupidNMT
https://github.com/fallcat/stupidNMT
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Figure 2: Most learned attention heads for a Transformer trained on IWSLT16 En-De focus on a local window
around the query position. The x-axis plots each head of each layer, while the y-axis refers to the distance between
the query position and the argmax of the attention head distribution (averaged across the entire dataset).

parameters needed to make up this deficit, we ex-
plore configurations with only one learned cross
attention head in total, which performs just slightly
worse (1-3 BLEU) than the baseline.

By replacing MHA with hard-coded attention,
we improve memory efficiency (26.4% more to-
kens per batch) and decoding speed (30.2% in-
crease in sentences decoded per second) with-
out significantly lowering BLEU, although these
efficiency improvements are capped by other
more computationally-expensive components of
the model (Section 5). We also perform analysis
experiments (Section 6.2) on linguistic properties
(e.g., long-distance subject-verb agreement) that
MHA is able to better model than hard-coded at-
tention. Finally, we develop further variants of
hard-coded attention in Section 6.3, including a
version without any attention weights at all.

Our hard-coded Transformer configurations have
intuitively severe limitations: attention in a particu-
lar layer is highly concentrated on a local window
in which fixed weights determine a token’s impor-
tance. Nevertheless, the strong performance of
these limited models indicates that the flexibility
enabled by fully-learned MHA is not as crucial as
commonly believed: perhaps attention is not all
you need. We hope our work will spur further de-
velopment of simpler, more efficient models for
neural machine translation.

2 Background

In this section, we first briefly review the Trans-
former architecture of Vaswani et al. (2017) with
a focus on its multi-headed attention. Then, we
provide an analysis of the learned attention head
distributions of a trained Transformer model, which
motivates the ideas discussed afterwards.

2.1 Multi-headed Transformer attention

The Transformer is an encoder-decoder model
formed by stacking layers of attention blocks. Each
encoder block contains a self-attention layer fol-
lowed by layer normalization, a residual connec-
tion, and a feed-forward layer. Decoder blocks are
identical to those of the encoder except they also
include a cross attention layer, which connects the
encoder’s representations to the decoder.

To compute a single head of self-attention given
a sequence of token representations t1...n, we first
project these representations to queries q1...n, keys
k1...n, and values v1...n using three different linear
projections. Then, to compute the self-attention dis-
tribution at a particular position i in the sequence,
we take the scaled dot product between the query
vector qi and all of the key vectors (represented by
matrix K). We then use this distribution to compute
a weighted average of the values (V):

Attn(qi,K,V) = softmax(
qiK>√
dk

)V (1)

where dk is the dimensionality of the key vector.

For MHA, we use different projection matrices
to obtain the query, key, and value representations
for each head. The key difference between self-
attention and cross attention is that the queries and
keys come from different sources: specifically, the
keys are computed by passing the encoder’s final
layer token representations through a linear pro-
jection. To summarize, MHA is used in three dif-
ferent components of the Transformer: encoder
self-attention, decoder self-attention, and cross at-
tention.
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2.2 Learned heads mostly focus on local
windows

The intuition behind MHA is that each head can
focus on a different type of information (e.g., syn-
tactic or semantic patterns). While some heads
have been shown to possess interpretable patterns
(Voita et al., 2019; Correia et al., 2019), other work
has cautioned against using attention patterns to ex-
plain a model’s behavior (Jain and Wallace, 2019).
In our analysis, we specifically examine the be-
havior of a head with respect to the current query
token’s position in the sequence. We train a base-
line Transformer model (five layers, two heads per
layer) on the IWSLT 2016 En→De dataset, and
compute aggregated statistics on its learned heads.

Figure 2 shows that outside of a few layers, most
of the model’s heads focus their attention (i.e., the
argmax of the attention distribution) on a local
neighborhood around the current sequence posi-
tion. For example, both self-attention heads in the
first layer of the encoder tend to focus on just a
one to two token window around the current posi-
tion. The decoder self-attention and cross attention
heads show higher variability, but most of their
heads are still on average focused on local infor-
mation. These results beg the question of whether
replacing self-attention with “hard-coded” patterns
that focus on local windows will significantly affect
translation quality.

