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Abstract

The discovery of supporting evidence for ad-
dressing complex mathematical problems is a
semantically challenging task, which is still
unexplored in the field of natural language
processing for mathematical text. The natu-
ral language premise selection task consists in
using conjectures written in both natural lan-
guage and mathematical formulae to recom-
mend premises that most likely will be use-
ful to prove a particular statement. We pro-
pose an approach to solve this task as a link
prediction problem, using Deep Convolutional
Graph Neural Networks. This paper also anal-
yses how different baselines perform in this
task and shows that a graph structure can pro-
vide higher F1-score, especially when consid-
ering multi-hop premise selection.

1 Introduction

Mathematical proofs are used to establish the truth
value of a mathematical claim. The act of creat-
ing a new proof contributes to the development of
Mathematics, being one of its central components.

Premise selection is a well-defined task in the
field of Automated Theorem Proving (ATP), where
proofs are encoded using a formal logical represen-
tation. Given a set of premises P , and a new con-
jecture c, premise selection aims to predict those
premises from P that will most likely lead to an
automatically constructed proof of c, where P and
c are both written using a formal language (Irving
et al., 2016).

The issue with using formal mathematics is that
only a small portion of the known mathematical
statements is available in a formalised dataset, and
formal statements are usually hard for humans to
interpret and write.

In this paper, we focus on natural language math-
ematical text (mathematical statements as they are
present in scientific papers and textbooks), since it

is more accessible for mathematicians to write/read
mathematical statements using natural language.
The mathematical discourse is composed of a par-
ticular combination of words and mathematical
terms, where terms follow a different set of syntac-
tic rules and entail a specific lexicon. Nonetheless,
words and mathematical terms are interdependent
in the context of mathematical discourse. This phe-
nomenon is exclusive to mathematical language,
not found in any other natural, or artificial, lan-
guage (Ganesalingam, 2013), providing a unique
and challenging application for semantic evaluation
and natural language processing.

The natural language premise selection (Ferreira
and Freitas, 2020) task is defined as:
Definition (Natural language premise selec-
tion): Given a set of premises (or supporting facts)
P in a mathematical corpus (containing both natu-
ral language and formulae) and a new conjecture
c proposed by a user, predict those premises from
P that will most likely be useful for generating a
proof for c (i.e. partially entails c).

A premise is considered relevant if the knowl-
edge it provides can be reused for generating a
proof for a given conjecture.

We propose an approach to solve the natural
premise selection task, representing all conjectures
and premises as nodes and the dependencies as
edges, formulating the problem as a link predic-
tion problem. We hypothesise that graph-based
embeddings are suitable structures for representing
and detecting the dependencies between different
mathematical statements. We then use Deep Con-
volutional Graph Neural Networks (Zhang et al.,
2018) over a structural and content-based encod-
ing of proofs in order to obtain the set of useful
premises for proving a statement.

In order to evaluate this task, we use the dataset
PS-ProofWiki. This dataset opens possibilities of
applications not only for the premise selection task
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but also for evaluating different equational embed-
dings, textual entailment for mathematics and natu-
ral language inference in the context of mathemati-
cal texts. The performance of the proposed model
is compared to a set of baselines.

The contributions of this paper can be sum-
marised as follows: (i) Proposal of a novel rep-
resentation for the natural language premise se-
lection problem. (ii) Proposal of an approach for
addressing the natural language premise selection
task using link prediction under a Deep Convolu-
tional Graph Neural Network representation. (iii)
Quantitative and qualitative evaluation against ex-
isting baselines.

2 Related Work

Latent and explicit representation models have
seen a substantial advance in the past years, with
the introduction of neural embeddings such as
BERT (Devlin et al., 2018), which are able to cap-
ture discourse-level relations and semantic abstrac-
tions. However, the development of representation
models and their evaluation in the context of math-
ematical discourse is still an open problem.

In this section, we present some of the research
in NLP applied to mathematics. We also describe
existing works that apply premise selection in the
domain of ATPs.

