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Abstract

Transformers are ubiquitous in Natural Lan-
guage Processing (NLP) tasks, but they are dif-
ficult to be deployed on hardware due to the in-
tensive computation. To enable low-latency in-
ference on resource-constrained hardware plat-
forms, we propose to design Hardware-Aware
Transformers (HAT) with neural architecture
search. We first construct a large design space
with arbitrary encoder-decoder attention and
heterogeneous layers. Then we train a Super-
Transformer that covers all candidates in the
design space, and efficiently produces many
SubTransformers with weight sharing. Fi-
nally, we perform an evolutionary search with
a hardware latency constraint to find a special-
ized SubTransformer dedicated to run fast on
the target hardware. Extensive experiments
on four machine translation tasks demonstrate
that HAT can discover efficient models for
different hardware (CPU, GPU, IoT device).
When running WMT’14 translation task on
Raspberry Pi-4, HAT can achieve 3x speedup,
3.7x smaller size over baseline Transformer;
2.7 x speedup, 3.6 x smaller size over Evolved
Transformer with 12,041 x less search cost and
no performance loss. HAT is open-sourced.

1 Introduction

Transformer (Vaswani et al., 2017) has been widely
used in natural language processing tasks. By stack-
ing multiple identical encoder/decoder layers with
attention modules, it provides a significant perfor-
mance improvement over previous convolutional
or recurrent neural network models (Kim, 2014).
Nevertheless, it is challenging to deploy Trans-
formers on mobile devices due to the high com-
putation cost. For instance, in order to translate a
sentence with only 30 words, a Transformer-Big
model needs to execute 13G FLOPs and takes 20
seconds on a Raspberry Pi. Such long latency will
hurt the user experience on edge devices. Thus we
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Figure 1: Framework for searching Hardware-Aware
Transformers. We first train a SuperTransformer that
contains numerous sub-networks, then conduct an evo-
lutionary search with hardware latency feedback to find
one specialized SubTransformer for each hardware.

need hardware-efficient Transformers (Figure 1).
There are two common pitfalls when evaluat-
ing the efficiency of a Transformer. (/) FLOPs
does not reflect the measured latency. Although
FLOPs is used as an metric for efficiency in prior
arts (Howard et al., 2017; Wu et al., 2020), it is not
a good latency proxy. As in Figure 2 (Right), mod-
els with the same FLOPs can result in very different
measured latencies; (2) different hardware prefers
different Transformer architecture. As in Table 1,
the Transformer model optimized on one hardware
is sub-optimal for another because latency is in-
fluenced by different factors on different hardware
platforms. For example, the embedding size has
significant impact on the Raspberry Pi latency but
hardly influences the GPU latency (Figure 2).
Inspired by the success of Neural Architecture
Search (NAS) (Bender et al., 2018; Guo et al., 2019;
Pham et al., 2018; Cai et al., 2019a), we propose to
search for Hardware-Aware Transformers (HAT)
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Figure 2: Latency of different Transformer models on different hardware. We find (1) FLOPs does not reflect
the real measured latency; (2) Latency influencing factors of different hardware are contrasting. Thus we need to

consider hardware latency feedback to design specialized models for different hardware.

Measured On — GPU ARM CPU
Specialized For |  BLEU Latency Latency
HAT (GPU) 28.10 | 147 ms 6491 ms
HAT (ARM CPU) 28.15 | 184 ms 6042 ms

Table 1: BLEU score and measured inference latency
of HAT on WMT’ 14 En-De task. The efficient model
for GPU is not efficient for ARM CPU and vice versa.

by directly involving the latency feedback into the
design loop. In this way, we do not need FLOPs
as the latency proxy and can search specialized
models for various hardware.

We first construct a large search space with arbi-
trary encoder-decoder attention and heterogeneous
Transformer layers. Traditional Transformer has an
information bottleneck between the encoder and de-
coder. Arbitrary encoder-decoder attention breaks
the bottleneck, allowing all decoder layers to attend
to multiple and different encoder layers instead of
only the last one. Thus low-level information from
the encoder can also be used by the decoder. Mo-
tivated by Figure 2, we introduce heterogeneous
Transformer layers to allow different layers to have
different architecture adapting various hardware.

To perform a low-cost search in such a large
design space, we first train a Transformer super-
net — SuperTransformer, which contains many Sub-
Transformers sharing the weights. We train all
SubTransformers simultaneously by optimizing the
uniformly sampled SubTransformers from the Su-
perTransformer. The performance of a SubTrans-
former with inherited weights from the SuperTrans-
former can provide a good relative performance
approximation for different architectures trained
from-scratch. Unlike conventional NAS, we only
need to pay the SuperTransformer training cost for
once and can evaluate all the models in the design
space with it. Finally, we conduct an evolutionary

search to find the best SubTransformer under the
hardware latency constraint. Experiments show
that HAT can be naturally incorporated with model
compression techniques such as quantization and
knowledge distillation.