3 Hard-coded Gaussian attention

While learned attention enables model flexibility
(e.g., a head can “look” far away from the current
position if it needs to), it is unclear from the above
analysis how crucial this flexibility is. To examine
this question, we replace the attention distribution
computation in Equation 1 (i.e., scaled dot product
of queries and keys) with a fixed Gaussian distri-
bution.3 In doing so, we remove all learned pa-
rameters from the attention computation: the mean
of the Gaussian is determined by the position i of
the current query token, and the standard devia-
tion is always set to 1.4 As Transformers contain
both self-attention and cross attention, the rest of
this section details how we replace both of these
components with simplified versions. We will re-

3 Yang et al. (2018) implement a similar idea, except the
mean and standard deviation of their Gaussians are learned
with separate neural modules.

4Preliminary experiments with other standard deviation
values did not yield significant differences, so we do not vary
the standard deviation for any experiments in this paper.

fer to experimental results on the relatively small
IWSLT16 English-German dataset throughout this
section to contextualize the impact of the various
design decisions we describe. Section 4 contains a
more fleshed out experimental section with many
more datasets and language pairs.

3.1 Hard-coded self-attention
In self-attention, the queries and keys are derived
from the same token representations and as such
have the same length n. The baseline Transformer
(BASE) computes the self-attention distribution at
position i by taking the dot product between the
query representation qi and all of the key vectors
k1...n. We instead use a fixed Gaussian distribution
centered around position i − 1 (token to the left),
i (the query token), or i + 1 (token to the right).
More formally, we replace Equation 1 with

Attn(i,V) = N (f(i), σ2)V. (2)

The mean of the Gaussian f(i) and its standard de-
viation σ2 are both hyperparameters; for all of our
experiments, we set σ to 1 and f(i) to either i− 1,
i or i + 1, depending on the head configuration.5

Note that this definition is completely agnostic to
the input representation: the distributions remain
the same regardless of what sentence is fed in or
what layer we are computing the attention at. Ad-
ditionally, our formulation removes the query and
key projections from the attention computation; the
Gaussians are used to compute a weighted average
of the value vectors.6

Instead of learning different query and key pro-
jection matrices to define different heads, we sim-
ply design head distributions with different means.
Figure 1 shows an example of our hard-coded self-
attention for a simple sentence. We iterate over
different configurations of distribution means f(i)
on the IWSLT16 En-De dataset, while keeping the
cross attention learned.7 Our best validation result
with hard-coded self-attention (HC-SA) replaces
encoder self-attention with distributions centered
around i− 1 and i+ 1 and decoder self-attention
with distributions centered around i− 1 and i. This

5The Gaussian distribution is cut off on the borders of the
sentence and is not renormalized to sum to one.

6Preliminary models that additionally remove the value
projections performed slightly worse when we hard-coded
cross attention, so we omit them from the paper.

7See Appendix for a table describing the effects of varying
f(i) on IWSLT16 En-De BLEU score. We find in general that
hard-coded heads within each layer should focus on different
tokens within the local window for optimal performance.
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model achieves slightly higher BLEU than the base-
line Transformer (30.3 vs 30.0 BLEU).

3.2 Alternatives to cross attention
We turn next to cross attention, which on its face
seems more difficult to replace with hard-coded
distributions. Unlike self-attention, the queries
and keys in cross attention are not derived from
the same token representations; rather, the queries
come from the decoder while the keys come from
the encoder. Since the number of queries can now
be different from the number of keys, setting the
distribution means by position is less trivial than it
is for self-attention. Here, we describe two meth-
ods to simplify cross attention, starting with a fully
hard-coded approach and moving onto a minimal
learned configuration.

Hard-coded cross attention: We begin with a
simple solution to the problem of queries and keys
having variable lengths. Given a training dataset,
we compute the length ratio γ by dividing the av-
erage source sentence length by the average tar-
get sentence length. Then, to define a hard-coded
cross attention distribution for target position i, we
center the Gaussian on positions bγi − 1c, bγic,
and bγi + 1c of the source sentence. When we
implement this version of hard-coded cross atten-
tion and also hard-code the encoder and decoder
self-attention as described previously (HC-ALL),
our BLEU score on IWSLT16 En-De drops from
30.3 to 21.1. Clearly, cross attention is more im-
portant for maintaining translation quality than
self-attention. Michel et al. (2019) notice a sim-
ilar phenomenon when pruning heads from a pre-
trained Transformer: removing certain cross atten-
tion heads can substantially lower BLEU.