Mathematical Language Processing A rele-
vant area that intersects both NLP and mathemat-
ical discourse is the research on how to automati-
cally solve math word problems. Wang et al. (2018)
test how different Seq2Seq models perform on
mathematical word problems, where each ques-
tion has a set of possible solution equations and the
different equations are normalised to the same tree
representation. Huang et al. (2016) analyse various
approaches to solve mathematical word problems
and concludes that it is still an unsolved challenge.
Xie and Sun (2019) proposes a neural model to gen-
erate an expression tree following a reasoning sim-
ilar to the way humans solve math word problems.
Text2Math is an approach to solve arithmetic word
problems and equation parsing tasks by proposing
a joint representation to learn the correspondence
between words and math expressions (Zou and Lu,
2019).

On the discourse analysis domain, Zinn (2003)
introduces a proof representation structure for
mathematical discourse using discourse represen-
tation theory and presents a prototype for automat-

ing the process of generating proofs. Naproche
(Natural language Proof Checking) (Cramer et al.,
2009) is a project focused on the development of a
controlled natural language (CNL) for mathemati-
cal texts and adapting proof checking software to
work with this language in order to check syntactic
and mathematical correctness. Ganesalingam and
Gowers (2017) propose a program that solves ele-
mentary mathematical problems, with the focus on
metric space theory, and presents solutions similar
to the ones introduced by humans. The authors
recognise that their system is operating at a disad-
vantage because human language involves several
constraints that rule out many sound and effective
tactics for generating proofs.

Different works started exploring equational em-
beddings. EqEmbs (Krstovski and Blei, 2018) is
built on exponential family embeddings, consider-
ing equations as single elements, modelling part
of the equations, such as variables, symbols and
operators. EqEmbs considers the context for the
equations as a window of sixteen words. Tangent-
CFT (Mansouri et al., 2019) uses fastText to pro-
duce formula embeddings for symbol layout trees
(SLTs) and operator trees (OPTs). The embedding
procedure converts the representation into a se-
quence of tuples, where the elements are tokenised
as characters. The tuples are embedded using n-
grams computed over the tuple and its neighbour-
ing tuples. Greiner-Petter et al. (2019) developed a
skip-gram-based model using as a reference corpus
a collection of arXiv papers in HTML format using
a term-level tokenisation granularity. The authors
found that the induced vector space did not produce
meaningful semantic clusters. Wallace et al. (2019)
found that CNNs are useful for tasks involving un-
derstanding and working with numbers; however,
it still struggles to extrapolate beyond the values
seen during training.

Premise Selection Premise selection is an ap-
proach generally used for selecting useful premises
to prove conjectures in Automated Theorem Prov-
ing (ATP) systems (Alama et al., 2014). Irving
et al. (2016) propose a neural architecture for
premise selection using formal statements written
in Mizar. The authors were able to solve 67.9%
of the conjectures present in the Mathematical
Mizar Library. Other authors have used machine
learning approaches such as Kernel-based Learn-
ing (Alama et al., 2014), k-NN algorithm (Gauthier
and Kaliszyk, 2015) and Random Forests (Färber



7367

and Kaliszyk, 2015).
Contrasted to related work, the model proposed

on this paper targets capturing both content (local)
and structural dependencies (global) across natural
language mathematical statements and its evalu-
ation on the natural language premise selection
problem.

3 The Natural Language Premise
Selection task

Figure 1 depicts an example of a theorem and its
proof, where it can be observed that the proof is
based upon two other supporting facts (premises):
the theorem for Factors of Composition Series for
Prime Power Group and the definition for Solvable
Group.

In order to evaluate the premise selection,
we used a corpus extracted from ProofWiki1.
ProofWiki is an online compendium of mathemati-
cal proofs, with a goal to collect and classify math-
ematical proofs. ProofWiki contains links between
theorems, definitions and axioms in the context of a
mathematical proof, determining which dependen-
cies are present. Definitions and axioms are state-
ments accepted without formal proof, while theo-
rems, lemmas and corollaries require one (Solow,
2002). All entries are composed by a statement
written in a combination of natural language and
mathematical latex notation. The extracted cor-
pus, which is named PS-ProofWiki, contains more
than 18, 000 entries. We also computed how many
times each statement is used as a premise, and we
observed that most of the statements are used as
dependencies for only a small subset of premises.
A total of 6, 866 statements has between one and
three dependants. On average, statements contain
a total length of 289 symbols (characters and math-
ematical symbols). The specific number of tokens
will depend on the type of tokenisation used for the
mathematical symbols. A complete analysis of this
corpus is made available in (Ferreira and Freitas,
2020).