We evaluate HAT with WMT’14 En-De,
WMT’ 14 En-Fr, WMT’19 En-De, and IWSLT’ 14
De-En tasks on Raspberry Pi ARM CPU, Intel
Xeon CPU, and Nvidia TITAN Xp GPU. Com-
pared with previous work (Vaswani et al., 2017; So
etal., 2019; Gu et al., 2019; Wu et al., 2020), HAT
achieves up to 3x speedup, 3.7x smaller size over
Transformer-Big without loss of accuracy. With
12,041 x less search cost, HAT outperforms the
Evolved Transformer with 2.7 x speedup and 3.6 x
smaller size. It also achieves up to 1.9x speedup
over Levenshtein and Lite Transformers with no
BLEU score loss. With 4-bit quantization, HAT
can further reach 25x model size reduction.

HAT has three contributions: (1) Hardware-
Aware and Specialization. To our best knowl-
edge, we are the first to directly involve the hard-
ware feedback in the model design, to reduce NLP
model latency for target hardware, instead of rely-
ing on proxy signals (FLOPs). For different hard-
ware platforms, specialized models for low-latency
inference are explored. (2) Low-cost Neural Ar-
chitecture Search with a Large Design Space.
We propose arbitrary encoder-decoder attention
to break the information bottleneck; and heteroge-
neous layer to let different layers alter its capac-
ity. A weight-shared SuperTransformer is trained
to search for efficient models at a low cost. (3)
Design Insights. Based on the search results, we
reveal some design insights: Attending to multiple
encoder layers is beneficial for the decoder; GPU
prefers shallow and wide models while ARM CPU
prefers deep and thin ones.
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Figure 3: HAT Overview. A large design space is constructed with Arbitrary Encoder-Decoder Attention and
Heterogeneous Layers. (1) Train a weight-shared SuperTransformer by iteratively optimizing randomly sampled
SubTransformers. It can provide a performance proxy for SubTransformers. (2) Collect (SubTransformer architec-
ture, latency) data pairs on the target hardware. (3) Train a latency predictor for each hardware to provide fast and
accurate latency feedback. (4) Perform an evolutionary search with hardware latency constraint to find the model
with the lowest validation loss. (5) Finally, the searched model is trained from scratch to get the final performance.
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Figure 4: Arbltrary Encoder-Decoder Attentlon Each
encoder-decoder attention in one decoder layer can at-
tend to the outputs from multiple encoder layers, fully
leveraging the features extracted by the encoder.

2 Proposed Approaches

An overview of the HAT framework is shown
in Figure 3. We firstly train a SuperTransformer
with a large design space. Then, for a given hard-
ware platform, we collect a dataset of (SubTrans-
former architecture, measured latency) pairs for
different models, and train a latency predictor. Fi-
nally, we conduct an evolutionary search with a
latency constraint to find an efficient model special-
ized for the target hardware.

2.1 Design Space

We construct a large design space by breaking two
conventions in the Transformer design: (1) All
decoder layers only attend to the last encoder layer;
(2) All the layers are identical.

Arbitrary Encoder-Decoder Attention. Differ-
ent encoder layers extract features on different ab-
straction levels. Conventionally, all the decoder lay-

ers only attend to the last encoder layer. It forms an
information bottleneck that forces all the decoder
layers to learn solely from the high abstraction level
and ignore the low-level information. To break the
bottleneck, we propose Arbitrary Encoder-Decoder
Attention to learn the most suitable connections
between the encoder and the decoder. Each de-
coder layer can choose multiple encoder layers to
attend. The key and value vectors from encoder
layers are concatenated in the sentence length di-
mension (Figure 4) and fed to the encoder-decoder
cross attention module. The mechanism is efficient
because it introduces no additional parameters. The
latency overhead is also negligible. For example,
with each decoder layer attending to two encoder
layers, the latency of Transformer-Base on Nvidia
TITAN Xp GPU barely increases by 0.4%. It im-
proves the model capacity by allowing attention to
different abstraction levels.

Heterogeneous Transformer Layers. Previous
Transformers repeat one architecture for all layers.
In HAT, instead, different layers are heterogeneous,
with different numbers of heads, hidden dim, and
embedding dim. In attention layers, different heads
are used to capture various dependencies. However,
Voita et al. (2019) shows that many heads are re-
dundant. We thereby make attention head number
elastic so that each attention module can decide its
necessary number of heads.

