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Abstract

Measuring what linguistic information is
encoded in neural models of language has be-
come popular in NLP. Researchers approach
this enterprise by training “probes”—
supervised models designed to extract
linguistic structure from another model’s
output. One such probe is the structural
probe (Hewitt and Manning, 2019), designed
to quantify the extent to which syntactic
information is encoded in contextualised
word representations. The structural probe
has a novel design, unattested in the parsing
literature, the precise benefit of which is not
immediately obvious. To explore whether
syntactic probes would do better to make use
of existing techniques, we compare the struc-
tural probe to a more traditional parser with
an identical lightweight parameterisation. The
parser outperforms structural probe on UUAS
in seven of nine analysed languages, often by
a substantial amount (e.g. by 11.1 points in
English). Under a second less common metric,
however, there is the opposite trend—the struc-
tural probe outperforms the parser. This begs
the question: which metric should we prefer?

1 Introduction

Recently, unsupervised sentence encoders such
as ELMo (Peters et al., 2018) and BERT (Devlin
et al., 2019) have become popular within NLP.
These pre-trained models boast impressive perfor-
mance when used in many language-related tasks,
but this gain has come at the cost of interpretability.
A natural question to ask, then, is whether these
models encode the traditional linguistic structures
one might expect, such as part-of-speech tags or
dependency trees. To this end, researchers have in-
vested in the design of diagnostic tools commonly
referred to as probes (Alain and Bengio, 2017;
Conneau et al., 2018; Hupkes et al., 2018; Poliak
et al., 2018; Marvin and Linzen, 2018; Niven
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and Kao, 2019). Probes are supervised models
designed to extract a target linguistic structure from
the output representation learned by another model.

Based on the authors’ reading of the probing lit-
erature, there is little consensus on where to draw
the line between probes and models for performing
a target task (e.g. a part-of-speech tagger versus a
probe for identifying parts of speech). The main
distinction appears to be one of researcher intent:
probes are, in essence, a visualisation method (Hup-
kes et al., 2018). Their goal is not to best the state
of the art, but rather to indicate whether certain in-
formation is readily available in a model—probes
should not “dig” for information, they should just
expose what is already present. Indeed, a suffi-
ciently expressive probe with enough training data
could learn any task (Hewitt and Liang, 2019), but
this tells us nothing about a representation, so it is
beside the point. For this reason, probes are made
“simple” (Liu et al., 2019), which usually means
they are minimally parameterised.'

Syntactic probes, then, are designed to measure
the extent to which a target model encodes syntax.
A popular example is the structural probe (Hewitt
and Manning, 2019), used to compare the syntax
that is decodable from different contextualised
word embeddings. Rather than adopting methodol-
ogy from the parsing literature, this probe utilises
a novel approach for syntax extraction. However,
the precise motivation for this novel approach is
not immediately clear, since it has nothing to do
with model complexity, and appears orthogonal to
the goal of a probe. Probes are designed to help
researchers understand what information exists in
a model, and unfamiliar ways of measuring this
information may obscure whether we are actually
gaining an insight about the representation we
wish to examine, or the tool of measurement itself.

! An information-theoretic take on probe complexity is the
subject of concurrent work; see Pimentel et al. (2020).
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Figure 1: Example of an undirected dependency tree.
We observe that the syntactic distance between dis-
pleases and everything is 2 (the red path).

Using the structural probe as a case study, we
explore whether there is merit in designing models
specifically for the purpose of probing—whether
we should distinguish between the fundamental
design of probes and models for performing an
equivalent task, as opposed to just comparing their
simplicity. We pit the structural probe against a
simple parser that has the exact same lightweight
parameterisation, but instead employs a standard
loss function for parsing. Experimenting on mul-
tiligual BERT (Devlin et al., 2019), we find that
in seven of nine typologically diverse languages
studied (Arabic, Basque, Czech, English, Finnish,
Japanese, Korean, Tamil, and Turkish), the parser
boosts UUAS dramatically; for example, we ob-
serve an 11.1-point improvement in English.