Learning a single cross attention head: Prior
to the advent of the Transformer, many neural ma-
chine translation architectures relied on just a single
cross attention “head” (Bahdanau et al., 2015). The
Transformer has many heads at many layers, but
how many of these are actually necessary? Here,
we depart from the parameter-free approach by in-
stead removing cross attention at all but the final
layer of the decoder, where we include only a sin-
gle learned head (SH-X). Note that this is the only
learned head in the entire model, as both the en-
coder and decoder self-attention is hard-coded. On
IWSLT16 En-De, our BLEU score improves from
21.1 to 28.1, less than 2 BLEU under the BASE

Transformer.

Train Test Len SRC Len TGT

IWSLT16 En-De 196,884 993 28.5 29.6
IWSLT17 En-Ja 223,108 1,452 22.9 16.0
WMT16 En-Ro 612,422 1,999 27.4 28.3
WMT14 En-De 4,500,966 3,003 28.5 29.6
WMT14 En-Fr 10,493,816 3,003 26.0 28.8

Table 1: Statistics of the datasets used. The last two
columns show the average number of tokens for source
and target sentences, respectively.

4 Large-scale Experiments

The previous section developed hard-coded con-
figurations and presented results on the relatively
small IWSLT16 En-De dataset. Here, we expand
our experiments to include a variety of different
datasets, language pairs, and model sizes. For all
hard-coded head configurations, we use the optimal
IWSLT16 En-De setting detailed in Section 3.1 and
perform no additional tuning on the other datasets.
This configuration nevertheless proves robust, as
we observe similar trends with our hard-coded
Transformers across all of datasets.8

4.1 Datasets
We experiment with four language pairs,
English↔{German, Romanian, French, Japanese}
to show the consistency of our proposed attention
variants. For the En-De pair, we use both the small
IWSLT 20169 and the larger WMT 2014 datasets.
For all datasets except WMT14 En→De and
WMT14 En→Fr,10 we run experiments in both
directions. For English-Japanese, we train and
evaluate on IWSLT 2017 En↔Ja TED talk dataset.
More dataset statistics are shown in Table 1.

4.2 Architectures
Our BASE model is the original Transformer
from Vaswani et al. (2017), reimplemented in
PyTorch (Paszke et al., 2019) by Akoury et al.
(2019).11 To implement hard-coded attention, we
only modify the attention functions in this code-
base and keep everything else the same. For the
two small IWSLT datasets, we follow prior work

8Code and scripts to reproduce our experimental results to
be released after blind review.

9We report BLEU on the IWSLT16 En-De dev set follow-
ing previous work (Gu et al., 2018; Lee et al., 2018; Akoury
et al., 2019). For other datasets, we report test BLEU.

10As the full WMT14 En→Fr is too large for us to feasibly
train on, we instead follow Akoury et al. (2019) and train on
just the Europarl / Common Crawl subset, while evaluating
using the full dev/test sets.

11https://github.com/dojoteef/synst

https://github.com/dojoteef/synst
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BASE HC-SA HC-ALL SH-X

IWSLT16 En-De 30.0 30.3 21.1 28.2
IWSLT16 De-En 34.4 34.8 25.7 33.3
IWSLT17 En-Ja 20.9 20.7 10.6 18.5
IWSLT17 Ja-En 11.6 10.9 6.1 10.1
WMT16 En-Ro 33.0 32.9 25.5 30.4
WMT16 Ro-En 33.1 32.8 26.2 31.7

WMT14 En-De 26.8 26.3 21.7 23.5
WMT14 En-Fr 40.3 39.1 35.6 37.1

Table 2: Comparison of the discussed Transformer
variants on six smaller datasets (top)14 and two larger
datasets (bottom). Hard-coded self-attention (HC-SA)
achieves almost identical BLEU scores to BASE across
all datasets, while a model with only one cross attention
head (SH-X) performs slightly worse.