In the FEN layer, the input features are cast to
a higher dimension (hidden dim), followed by an
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Figure 5: Weight Sharing of the SuperTransformer. All
SubTransformers share the front portion of word em-
beddings, and weights in the fully-connected layers.

activation layer. Traditionally, the hidden dim is
set as 2x or 4x of the embedding dim, but this
is sub-optimal since different layers need differ-
ent capacities depending on the feature extraction
difficulty. We hence make the hidden dim elastic.
Moreover, we also support elastic embedding
dim of encoder and decoder, but it is consistent
inside encoder/decoder. The number of encoder &
decoder layers are also elastic to learn the proper
level of feature encoding and decoding. Other de-
sign choices such as the length of @), K, V' vectors
in attention modules can be naturally incorporated
in our framework, which we leave for future work.

2.2 SuperTransformer

It is critical to have a large design space in or-
der to find high-performance models. However,
training all the models and comparing their BLEU
scores is infeasible. We thus propose SuperTrans-
former, a supernet for performance approxima-
tion, which can judge the performance of a model
without fully training it. The SuperTransformer is
the largest model in the search space with weight
sharing (Pham et al., 2018; Liu et al., 2019; Cai
et al., 2019a). Every model in the search space
(a SubTransformer) is a part of the SuperTrans-
former. All SubTransformers share the weights of
their common parts. For elastic embedding dim,
all SubTransformers share the front portion of the
longest word embedding and corresponding FC
layer weights. As in Figure 5, for elastic FFN
hidden dim, the front part of the FC weights is
shared. For elastic head number in attention mod-
ules, the whole ), K,V vectors (the lengths are
fixed in our design space) are shared by dividing
into head_number parts. Elastic layer numbers let
all SubTransformers share the first several layers.

Predicted: latency
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Figure 6: The latency predictor is very accurate, with
an average prediction error (RMSE) of 0.1s.

In the SuperTransformer training, all possible
SubTransformers are uniformly sampled, and the
corresponding weights are updated. In practice, the
SuperTransformer only needs to be trained for the
same steps as a baseline Transformer model, which
is fast and low-cost. After training, we can get
the performance proxy of sampled models in the
design space by evaluating the corresponding Sub-
Transformers on the validation set without training.

2.3 Evolutionary Search for SubTransformer

Given a latency requirement, we perform an evo-
lutionary search to find a satisfactory SubTrans-
former. There are two ways to evaluate the hard-
ware latency of a SubTransformer: (1) Online mea-
surement in which we measure the models during
the search process. (2) Offline, where we train a la-
tency predictor to provide the latency. We apply the
offline method here because it is fast and accurate.
For the online method, a single sampled SubTrans-
former requires hundreds of inferences to get an
accurate latency, which lasts for minutes and slows
down the searching. For the offline method, we
encode the architecture of a SubTransformer into
a feature vector, and predict its latency instantly
with a multi-layer perceptron (MLP). Trained with
thousands of real latency data points, the predic-
tor yields high accuracy (Figure 6). Note that the
predicted latency is only used in the search pro-
cess, and we report real measured latency in the
experiment section. Compared with deducing a
closed-form latency model for each hardware, the
latency predictor method is more general and faster.

We use an evolutionary algorithm to conduct the
search process. As in Figure 3, the search engine
queries the latency predictor for SubTransformer
latency, and validates the loss on the validation
set. The engine only adds SubTransformers with
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latency smaller than the hardware constraint to the
population. We then train the searched models from
scratch to obtain the final performance.

3 Experiments

3.1 Datasets

We conduct experiments on four machine trans-
lation tasks: WMT’14 En-De, WMT’14 En-Fr,
WMT’19 En-De, and IWSLT’ 14 De-En, consisting
of 4.5M, 36.3M, 43.0M, and 160K pairs of train-
ing sentences, respectively. For WMT’ 14 En-De,
we apply 32K source-target BPE vocabulary, train
on WMT"’16, validate on newstest2013 and test on
newstest2014, replicating Wu et al. (2019b); For
WMT’ 14 En-Fr, we use 40K source-target BPE vo-
cabulary, validate on newstest2012&2013, and test
on newstest2014, replicating Gehring et al. (2017).
WMT’ 19 En-De adopts 49.6K source-target BPE
vocabulary, validates on newstest2017, and tests
on newstest2018, the same as Junczys-Dowmunt
(2019). We use 10K joint BPE vocabulary in lower
case for IWSLT’14 De-En (Grave et al., 2017).

3.2 Experiment Setups

Baselines. Our baseline models are Trans-
former (Vaswani et al., 2017), Levenshtein Trans-
former (Gu et al., 2019), both with the Ott et al.
(2019) implementation, Evolved Transformer (So
etal., 2019) and Lite Transformer (Wu et al., 2020).

Evaluation Metrics. For evaluation, we use
beam four and length penalty 0.6 for WMT, and
beam five for IWSLT (Vaswani et al., 2017). All
BLEUs are calculated with case-sensitive tokeniza-
tion', but we also apply the compound splitting
BLEU? for WMT, the same as Vaswani et al.
(2017). We test the model with the lowest valida-
tion set loss for WMT and the last ten checkpoints
averaged for IWSLT.