In addition to using UUAS, Hewitt and Manning
(2019) also introduce a new metric—correlation
of pairwise distance predictions with the gold stan-
dard. We find that the structural probe outperforms
the more traditional parser substantially in terms
of this new metric, but it is unclear why this met-
ric matters more than UUAS. In our discussion,
we contend that, unless a convincing argument to
the contrary is provided, traditional metrics are
preferable. Justifying metric choice is of central
importance for probing, lest we muddy the waters
with a preponderance of ill-understood metrics.

2 Syntactic Probing Using Distance

Here we introduce syntactic distance, which we
will later train a probe to approximate.

Syntactic Distance The syntactic distance be-
tween two words in a sentence is, informally, the
number of steps between them in an undirected
parse tree. Let w = w; ---w, be a sentence of
length n. A parse tree t belonging to the sentence
w is an undirected spanning tree of n vertices (with
a separate root as a (n + 1)™ vertex), each repre-
senting a word in the sentence w. The syntactic
distance between two words w; and w;, denoted

Ag(w;, wj), is defined as the shortest path from
wj to wj in the tree t where each edge has weight
1. Note that A¢ (-, -) is a distance in the technical
sense of the word: it is non-negative, symmetric,
and satisfies the triangle inequality.

Tree Extraction Converting from syntactic dis-
tance to a syntactic tree representation (or vice
versa) is trivial and deterministic:

Proposition 1. There is a bijection between syn-
tactic distance and undirected spanning trees.

Proof. Suppose we have the syntactic distances
At (w;, w;) for an unknown, undirected spanning
tree t. We may uniquely recover that tree by con-
structing a graph with an edge between w; and w)
iff A¢(w;, w;) = 1. (This analysis also holds if we
have access to only the ordering of the distances
between all |w|? pairs of words, rather than the
perfect distance calculations—if that were the case,
the minimum spanning tree could be computed e.g.
with Prim’s.) On the other hand, if we have an
undirected spanning tree t and wish to recover the
syntactic distances, we only need to compute the
shortest path between each pair of words, with e.g.
Floyd—Warshall, to yield A¢(+, -) uniquely. O

3 Probe, Meet Parser

In this section, we introduce a popular syntactic
probe and a more traditional parser.

3.1 The Structural Probe

Hewitt and Manning (2019) introduce a novel
method for approximating the syntactic distance
A¢ (-, -) between any two words in a sentence. They
christen their method the structural probe, since
it is intended to uncover latent syntactic structure
in contextual embeddings.” To do this, they define
a parameterised distance function whose parame-
ters are to be learned from data. For a word w;, let
h; € R? denote its contextual embedding, where
d is the dimensionality of the embeddings from
the model we wish to probe, such as BERT. He-
witt and Manning (2019) define the parameterised
distance function

dp(w;, wj) = (D
/(i —1))TBTB (h; — b))

In actual fact, the structural probe consists of two probes,
one used to estimate the syntactic distance between words
(which recovers an undirected graph) and another to calculate
their depth in the tree (which is used to recover ordering). In
this work, we focus exclusively on the former.
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where B € R"*% is to be learned from data, and r
is a user-defined hyperparameter. The matrix B B
is positive semi-definite and has rank at most r.3

The goal of the structural probe, then, is to find
B such that the distance function dp(-, -) best ap-
proximates A(-, -). If we are to organise our train-
ing data into pairs, each consisting of a gold tree
t and its corresponding sentence w, we can then
define the local loss function as

(B, (t, w)) = )

Wl |wl

Z Z ‘At (wi, wj) — dp(w;, wj)

=1 j=i+1

which is then averaged over the entire training
set D = {(t) w1V 1o create the following
global objective

N
Z w k)‘Q

k=1

( k0 W<k>>) 3)