by using a small Transformer architecture with em-
bedding size 288, hidden size 507, four heads,12

five layers, and a learning rate 3e-4 with a lin-
ear scheduler. For the larger datasets, we use the
standard Tranformer base model, with embedding
size 512, hidden size 2048, eight heads, six layers,
and a warmup scheduler with 4,000 warmup steps.
For all experiments, we report BLEU scores using
SacreBLEU (Post, 2018) to be able to compare
with other work.13

4.3 Summary of results

Broadly, the trends we observed on IWSLT16 En-
De in the previous section are consistent for all of
the datasets and language pairs. Our findings are
summarized as follows:

• A Transformer with hard-coded self-attention
in the encoder and decoder and learned
cross attention (HC-SA) achieves almost equal
BLEU scores to the BASE Transformer.

• Hard-coding both cross attention and self-
attention (HC-ALL) considerably drops BLEU
compared to BASE, suggesting cross attention
is more important for translation quality.

• A configuration with hard-coded self-

12For hard-coded configurations, we duplicate heads to fit
this architecture (e.g., we have two heads per layer in the
encoder with means of i+ 1 and i− 1).

13SacreBLEU signature: BLEU+case.mixed+lang.LANG
+numrefs.1+smooth.exp+test.TEST+tok.intl+version.1.2.11,
with LANG ∈ {en-de, de-en, en-fr} and TEST ∈
{wmt14/full, iwslt2017/tst2013}. For WMT16 En-
Ro and IWSLT17 En-Ja, we follow previous work
for preprocessing (Sennrich et al., 2016), encod-
ing the latter with a 32K sentencepiece vocabulary
(https://github.com/google/sentencepiece)
and measuring the de-tokenized BLEU with SacreBLEU.

attention and a single learned cross attention
head in the final decoder layer (SH-X)
consistently performs 1-3 BLEU worse than
BASE.

These results motivate a number of interesting
analysis experiments (e.g., what kinds of phenom-
ena is MHA better at handling than hard-coded
attention), which we describe in Section 6. The
strong performance of our highly-simplified mod-
els also suggests that we may be able to obtain
memory or decoding speed improvements, which
we investigate in the next section.

5 Bigger Batches & Decoding Speedups

We have thus far motivated our work as an explo-
ration of which components of the Transformer
are necessary to obtain high translation quality.
Our results demonstrate that encoder and decoder
self-attention can be replaced with hard-coded at-
tention distributions without loss in BLEU, and
that MHA brings minor improvements over single-
headed cross attention. In this section, we measure
efficiency improvements in terms of batch size in-
creases and decoding speedup.

Experimental setup: We run experiments on
WMT16 En-Ro with the larger architecture to sup-
port our conclusions.15 For each model variant
discussed below, we present its memory efficiency
as the maximum number of tokens per batch al-
lowed during training on a single GeForce RTX
2080 Ti. Additionally, we provide inference speed
as the number of sentences per second each model
can decode on a 2080 Ti, reporting the average of
five runs with a batch size of 256.

Hard-coding self-attention yields small effi-
ciency gains: Table 7 summarizes our profiling
experiments. Hard-coding self-attention and pre-
serving learned cross attention allows us to fit 17%
more tokens into a single batch, while also pro-
viding a 6% decoding speedup compared to BASE

on the larger architecture used for WMT16 En-Ro.
The improvements in both speed and memory us-
age are admittedly limited, which motivates us to
measure the maximum efficiency gain if we only
modify self-attention (i.e., preserving learned cross
attention). We run a set of upper bound experi-
ments where we entirely remove self-attention in
the encoder and decoder. The resulting encoder

15Experiments with the smaller IWSLT16 En-De model are
described in the Appendix.

https://github.com/google/sentencepiece
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Model BLEU sent/sec tokens/batch

BASE 33.0 26.8 9.2K
HC-SA 32.9 28.4 10.8K
SH-X 30.3 34.9 11.7K

BASE/-SA 27.0 30.1 11.8K
SH-X/-SA 15.0 37.6 13.3K

Table 3: Decoding speedup (in terms of sentences per
second) and memory improvements (max tokens per
batch) on WMT16 En-Ro for a variety of models. The
last two rows refer to BASE and SH-X configurations
whose self-attention is completely removed.