We test the latency of the models by measur-
ing translation from a source sentence to a target
sentence with the same length. The length is the
average output length on the test set — 30 for WMT
and 23 for IWSLT. For each model, we measure
the latency for 300 times, remove the fastest and
slowest 10% and then take the average of the rest
80%. We conduct experiments on three represen-
tative hardware platforms: Raspberry Pi-4 with an
ARM Cortex-A72 CPU, Intel Xeon E5-2640 CPU,
and Nvidia TITAN Xp GPU.

Uhttps://github.com/moses-smt/mosesdecoder
Zhttps://github.com/tensorflow/tensor2tensor

3.3 Implementation Details
SuperTransformer Setups. The SuperTrans-
former for WMT has the following design space:
[512, 640] for embedding dim, [1024, 2048, 3072]
for hidden dim, [4, 8] for the head number in all
attention modules, [1, 2, 3, 4, 5, 6] for decoder
layer number. Due to decoder auto-regression, en-
coder only accounts for less than 5% of the mea-
sured latency; thereby, we set the encoder layer
number fixed as 6. For arbitrary encoder-decoder
attention, each decoder can choose to attend to the
last one, two, or three encoder layers. The Super-
Transformer design space for IWSLT is the same as
WMT except for [2048, 1024, 512] for hidden dim
and [4, 2] for head number. We set the (), K,V
vector dim fixed as 512. The design space contains
around 10" possible SubTransformers and covers
a wide range of model size and latency (largest =
6xsmallest). We train the SuperTransformers of
WMT for 40K steps and 50K steps for IWSLT.

Hardware-Aware Evolutionary Search Setups.
The input of the latency predictor is a feature vec-
tor of SubTransformer architecture with ten ele-
ments: layer number, embed dim, average hidden
dim, average self-attention heads, of both encoder
and decoder; plus average encoder-decoder atten-
tion heads, and the average number of encoder
layers each decoder layer attends. A dataset of
2000 (SubTransformer architecture, measured la-
tency) samples for each hardware is collected, and
split into train:valid:test=8:1:1. We normalize the
features and latency, and train a three-layer MLP
with 400 hidden dim and ReLU activation. We
choose three-layer because it is more accurate than
the one-layer model, and over three layers do not
improve accuracy anymore. With the predictor, we
conduct an evolutionary search for 30 iterations in
the SuperTransformer, with population 125, par-
ents population 25, mutation population 50 with
0.3 probability and crossover population 50.

Training Settings. Our training settings are in
line with Wu et al. (2019b) and Wu et al. (2020).
For WMT, we train for 40K steps with Adam
optimizer and a cosine learning rate (LR) sched-
uler (Kingma and Ba, 2015; Loshchilov and Hut-
ter, 2017), where the LR is linearly warmed up
from 107 to 1073, and then cosine annealed. For
IWSLT, we train for 50K steps with inverse square
root LR scheduler. The baseline Transformers are
trained with the same settings as the searched Sub-
Transformers for fair comparisons.

7679


https://github.com/moses-smt/mosesdecoder
https://github.com/tensorflow/tensor2tensor

11 Dimension Scaling of Transformer (Vaswani et al.)

29
/'JI 28 |

o’ —'I:ransformer-Big

." \ 27 1

' Transformer-Base

O HAT (Ours)

29 29
3.0x Faster JI

28 | / 3.7x Smaller ....---="" /128t
o---"""" Transformer-Big
27 f /7 \ 27 ¢
(]

Layer Number Scaling of Transformer (Vaswani et al.)

Transformer-Big ~ J,

.0x Faster 2.7% Faster

Transformer-Base |!

26 | 26 26 |

25 o' 25 |fon : 25 {in
(=)

BLEU Score

Dimension scaling N
can hardly reduce latency/;
d

a on Nvidia GPU
04 WMT 14 En-De o4 WMT *14 En-De 04 WMT ’14 En-De
3 7 12 16 21 100 234 368 501 635 50 101 153 204 255

Raspberry Pi ARM CPU latency (s) Intel CPU latency (ms) Nvidia GPU latency (ms)

42 JI 42 J‘ 42 Transformer-Big, J
3.0x Faster
o= 00000 X
a | 36x Smaller = | 22« Fastel b
------------ / / 1.8 Faster
o | F oRT Transformer-Big o Transformer-Big
8 40 | 40 . 40 .
2] /' Transformer-Base , Transformer-Base Transformer-Base §
D 0
w 39 r 39 39
—
@ B N N Dimension scaling
L=, Lo © can hardly reduce latency |,
38 @ 38 ! 38 on Nvidia GPU ]
o L WMT 14 En-Fr - WMT 14 En-Fr - WMT 14 En-Fr J
3 8 13 18 23 120 275 430 585 740 50 98 145 193 240

Raspberry Pi ARM CPU latency (s) Intel CPU latency (ms) Nvidia GPU latency (ms)

Figure 7: Inference latency and BLEU trade-offs of WMT’ 14 En-De and En-Fr on three hardware platforms. HAT
consistently outperforms the baseline Transformers and achieves up to 3 x faster inference speed and 3.7 x smaller

size over Transformer-Big. Specific latency, BLEU and SacreBLEU (Post, 2018) are in Appendix Table 8.
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Figure 8: Inference latency and BLEU trade-offs of
WMT’19 and IWSLT’ 14 tasks on Nvidia GPU.