In the next sections, we describe the proposed
model for addressing the premise selection task.
The proposed model uses a Deep Graph Convolu-
tional Neural Network (DGCNN) for solving the
premise selection task as a link prediction task
(Zhang and Chen, 2018). The proposed model
aims to encode the natural language and the formu-

1http://proofwiki.org/

lae terms as well as the dependencies and graph-
structural patterns of the mathematical text.

4 Encoding mathematical propositions
and supporting facts

4.1 Graph construction

In Mathematics, theorems are always built on top of
previous mathematical knowledge, such as lemmas,
corollaries, definitions and other theorems. Thus,
Mathematics as a discourse intrinsically entails a
network structure. With this hierarchy and inter-
linking of concepts in mind, we developed a graph
representation to represent all mathematical state-
ments present in the corpus and their associated
dependencies.

The extracted dependency graph is a directed
graph G = (V, E) where V is a set of vertices,
composed by mathematical statements and E is a
set of ordered pairs of vertices (edges), in this case
the relationship between mathematical statements.
If m1,m2 ∈ V and (m1,m2) ∈ E that means the
statement m1 is a premise to the statement m2.

4.2 Subgraph extraction

From the set of graphs containing all asserted de-
pendency relations, an enclosing sub-graph (with
a fixed hop h size of 1 ≤ h ≤ 2) is extracted by
selecting a pair of nodes as the target. These pair
of nodes will be used to define the link prediction
classification context, in which a binary class is
assigned, P when (m1,m2) ∈ E and NP (not a
premise) otherwise (Figure 2).

As we predict the link between different state-
ments, we are also predicting the dependencies
between different statements, therefore, addressing
the natural premise selection problem.

4.3 Node features

Every node mi ∈ V is composed of two parts:
(1) a label based on a function which encodes its
neighbourhood, (2) an embedding of its textual
content.

The framework generates labels for the
nodes using the Double-Radius Node Labelling
(DRNL) (Zhang and Chen, 2018) mapping, assum-
ing that the graph is undirected. The labelling
technique was altered so it could also work for
a directed graph setting. Considering two different
statements m1,m2 ∈ V , where we want to predict
if m2 is a premise for m1; all nodes are labelled as
follows: (i) m1 is labelled as 1, (ii) m2 is labelled
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Let	G	be	a	group	whose	order	pn	where	p	is	a	prime	number
and	n	is	a	positive	integer.	Then	G	is	solvable.

Theorem

Proof

A	direct	consequence	of	Factors	of	Composition	Series	for	
Prime	Power	Group	and	the	definition	of	solvable	group.

Theorem

Definition

Let	G	be	a	group	such	that	|G|=pn	where	p	is	a	prime	number.
Then	G	has	a	composition	series	in	which	each	factor	group	is	
cyclic	of	order	p.

Let	G	be	a	finite	group.	Then	G	is	a	solvable	group	if	and	only	
if	it	has	a	composition	series	in	which	each	factor	is	a	
cyclic	group.

Figure 1: Theorem and premises for the theorem “Prime Power Group is Solvable”.
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Figure 2: Sub-graph extraction for link prediction.

as 2, (iii) for every x in S reachable from m1, label
x as the distance between m1 and x, (iv) for every
y in S unreachable from m1, label y as 0.

The embedding of the textual content is an em-
bedding of the mathematical statements. A math-
ematical statement is composed of a hybrid set-
ting of mathematical notation and natural language
statements. Paragraph Vector Distributed Memory
(PV-DM/Doc2Vec) (Le and Mikolov, 2014) was
used to encode a statement-level representation of
the constituent statements of the proof (where each
statement is a ‘paragraph’). The expressions and
equations are encoded as a tree, by representing
every sub-expression as a token. For example, the
expression ‘(x + y) ∗ c’ is represented as the se-
quence of tokens [‘x’,‘y’,‘(x+ y)’,‘(x+ y) ∗ c’],
capturing the syntactic structure of the mathemati-
cal expression. The same model captures both the

natural language and the formulae tokens. Figure 3
depicts how the structural and content aspects are
represented.