thus just becomes a stack of feed-forward layers on
top of the initial subword embeddings. Somewhat
surprisingly, the resulting model still achieves a
fairly decent BLEU of 27.0 compared to the BASE

model’s 33.0. As for the efficiency gains, we can
fit 27% more tokens into a single batch, and de-
coding speed improves by 12.3% over BASE. This
relatively low upper bound for HC-SA shows that
simply hard-coding self-attention does not guaran-
tee significant speedup. Previous work that simpli-
fies attention (Wu et al., 2019; Michel et al., 2019)
also report efficiency improvements of similar low
magnitudes.

Single-headed cross attention speeds up de-
coding: Despite removing learned self-attention
from both the encoder and decoder, we did not
observe huge efficiency or speed gains. However,
reducing the source attention to just a single head
results in more significant improvements. By only
keeping single-headed cross attention in the last
layer, we are able to achieve 30.2% speed up and
fit in 26.4% more tokens to the memory compared
to BASE . Compared to HC-SA, SH-X obtains a
22.9% speedup and 8.0% bigger batch size.

From our profiling experiments, most of the
speed and memory considerations of the Trans-
former are associated with the large feed-forward
layers that we do not modify in any of our experi-
ments, which caps the efficiency gains from modi-
fying the attention implementation. While we did
not show huge efficiency improvements on modern
GPUs, it remains possible that (1) a more tailored
implementation could leverage the model simpli-
fications we have made, and (2) that these differ-
ences are larger on other hardware (e.g., CPUs).
We leave these questions for future work.

1 2 3 4 5 6
number of layers

25
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EU

1.8

3.2

WMT2016 En-Ro

BASE
HC-SA
BASE/-FF
HC-SA/-FF

Figure 3: BLEU performance on WMT16 En-Ro be-
fore and after removing all feed-forward layers from
the models. BASE and HC-SA achieve almost identi-
cal BLEU scores, but HC-SA relies more on the feed-
forward layers than the vanilla Transformer. As shown
on the plot, with a four layer encoder and decoder, the
BLEU gap between BASE-FF and BASE is 1.8, while
the gap between HC-SA and HC-SA-FF is 3.2.

6 Analysis

Taken as a whole, our experimental results suggest
that many of the components in the Transformer
can be replaced by highly-simplified versions with-
out adversely affecting translation quality. In this
section, we explain how hard-coded self-attention
does not degrade translation quality (Section 6.1),
perform a detailed analysis of the behavior of our
various models by comparing the types of errors
made by learned versus hard-coded attention (Sec-
tion 6.2), and also examine different attention con-
figurations that naturally follow from our experi-
ments (Section 6.3).

6.1 Why does hard-coded self-attention work
so well?

Given the good performance of HC-SA on multiple
datasets, it is natural to ask why hard-coding self-
attention does not deteriorate translation quality.
We conjecture that feed-forward (FF) layers play
a more important role in HC-SA than in BASE by
compensating for the loss of learned dynamic self-
attention. To test this hypothesis, we conduct an
analysis experiment in which we train four model
configurations while varying the number of layers:
BASE, BASE without feed-forward layers (BASE/-
FF), HC-SA and HC-SAwithout feed-forward layers
(HC-SA/-FF). As shown in Figure 3, BASE and HC-
SA have similar performance and both -FF models
have consistently lower BLEU scores. However,
HC-SA without FF layers performs much worse
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Figure 4: BLEU difference vs. BASE as a function of
reference length on the WMT14 En-De test set. When
cross attention is hard-coded (HC-ALL), the BLEU gap
worsens as reference length increases.

compared to its BASE counterpart. This result con-
firms our hypothesis that FF layers are more im-
portant in HC-SA and capable of recovering the
potential performance degradation brought by hard-
coded self-attention. Taking a step back to hard-
coding cross attention, the failure of hard-coding
cross attention might be because the feed-forward
layers of the decoder are not powerful enough to
compensate for modeling both hard-coded decoder
self-attention and cross attention.