4 Results

4.1 HAT Performance Comparisons

In Figure 7, 8 and Appendix Table 8, we com-
pare HAT with Transformer baselines on four tasks.
The embedding dims are 512 and 1024 for the
Transformer-Base and Big, respectively. The hid-
den dims are 4 x and 2x of the embedding dim for
WMT and IWSLT. The IWSLT models are smaller
to prevent overfitting (Wu et al., 2019b). We ob-
tain a series of baseline models with layer number
scaling (yellow) and dimension scaling (blue). We
set different latency constraints on three hardware
to get a series of HAT models. HAT consistently
outperforms baselines with a large gap under dif-
ferent latency constraints. On ARM CPU, HAT is

3x faster and 3.7 x smaller than Transformer-Big
with the same BLEU. On Intel CPU, HAT achieves
over 2x speedup. On Nvidia GPU, the blue dash
line is nearly vertical, indicating that dimension
scaling can hardly reduce the latency. In this case,
HAT can still find models with low latency and
high performance.

We further compare various aspects of HAT with
Transformer (Vaswani et al., 2017) and Evolved
Transformer (So et al., 2019) in Table 2. HAT
achieves up to 1.6, 3x, and 3.4x speedup with
up to 1.4x, 3.7x, and 4x smaller size than base-
lines. We report FLOPs for translating a 23-token
sentence for IWSLT and 30 for WMT. We show
the overall GPU hours for training the SuperTrans-
former and the searched SubTransformer. We also
calculate the cloud computing costs with differ-
ent modes: “preemptable” is cheaper ($0.74/h)
than “on-demand” ($2.48/h) (Strubell et al., 2019).
HAT is highly affordable since the total GPU-hour
is over 12000x smaller than the Evolved Trans-
former, and is even smaller than Transformer-Big
by virtue of the compact model size.

In Table 3, we compare HAT with other latest
models. We scale down all models to have similar
BLEU scores with Levenshtein for fair compar-
isons. We adopt the average iteration time of 2.88
for decoding (Gu et al., 2019), without limiting
the length of the output sentence (12 tokens after

7680



Hardware- Hetero. FLOPs GPU COse Cloud
Aware  Layers Latency #Params (G) BLEU " Hours (Ibs) Comp. Cost
IWSLT 14 Transformer X X 3.3s 32M 1.5 34.5 2 5 $12 - $40
De-En  HAT (Ours) v/ v/ 2.1s 23M 1.1 345 4 9 $24 - $80
Transformer X X 23.2s 176M 106 412 240 68 $178 - $595
WMT’ 14 Evolved Trans. X X 20.9s 175M 10.8 41.3 2,192,000 626,000 $1.6M - $5.5M
En-Fr  HAT (Ours) v v 7.8s 48M 34 41.4 216 61 $159 - $534
HAT (Ours) v v 9.1s 5T 39 41.8 224 64 $166 - $555
Transformer X X 20.5s 176M 106 284 184 52 $136 - $456
WMT’ 14 Evolved Trans. X X 7.6s 47M 2.9 28.2 2,192,000 626,000 $1.6M - $5.5M
En-De  HAT (Ours) v v 6.0s 44M 2.7 28.2 184 52 $136 - $456
HAT (Ours) v v 6.9s 48M 3.0 28.4 200 57 $147 - $495

Table 2: Comparisons of latency, model size, FLOPs, BLEU and training cost in terms of CO, emissions (Ibs) and
cloud computing cost (USD) for Transformer, the Evolved Transformer and HAT. The training cost estimation is
adapted from Strubell et al. (2019). The training time is for one Nvidia V100 GPU, and the latency is measured on
the Raspberry Pi ARM CPU. The cloud computing cost is based on AWS.