Dividing the contribution of each local loss by the
square of the length of its sentence (the |w (¥ |2 fac-
tor in the denominator) ensures that each sentence
makes an equal contribution to the overall objec-
tive, to avoid a bias towards the effect of longer
sentences. This global loss can be minimised com-
putationally using stochastic gradient descent.*

3.2 A Structured Perceptron Parser

Given that probe simplicity seemingly refers to
parameterisation rather than the design of loss
function, we infer that swapping the loss function
should not be understood as increasing model com-
plexity. With that in mind, here we describe an al-
ternative to the structural probe which learns param-
eters for the same function dg—a structured per-
ceptron dependency parser, originally introduced
in McDonald et al. (2005).

This parser’s loss function works not by predict-
ing every pairwise distance, but instead by predict-
ing the tree based on the current estimation of the
distances between each pair of words, then compar-
ing the total weight of that tree to the total weight

3To see this, let x € R? be a vector. Then, we have that
x"B"Bx = (Bx) " (Bx) = ||Bx||3 > 0.

* Hewitt and Manning found that replacing dg(-,-) in
eq. (2) with dp (-, -)? yielded better empirical results, so we do
the same. For a discussion of this, refer to App. A.1 in Hewitt
and Manning. Coenen et al. (2019) later offer a theoretical
motivation, based on embedding trees in Euclidean space.

of the gold tree (based on the current distance pre-
dictions). The local perceptron loss is defined as

E(B’ <t,W>) = Z dB(w’iawj) 4)
(3,9)€t

— min

d iy -/
/€T (w) plwi, wy)

(¢,5")et!

computed with Prim’s algorihtm

When the predicted minimum spanning tree t’ per-
fectly matches the gold tree t, each edge will cancel
and this loss will equal zero. Otherwise, it will be
positive, since the sum of the predicted distances
for the edges in the gold tree will necessarily ex-
ceed the sum in the minimum spanning tree. The
local losses are summed into a global objective:

:;15(3

This quantity can also be minimised, again, with a
stochastic gradient method.

Though both the structural probe and the struc-
tured perceptron parser may seem equivalent un-
der Prop. 1, there is a subtle but important differ-
ence. To minimise the loss in eq. (2), the structural
probe needs to encode (in dp) the rank-ordering of
the distances between each pair of words within a
sentence. This is not necessarily the case for the
structured perceptron. It could minimise the loss in
eg. (4) by just encoding each pair of words as “near”
or “far”—and Prim’s algorithm will do the rest.?

k) W<k>>) (5)

4 Experimental Setup

4.1 Processing Results

Embeddings and Data We experiment on the
contextual embeddings in the final hidden layer
of the pre-trained multilingual release of BERT
(Devlin et al., 2019), and trained the models on
the Universal Dependency (Nivre et al., 2016)
treebands (v2.4). This allows our analysis to be
multilingual. More specifically, we consider eight
typologically diverse languages (Arabic, Basque,
Czech, Finnish, Japanese, Korean, Tamil, and
Turkish), plus English.

3One reviewer argued that, by injecting the tree constraint
into the model in this manner, we lose the ability to answer
the question of whether a probe discovered trees organically.
While we believe this is valid, we do not see why the same
criticism cannot be levelled against the structural probe—after
all, it is trained on the same trees, just processed into pairwise
distance matrices. The trees have been obfuscated, to be sure,
but they remain in the data.
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Figure 2: Results for the metrics in Hewitt and Manning (2019): different metrics, opposite trends.

Decoding the Predicted Trees Having trained a
model to find a dp(-, -) that approximates A¢(, -),
it is trivial to decode test sentences into trees (see
Prop. 1). For an unseen sentence w = wjy - - - Wy,
we compute the n X n pairwise distance matrix D:

dp(w;,w ifv>u
Dy, = { B0 . ©®
0 otherwise
We can then compute the predicted tree t from D
using Prim’s algorithm, which returns the mini-

mum spanning tree from the predicted distances.