6.2 Error analysis of hard-coded models
Is learned attention more important for longer
sentences? Since hard-coded attention is much
less flexible than learned attention and can strug-
gle to encode global information, we are curious
to see if its performance declines as a function of
sentence length. To measure this, we categorize
the WMT14 En-De test set into five bins by refer-
ence length and plot the decrease in BLEU between
BASE and our hard-coded configurations for each
bin. Somewhat surprisingly, Figure 4 shows that
the BLEU gap between BASE and HC-SA seems
to be roughly constant across all bins.16 However,
the fully hard-coded HC-ALL model clearly deteri-
orates as reference length increases.

Does hard-coding attention produce
any systematic linguistic errors? For a
more fine-grained analysis, we run experi-
ments on LingEval97 (Sennrich, 2017), an
English→German dataset consisting of contrastive

16We note that gradients will flow across long distances
if the number of layers is large enough, since the effective
window size increases with multiple layers (van den Oord
et al., 2016; Kalchbrenner et al., 2016).

Error type BASE HC-SA HC-ALL

np-agreement 54.2 53.5 53.5
subj-verb-agreement 87.5 85.8 82.5
subj-adequacy 87.3 85.0 80.3
polarity-particle-nicht-del 94.0 91.4 83.2
polarity-particle-kein-del 91.4 88.3 79.9
polarity-affix-del 91.6 90.8 83.1
polarity-particle-nicht-ins 92.6 92.5 89.8
polarity-particle-kein-ins 94.8 96.7 98.7
polarity-affix-ins 91.9 90.6 84.3
auxiliary 89.1 87.5 85.6
verb-particle 74.7 72.7 70.2
compound 88.1 89.5 80.5
transliteration 97.6 97.9 93.4

Table 4: Accuracy for each error type in the LingEval97
contrastive set. Hard-coding self-attention results in
slightly lower accuracy for most error types, while
more significant degradation is observed when hard-
coding self and cross attention. We refer readers to
Sennrich (2017) for descriptions of each error type.

translation pairs. This dataset measures targeted
errors on thirteen different linguistic phenomena
such as agreement and adequacy. BASE and
HC-SA perform17 very similarly across all error
types (Table 4), which is perhaps unsurprising
given that their BLEU scores are almost identical.
Interestingly, the category with the highest de-
crease from BASE for both HC-SA and HC-ALL is
deleted negations;18 HC-ALL is 11% less accurate
(absolute) at detecting these substitutions than
BASE (94% vs 83%). On the other hand, both
HC-SA and HC-ALL are actually better than BASE

at detecting inserted negations, with HC-ALL

achieving a robust 98.7% accuracy. We leave
further exploration of this phenomenon to future
work. Finally, we observe that for the subject-verb
agreement category, the discrepancy between
BASE and the hard-coded models increases as the
distance between subject-verb increases (Figure 5).
This result confirms that self-attention is important
for modeling some long-distance phenomena, and
that cross attention may be even more crucial.

Do hard-coded models struggle when learned
self-attention focuses on non-local information?
Since hard-coded models concentrate most of the
attention probability mass on local tokens, they
might underperform on sentences for which the

17Accuracy is computed by counting how many references
have lower token-level cross entropy loss than their contrastive
counterparts.

18Specifically, when ein is replaced with negation kein.
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Figure 5: Hard-coded models become increasingly
worse than BASE at subject-verb agreement as the de-
pendency grows longer.
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Figure 6: Hard-coded attention performs better for
sentences with low off-diagonality (i.e., sentences for
which the BASE model’s learned attention focuses close
to the query position for most of their tokens).

learned heads of the BASE model focus on to-
kens far from the current query position. We de-
fine a token to be “off-diagonal” when the max-
imum probability of that token’s attention is at
least two steps away from query position. A sen-
tence’s “off-diagonality” is then the proportion of
off-diagonal tokens within the sentence. We bin
the sentences in IWSLT En-De development set
by their off-diagonality and analyze the transla-
tion quality of our models on these different bins.
Figure 6 shows that for decoder self attention, the
BLEU gap between HC-ALL and BASE increases
as off-diagonality increases, while the gap between
BASE and SH-X remains relatively constant across
all bins. HC-SA even outperforms BASE for sen-
tences with fewer off-diagonal tokens.