Latency BLEU

Transformer (Vaswani et al., 2017) 43s 25.85
Levenshtein (Gu et al., 2019) 6.5s 25.20
Evolved Transformer (So et al., 2019) 3.7s  25.40
Lite Transformer (Wu et al., 2020) 3.4s  25.79
HAT (Ours) 34s 25.92

Table 3: Raspberry Pi ARM CPU latency and BLEU
comparisons with different models on WMT’ 14 En-De.
HAT has the lowest latency with the highest BLEU.
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Figure 9: Evolutionary search can find better SubTrans-
formers in the SuperTransformer than random search.

decoding). HAT runs 1.3 x faster than Transformer
with higher BLEU; 1.9 faster than Levenshtein
with 0.7 higher BLEU. Under similar latency, HAT
also outperforms Lite Transformer. These results
demonstrate HAT’s effectiveness in lower latency
scenarios. Our framework can also be adopted to
speedup those models.

4.2 Analysis

Design Insights. For all HAT WMT models
in Figure 7, 10% of all decoder layers attend to

SubTransformer Latency #Params BLEU

WMT’14 Largest 10.1s 71M 28.1
En-De  Searched HAT 6.9s 48M 284
WMT’14 Largest 10.1s 7IM 414
En-Fr  Searched HAT 9.1s 57M  41.8

Table 4: The searched HAT compared with the largest
SubTransformer in the design space. Larger models do
not necessarily have better performance. HAT models
have lower latency, smaller size, and higher BLEU.

three encoder layers, 40% attend to two encoder
layers. That demonstrates the necessity of arbitrary
encoder-decoder attentions.

In Appendix Figure 12, we visualize the mod-
els specialized for different hardware mentioned in
Table 1. We find that the GPU model is wide but
shallow; the Raspberry Pi model is deep but thin.
The phenomenon echos with our latency profiling
(Figure 2) as GPU latency is insensitive to embed-
ding and hidden dim, but Raspberry Pi is highly
sensitive. It guides manual designs: on GPU, we
can reduce the layer number and increase dimen-
sion to reduce latency and keep high performance.

Ablation Study. HAT achieves higher BLEU
with 1.5 lower latency and 1.5 x smaller size com-
pared with the largest SubTransformer (Table 4).
This suggests that larger models do not always
provide better performance, and demonstrates the
effectiveness of HAT. We also compare the evo-
lutionary search with random search (Figure 9).
Evolutionary search can find models with lower
losses than random search.
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WMT’ 14 En-De WMT’ 14 En-Fr
Inherited Inherited SP; rr(:tlcl:il Inherited Inherited SFc rr(:géil
Val Loss BLEU BLEU Val Loss BLEU BLEU

4.71 249 25.8 3.92 37.4 38.8
4.40 25.8 27.6 3.71 38.0 40.0
4.07 26.3 28.1 3.48 39.5 41.1
4.02 26.7 28.2 3.46 39.6 41.4
4.01 26.9 28.4 3.45 39.7 41.7

Table 5: The performance of SubTransformers with in-
herited weights are close to those trained from-scratch,
and have the same relative performance order.

Human Life

(Avg. 1 year) 1,023
American Life

(Avg. 1 year) 36,156

US Car w/ Fuel 126,000

(Avg. 1 lifetime)

Evolved

Transformer 626,155

HAT (Ours) |52 12041

0 175K 350K

COz2 Emission (Ibs)

525K 700K

Figure 10: The search cost measured in pounds of CO,
emission. Our framework for searching HAT reduces
the cost by four orders of magnitude than the Evolved
Transformer (So et al., 2019).

SubTransformer Performance Proxy. All Sub-
Transformers inside the SuperTransformer are uni-
formly sampled and thus equally trained, so the
performance order is well-preserved during train-
ing. We conduct experiments to show the effective-
ness of the SubTransformer performance proxy as
in Table 5 and Appendix Figure 11. The BLEUs
of SubTransformers with inherited weights and
weights trained from-scratch are very close. More
importantly, they also have the same relative per-
formance order. Therefore, we can rely on the
proxy to search high-performance model architec-
ture, significantly reducing the search cost.

Low Search Cost. As shown in Table 2 and Fig-
ure 10, the search cost of HAT is 12,041 x lower
than the Evolved Transformer. Although both are
using Evolutionary Search, the key difference is
that Evolved Transformer needs to train all individ-
ual models and sort their final performance to pick
top ones; on the contrary, HAT trains all models
together inside SuperTransformer and sorts their
performance proxy to pick top ones. The superior
performance of HAT proves that the performance
proxy is accurate enough to find good models.

Finetuning Inherited SubTransformers In sec-
tion 4.1, we trained each searched SubTransformer

Task  From-Scratch 40K Inherit-Finetune 10K
WMT’ 14 41.5 41.7
En-Fr 40.0 40.2
WMT’ 14 28.0 28.0
En-De 27.5 27.4

Table 6: The SubTransformer inherited from the Super-
Transformer can achieve similar or better performance
than the same SubTransformer trained from-scratch.
Training steps are saved by 4 x.

from-scratch in order to conduct fair comparisons
with baselines. In practice, we can also directly
finetune the SubTransformers with the inherited
weights from the SuperTransformer to further re-
duce the training cost. With 10K finetuning steps
(1/4 of from-scratch training), the inherited Sub-
Transformers can achieve similar or better perfor-
mance than trained from-scratch ones (Table 6).
In this way, the training cost for a model under a
new hardware constraint can be further reduced
by 4, since the SuperTransformer training cost is
amortizable among all searched models.