4.2 Experiments

To compare the performance of the models, we
use both metrics from Hewitt and Manning (2019),
plus a new variant of the second.

UUAS The undirected unlabeled attachment
score (UUAS) is a standard metric in the parsing
literature, which reports the percentage of correctly
identified edges in the predicted tree.

DSpr The second metric is the Spearman rank-
order correlation between the predicted distances,
which are output from dp, and the gold-standard
distances (computable from the gold tree using
the Floyd—Warshall algorithm). Hewitt and Man-
ning term this metric distance Spearman (DSpr).
While UUAS measures whether the model captures
edges in the tree, DSpr considers pairwise distances
between all vertices in the tree—even those which
are not connected in a single step.

DSprprFw As afinal experiment, we run DSpr
again, but first pass each pairwise distance matrix
D through Prim’s (to recover the predicted tree)
then through Floyd—Warshall (to recover a new dis-
tance matrix, with distances calculated based on the
predicted tree). This post-processing would convert

a “near”’—"“far” matrix encoding to a precise rank-
order one. This should positively affect the results,
in particular for the parser, since that is trained
to predict trees which result from the pairwise dis-
tance matrix, not the pairwise distance matrix itself.

5 Results

This section presents results for the structural probe
and structured perceptron parser.

UUAS Results Figure 2a presents UUAS results
for both models. The parser is the highest perform-
ing model on seven of the nine languages. In many
of these the difference is substantial—in English,
for instance, the parser outperforms the structural
probe by 11.1 UUAS points.

DSpr Results The DSpr results (Figure 2b) show
the opposite trend: the structural probe outperforms
the parser on all languages. The parser performs
particularly poorly on Japanese and Arabic, which
is surprising, given that these had the second and
third largest sets of training data for BERT respec-
tively (refer to Table 1 in the appendices). We
speculate that this may be because in the treebanks
used, Japanese and Arabic have a longer average
sentence length than other languages.

DSprpirw Results Following the post-
processing step, the difference in DSpr (shown
in Figure 3) is far less stark than previously
suggested—the mean difference between the two
across all nine languages is just 0.0006 (in favour
of the parser). Notice in particular the improvement

®We used the UD treebanks rather than the Penn-Treebank
(Marcus et al., 1993), and experimented on the final hidden
layer of multilingual BERT using a subset of 12,000 sen-
tences from the larger treebanks. This renders our numbers
incomparable to those found in Hewitt and Manning (2019).
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Figure 3: DSprp gy results—DSpr following the ap-
plication of Prim’s then Floyd—Warshall to D.

for both Arabic and Japanese—where previously
(in the vanilla DSpr) the structured perceptron
vastly underperformed, the post-processing step
closes the gap almost entirely. Though Prop. 1
implies that we do not need to consider the
full pairwise output of dp to account for global
properties of tree, this is not totally borne out in
our empirical findings, since we do not see the
same trend in DSprp; pw as we do in UUAS. If
we recover the gold tree, we will have a perfect
correlation with the true syntactic distance—but
we do not always recover the gold tree (the UUAS
is less than 100%), and therefore the errors the
parser makes are pronounced.

6 Discussion: Probe v. Parser

Although we agree that probes should be somehow
more constrained in their complexity than mod-
els designed to perform well on tasks, we see no
reason why being a “probe” should necessitate fun-
damentally different design choices. It seems clear
from our results that how you design a probe has a
notable effect on the conclusions one might draw
about a representation. Our parser was trained to re-
cover trees (so it is more attuned to UUAS), whilst
the structural probe was trained to recover pairwise
distances (so it is more attuned to DSpr)—viewed
this way, our results are not surprising in the least.
The fundamental question for probe design-
ers, then, is which metric best captures a lin-
guistic structure believed to be a property of a
given representation—in this case, syntactic depen-
dency. We suggest that probing research should
focus more explicitly on this question—on the
development and justification of probing metrics.
Once a metric is established and well motivated, a
lightweight probe can be developed to determine
whether that structure is present in a model.