6.3 Other hard-coded model configurations

Is it important for the Gaussian to span the en-
tire sequence? One natural question about the
hard-coded attention strategy described in Sec-

Original Conv (window=3) Indexing
En-De 30.3 30.1 29.8
En-Ro 32.4 32.3 31.4

Table 5: Comparison of three implementations of HC-
SA. Truncating the distribution to a three token span
has little impact, while removing the weights altogether
slightly lowers BLEU.

tion 3 is whether it is necessary to assign some prob-
ability to all tokens in the sequence. After all, the
probabilities outside a local window become very
marginal, so perhaps it is unnecessary to preserve
them. We take inspiration from Wu et al. (2019),
who demonstrate that lightweight convolutions can
replace self-attention in the Transformer without
harming BLEU, by recasting our hard-coded atten-
tion as a convolution with a hard-coded 1-D kernel.
While this decision limits the Gaussian distribu-
tion to span over just tokens within a fixed window
around the query token, it does not appreciably im-
pact BLEU (second column of Table 5). We set the
window size to 3 in all experiments, so the kernel
weights become [0.242, 0.399, 0.242].

Are any attention weights necessary at all?
The previous setting with constrained window size
suggests another follow-up: is it necessary to have
any attention weights within this local window at
all? A highly-efficient alternative is to have each
head simply select a single value vector associ-
ated with a token in the window. Here, our imple-
mentation requires no explicit multiplication with
a weight vector, as we can compute each head’s
representation by simply indexing into the value
vectors. Mathematically, this is equivalent to con-
volving with a binary kernel (e.g., convolution with
[1, 0, 0] is equivalent to indexing the left token rep-
resentation). The third column of Table 5 shows
that this indexing approach results in less than 1
BLEU drop across two datasets, which offers an
interesting avenue for future efficiency improve-
ments.

Where should we add additional cross attention
heads? Our experiments with cross attention so
far have been limited to learning just a single head,
as we have mainly been interested in minimal con-
figurations. If we have a larger budget of cross
attention heads, where should we put them? Is it
better to have more cross attention heads in the
last layer in the decoder (and no heads anywhere
else), or to distribute them across multiple layers



7697

1 2 3 4
Number of learned heads

27.5

28.5

29.5

30.5
BL

EU

WMT2016 En-Ro
Multiple heads same layer
Single head across layers

Figure 7: Adding more cross attention heads in the
same layer helps less than adding individual heads
across different layers.

of the decoder? Experiments on the WMT16 En-
Ro dataset19 (Figure 7) indicate that distributing
learned heads over multiple layers leads to signifi-
cantly better BLEU than adding all of them to the
same layer.

7 Related Work

Attention mechanisms were first introduced to aug-
ment vanilla recurrent models (Kalchbrenner and
Blunsom, 2013; Sutskever et al., 2014; Bahdanau
et al., 2015; Luong et al., 2015; Chorowski et al.,
2015; Wu et al., 2016; Miceli Barone et al., 2017)
but have become the featured component of the
state-of-the-art Transformer architecture (Vaswani
et al., 2017) for NMT. We review recent research
that focuses on analysing and improving multi-
headed attention, and draw connections to our
work.

The intuitive advantage of MHA is that different
heads can focus on different types of information,
all of which will eventually be helpful for transla-
tion. Voita et al. (2019) find that some heads focus
on adjacent tokens to the query (mirroring our anal-
ysis in Section 2), while others focus on specific
dependency relations or rare tokens. Correia et al.
(2019) discover that some heads are sensitive to
subword clusters or interrogative words. Tang et al.
(2018) shows that the number of MHA heads af-
fects the ability to model long-range dependencies.
Michel et al. (2019) show that pruning many heads
from a pretrained model does not significantly im-
pact BLEU scores. Similarly, Voita et al. (2019)
prune many encoder self-attention heads without
degrading BLEU, while Tang et al. (2019) further

19We used the smaller IWSLT En-De architecture for this
experiment.

simplify the Transformer by removing the entire
encoder for a drop of three BLEU points. In con-
trast to existing literature on model pruning, we
train our models without learned attention heads
instead of removing them post-hoc.