Quantization Friendly. HAT is orthogonal to
other model compression techniques such as quan-
tization. We apply K-means quantization to HAT
and further reduce the model size. We initialize
centroids uniformly in the range of [min, max] of
each weight matrix and run at most 300 iterations
for each of them. Even without any finetuning,
4-bit quantization can reduce the model size by
25 x with negligible BLEU loss compared to the
Transformer-Big baseline (Table 7). Interestingly,
the 8-bit model even has 0.1 higher BLEU than the
full precision model, indicating the robustness of
searched HAT. Compared with the Transformer-
Base 4-bit quantization baseline, which has 24MB
model size and 38.9 BLEU score, HAT has 2.2
higher BLEU with similar model size.

Knowledge Distillation Friendly. HAT is also
orthogonal to knowledge distillation (KD) because
HAT focuses on searching for an efficient architec-
ture while KD focuses on better training a given
architecture. We combine KD with HAT by dis-
tilling token-level knowledge (top-5 soft labels)
from a high-performance SubTransformer to a low-
performance SubTransformer on WMT’ 14 En-De
task. The teacher model has a BLEU of 28.5 and
49M parameters; the student model has 30M pa-
rameters. KD can improve the BLEU of the student
model from 25.8 to 26.1.
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BLEU Model Size Reduction

Transformer Float32 41.2 705MB -
HAT Float32 41.8 227MB 3%
HAT 8 bits 41.9 57MB 12x
HAT 4 bits 41.1 28MB 25x

Table 7: K-means quantization of HAT models on
WMT’ 14 En-Fr. 4-bit quantization reduces the model
size by 25x with only 0.1 BLEU loss compared with
the transformer baseline. 8-bit quantization even has
0.1 higher BLEU than its full precision version.

5 Related Work

Transformer. Transformer (Vaswani et al., 2017)
has prevailed in sequence modeling (Ng et al.,
2019; Junczys-Dowmunt, 2018). By stacking iden-
tical blocks, the model obtains a large capacity
but incurs high latency. Recently, a research trend
is to modify the Transformer to improve the per-
formance (Chen et al., 2018; Wu et al., 2019b;
Sukhbaatar et al., 2019; Wang et al., 2019). Among
them, Wu et al. (2019b) introduced a convolution-
based module to replace the attention; Wang et al.
(2019) proposed to train deep Transformers by
propagating multiple layers together in the encoder.
Zhang et al. (2018) and Kim et al. (2019) also
proposed AAN and SSRU to replace the attention
mechanism. HAT is orthogonal to them and can
be combined to search for efficient architecture
with those new modules. Another trend is to ap-
ply non- or partially-autoregressive models to cut
down the iteration number for decoding (Gu et al.,
2019; Akoury et al., 2019; Wei et al., 2019; Gu
etal., 2018). Although reducing latency, they some-
times suffer from low performance. Bapna et al.
(2018) explored using learned linear combinations
of encoder outputs as decoder inputs, while HAT
concatenates the outputs without linear combina-
tions, thus better preserving the low-level informa-
tion. Wu et al. (2020) investigated mobile settings
for NLP tasks and proposed a multi-branch Lite
Transformer. However, it relied on FLOPs for effi-
cient model design, which is an inaccurate proxy
for hardware latency (Figure 2). There are also
works (Kim and Rush, 2016; Junczys-Dowmunt
et al., 2018; Kim et al., 2019; Yan et al., 2020) us-
ing Knowledge Distillation (KD) to obtain small
student models. Our method is orthogonal to KD
and can be combined with it to improve the effi-
ciency further. There are also hardware acceler-
ators (Ham et al., 2020; Zhang et al., 2020) for
attention and fully-connected layers in the Trans-
former to achieve efficient processing.