If proposing a new metric, however, the burden
of proof lies with the researcher to articulate and
demonstrate why it is worthwhile. Moreoever, this
process of exploring which details a new metric is
sensitive to (and comparing with existing metrics)
ought not be conflated with an analysis of a particu-
lar model (e.g. BERT)—it should be clear whether
the results enable us to draw conclusions about a
model, or about a means of analysing one.

For syntactic probing, there is certainly no a-
priori reason why one should prefer DSpr to UUAS.
If anything, we tentatively recommend UUAS,
pending further investigation. The DSprp pyy re-
sults show no clear difference between the models,
whereas UUAS exhibits a clear trend in favour of
the parser, suggesting that it may be easier to re-
cover pairwise distances from a good estimate of
the tree than vice versa. UUAS also has the advan-
tage that it is well described in the literature (and, in
turn, well understood by the research community).

According to UUAS, existing methods were able
to identify more syntax in BERT than the structual
probe. In this context, though, we use these results
not to give kudos to BERT, but to argue that the
perceptron-based parser is a better tool for syntac-
tic probing. Excluding differences in parameterisa-
tion, the line between what constitutes a probe or a
model designed for a particular task is awfully thin,
and when it comes to syntactic probing, a powerful
probe seems to look a lot like a traditional parser.

7 Conclusion

We advocate for the position that, beyond some
notion of model complexity, there should be no
inherent difference between the design of a probe
and a model designed for a corresponding task. We
analysed the structural probe (Hewitt and Manning,
2019), and showed that a simple parser with an
identical lightweight parameterisation was able to
identify more syntax in BERT in seven of nine
compared languages under UUAS. However, the
structural probe outperformed the parser on a novel
metric proposed in Hewitt and Manning (2019),
bringing to attention a broader question: how
should one choose metrics for probing? In our
discussion, we argued that if one is to propose a
new metric, they should clearly justify its usage.
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A Training Details

For all models (separately for each language), we
considered three hyperparameters: the rank r (full
rank when r = 768, since this is the dimension-
ality of the BERT embeddings), the learning rate,
and the dropout rate (Srivastava et al., 2014). To
optimise these, we performed a random search, se-
lecting values as judged by loss on the development
set. When training, we used a batch size of 64 sen-
tences, and employ early stopping after five steps
based on loss reduction. As the optimiser, we used
Adam (Kingma and Ba, 2015).

For each language, we used the largest available
Universal Dependency 2.4 treebank. One-word
sentences and sentences of over 50 words were
discarded, and the larger treebanks were pruned to
12,000 sentences (in an 8:1:1 data split).

We use the BERT implementation of Wolf et al.
(2019). Since BERT accepts WordPiece units (Wu

et al., 2016) rather than words, where necessary
we averaged the output to get word-level embed-
dings. This is clearly a naive composition method;
improving it would likely strengthen the results for
both the probe and the parser.

B Multilingual BERT Details

Multilingual BERT has 12 layers, 768 hidden
states, and a total of 110M parameters. It was
trained on the complete Wikipedia dumps for the
104 languages with the largest Wikipedias. Ta-
ble 1 reports the size of the Wikipedias for the
languages considered in this paper.” Further details
of the training can be found on Google Research’s
GitHub.®

Language Articles
Arabic 1,016,152
Basque 342,426
Czech 439,467
English 5,986,229
Finnish 473,729
Japanese 1,178,594
Korean 476,068
Tamil 125,031
Turkish 336,380

Table 1: The number of articles in the Wikipedias of
the languages considered.

7According to https://en.wikipedia.org/wiki/
List_of_Wikipedias, sampled 24/10/19.

8https://github.com/google-research/bert/
blob/master/multilingual.md
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