There have been many efforts to modify MHA
in Transformers. One such direction is to inject
linguistic knowledge through auxiliary supervised
tasks (Garg et al., 2019; Pham et al., 2019). Other
work focuses on improving inference speed: Yang
et al. (2018) replace decoder self-attention with a
simple average attention network, assigning equal
weights to target-side previous tokens.20 Wu et al.
(2019) also speed up decoding by replacing self-
attention with convolutions that have time-step de-
pendent kernels; we further simplify this work with
our fixed convolutional kernels in Section 6. Cui
et al. (2019) also explore fixed attention while re-
taining some learned parameters, and Vashishth
et al. (2019) show that using uniform or random
attention deteriorates performances on paired sen-
tences tasks including machine translation. Other
work has also explored modeling locality (Shaw
et al., 2018; Yang et al., 2018).

8 Conclusion

In this paper, we present “hard-coded” Gaussian
attention, which while lacking any learned param-
eters can rival multi-headed attention for neural
machine translation. Our experiments suggest that
encoder and decoder self-attention is not crucial
for translation quality compared to cross attention.
We further find that a model with hard-coded self-
attention and just a single cross attention head per-
forms slightly worse than a baseline Transformer.
Our work provides a foundation for future work
into simpler and more computationally efficient
neural machine translation.
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on i − 1, ‘r’ for i + 1 and ‘c’ for i. Middle layers are
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Table 7 summarizes the results of our profiling
experiments on IWSLT16 En-De development set.

https://doi.org/10.13053/cys-23-3-3265
https://doi.org/10.13053/cys-23-3-3265
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319
https://www.aclweb.org/anthology/E17-2060
https://www.aclweb.org/anthology/E17-2060
https://www.aclweb.org/anthology/E17-2060
https://doi.org/10.18653/v1/W16-2323
https://doi.org/10.18653/v1/W16-2323
https://doi.org/10.18653/v1/N18-2074
https://doi.org/10.18653/v1/N18-2074
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
https://doi.org/10.18653/v1/D18-1458
https://doi.org/10.18653/v1/D18-1458
https://doi.org/10.18653/v1/D18-1458
https://doi.org/10.26615/978-954-452-056-4_136
https://doi.org/10.26615/978-954-452-056-4_136
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/P19-1580
https://openreview.net/forum?id=SkVhlh09tX
https://openreview.net/forum?id=SkVhlh09tX
https://openreview.net/forum?id=SkVhlh09tX
https://doi.org/10.18653/v1/D18-1475
https://doi.org/10.18653/v1/D18-1475


7700

40%-60% 60%-80% 80%-100%
Percent off Diagonal

15

20

25

30
BL

EU
IWSLT En-De Encoder Self-Attention

BASE
HC-SA
SH-X
HC-ALL

40%-60% 60%-80% 80%-100%
Percent off Diagonal

20

25

30

35

40

BL
EU

IWSLT En-De Decoder Self-Attention
BASE
HC-SA
SH-X
HC-ALL

40%-60% 60%-80% 80%-100%
Percent off Diagonal

20

25

30

35

40

BL
EU

IWSLT De-En Encoder Self-Attention

BASE
HC-SA
SH-X
HC-ALL

Figure 8: Off-diagonal analysis for IWSLT En-De/De-En self-attention

Model BLEU sent/sec tokens/batch
BASE 30.0 43.1 14.1k

HC-SA 30.3 44.0 15.1k
SH-X 28.1 50.1 16k

BASE/-SA 22.8 46.1 16.1k
SH-X/-SA 14.9 54.9 17k

Table 7: Decoding speedup (in terms of sentences per
second) and memory improvements (max tokens per
batch) on IWSLT16 En-De for a variety of models. The
last two rows refer to BASE and SH-X configurations
whose self-attention is completely removed.

C Off-diagonal Analysis

In addition to IWSLT16 De-En decoder self-
attention analysis, we provide here the off-diagonal
analysis results on IWSLT16 En-De encoder and
decoder self-attention, and IWSLT16 De-En en-
coder self-attention in Figures 8.