Neural Architecture Search. In the computer
vision community, there has been an increasing
interest in automating efficient model design with
Neural Architecture Search (NAS) (Zoph and Le,
2017; Zoph et al., 2018; Pham et al., 2018; He
et al., 2018). Some applied black-box optimization
such as evolutionary search (Wang et al., 2020b)
and reinforcement learning (Cai et al., 2019b; He
et al., 2018; Wang et al., 2018, 2020a; Mao et al.,
2019); Some leveraged backpropagation with dif-
ferentiable architecture search (Liu et al., 2019).
Some also involved hardware constraints into op-
timizations such as MNasNet (Tan et al., 2019),
ProxylessNAS (Cai et al., 2019b), FBNet (Wu et al.,
2019a) and APQ (Wang et al., 2020b). To reduce
the NAS cost, supernet based methods (Pham et al.,
2018; Bender et al., 2018; Guo et al., 2019) apply
a proxy for sub-network performance and adopt
search algorithms to find good sub-networks. For
NLP tasks, the benefits of the architecture search
have not been fully investigated. Recently, So et al.
(2019) proposed the Evolved Transformer to search
for architectures under model size constraints and
surpassed the original Transformer baselines. How-
ever, it suffered from very high search costs (250
GPU years), making it unaffordable to search spe-
cialized models for various hardware and tasks. In
addition, hardware latency feedback was not taken
into account for better case-by-case specializations.
Since different hardware has distinct architecture
and features (Cong et al., 2018), feedback from
hardware is critical for efficient NLP.

6 Conclusion

We propose Hardware-Aware Transformers (HAT)
framework to solve the challenge of efficient de-
ployments of Transformer models on various hard-
ware platforms. We conduct hardware-aware neu-
ral architecture search in an ample design space
with an efficient weight-shared SuperTransformer,
consuming four orders of magnitude less cost than
the prior Evolved Transformer, and discover high-
performance low-latency models. We hope HAT
can open up an avenue towards efficient Trans-
former deployments for real-world applications.
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Figure 11: The validation loss of SubTransformers is
a good performance proxy for BLEU of from-scratch
trained SubTransformers. The larger the validation
loss, the lower the BLEU score.

A Appendix for “HAT: Hardware-Aware
Transformers for Efficient Natural
Language Processing”

A.1 SubTransformer Performance Proxy

In Figure 11, we show the relationship between
the validation loss of SubTransformers directly in-
herited from the SuperTransformer, and the BLEU
score of the SubTransformers trained from-scratch.
We can observe that the larger the validation loss,
the lower the BLEU score. Therefore the validation
loss can be a good performance proxy.

A.2 Visualizations of Searched Models on
WMT’14 En-De Task

We show the HAT models searched for Raspberry
Pi ARM Cortex-A72 CPU and Nvidia TITAN Xp
GPU in Figure 12. The searched model for Rasp-
berry Pi is deep and thin, while that for GPU is
shallow and wide. The BLEU scores of the two
models are similar: 28.10 for Raspberry Pi CPU,
and 28.15 for Nvidia GPU.
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Figure 12: SubTransformers optimized for Raspberry Pi ARM CPU and Nvidia GPU on WMT"’ 14 En-De task are
different. The CPU model has BLEU 28.10, and GPU model has BLEU 28.15.

A.3 Latency, BLEU and SacreBLEU of
searched HAT models.

In Table 8, we show the specific latency numbers,
BLEU and SacreBLEU (Post, 2018) scores for
searched HAT models in Figure 7 and Figure 8.
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Task Hardware Latency BLEU SacreBLEU

3.5s 25.8 25.6

) 4.08 26.9 26.6
Raspberry Pi

ARM Cortex-A72 -+ Zﬁ Z;
CPU 5.0s 8 .

6.0s 28.2 27.6
6.9s 28.4 27.8

1379ms  25.8 25.6

WMT’ 14 Intel 204.2ms 27.6 27.1
nte

En-De Xeon E5-2640 278.7Tms 27.9 27.3

CPU 340.2ms 28.1 27.5

369.6ms 28.2 27.6
450.9ms  28.5 279

57.Ims  25.8 25.6

Nvidia 91.2ms 27.6 27.1
TITAN Xp 126.0ms 27.9 273
GPU 146.7ms  28.1 27.5

208.1ms  28.5 27.8

4.3s 38.8 36.0
5.3s 40.1 37.3

Raspberry Pi
ARM Cortex.A72 08 3(1)'? 378
CPU 6.9s ) 38.3
78s 414 38.5
9.1s 418 38.9
’ 154.7ms  39.1 36.3
Wé\fl_TFrl“ Intel 208.8ms  40.0 372
Xeon E5-2640  329.4ms  41.1 38.2
CPU 394.5ms 41.4 38.5
442.0ms 41.7 38.8
69.3ms  39.1 36.3
Nvidia 949ms 40.0 37.2
TITAN Xp 132.9ms  40.7 37.8
GPU 168.3ms  41.1 38.3
208.3ms 41.7 38.8
45.6ms 33.4 32.5
, Nvidia 74.5ms  34.2 33.3
nggn” TITANXp  109.0ms 34.5 33.6
GPU 137.8ms  34.7 33.8

168.8ms 34.8 339

557ms 424 41.9

Nvidia 932ms 444 439

W e e
204.5ms 46.5 45.7

237.8ms 46.7 46.0

Table 8: Specific latency numbers, BLEU and Sacre-
BLEU scores for searched HAT models in Figure 7 and
Figure 8.
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