5 Proposed Model: Premise Selection
based on DGCNNs

5.1 Design Principles

A Deep Graph Convolutional Neural Network
(DGCNN) architecture (Zhang et al., 2018) was
used as the default GNN engine of the premise se-
lection. The architecture was selected due to its
ability to encode network features with a consis-
tent performance across different graph network
(GN) evaluation scenarios. Moreover, we use the
graph encoding proposed in (Zhang and Chen,
2018), which aims for learning subgraph structural
patterns using DGCNNs. This approach embeds
the learning of a problem-specific graph heuristic
function (which is formalised as the γ-decaying
heuristic theory). This can be contrasted with the
use of pre-defined methods from a single heuris-
tic framework (such as Katz index, PageRank and
SimRank (Zhang and Chen, 2018)), by using a
graph-specific approximation instead.

The underlying assumption behind the selection
of the base architecture is that the premise selec-
tion problem requires the encoding of both the state-
ment content and of the graph-dependency patterns.

The final problem of premise selection is
rephrased as a problem of link prediction, and the
final classification layer has a binary classifier. Fig-
ure 4 depicts the main components of an end-to-end
architecture.

5.2 Detailed Model

A denotes the adjacency matrix of a graph, n the
number of vertices where each vertex has a c-
dimensional feature vector, denoted as X ∈ Rn×c.
For a vertex v, we use Γ(v) to denote the set of
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Figure 3: Pre-processing workflow of the proof corpus.

v’s neighbouring nodes. DGCNN uses the graph
convolution function:

Z = f(D̃−1ÃXW ) (1)

where W ∈ Rc×c is a weight matrix of graph con-
volution parameters, Ã = A + I based on the
adjacency matrix A, D̃ is a diagonal degree ma-
trix (Zhang and Chen, 2018) and f is a non-linear
activation function. D̃−1Ã is a propagation matrix.

The graph aggregation layer builds for each node
a graph-level feature vector based the individual
node states, which is defined by:

Zi = f(
1

|Γ(i)|+ 1
[XiW +

∑
j∈Γ(i)

XjW ]) (2)

The graph convolution aggregates node patterns,
extracting local subgraph patterns. The last graph
convolution layer output can be used to sort the
graph vertices in an order which reflects the vertices
structural roles (Zhang and Chen, 2018).

After the aggregation, the DGCNN uses a sort
pooling layer, which sorts the final node states
based on to the last graph convolution layer’s out-
put (Zhang and Chen, 2018). The sorting cri-
teria are based on a topological-based ordering.
For example (Niepert et al., 2016) provide a la-
belling scheme for vertexes based on topological
patterns. This topological ordering is consistent

across graphs: vertices in two different graphs will
be assigned similar relative positions if they have
similar structural roles (Zhang et al., 2018).

The ordering operation is followed by a max-k
pooling operation which creates a representation
for the different graphs with uniform dimensions
(truncating or extending into k dimensions). This
allows the application of a 1-D CNN layer on the
node sequence. A final dense layer connected to
a softmax layer performs the binary classification
of the target vertices into the premise/non-premise
case.

A standard DGCNN configuration is
used (Zhang et al., 2018), containing four
graph convolution layers, a sort pooling layer with
a k assignment 0.60 (graph coverage), two 1-D
convolution layers and a dense layer with 128
neurons.

5.3 Assumptions & Critique

The proposed model has a locality assumption ex-
pressed at the statement encoding level, which lim-
its the proof neighbourhood to two hops. This fol-
lows the intuition that the premise selection model
aims to reflect the mentioned structure of proofs
(expanding, however an additional hop) privileg-
ing the classification of closer and more specific
conjecture-premise relations. More exploratory
types of proofs may require the expansion of the
hops to cope with longer distance relations.
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Figure 4: Depiction of the DGCNN architecture used in the premise selection task.

6 Evaluation

This section evaluates the performance of the pro-
posed model using PS-ProofWiki. We introduce
initial baselines using two basic approaches, TF-
IDF and PV-DBOW. These are further expanded
using a transformer-based architecture (BERT),
due to its state-of-art results for the encoding of
sentence-level embeddings and their use in tasks
such as natural language inference.

For the experiments using BERT and the pro-
posed approach, we split the dataset using a
50/20/30 (train/dev/test) split. We run all exper-
iments ten times, evaluating on the test set, and
report the average Precision, Recall and F1-score.
All evaluation data, as well as the experimental
pipeline, can be found online2 for reproducibility
purposes.

6.1 Bag-of-Words Baselines

In order to identify the challenges of the task
of natural language premise selection using PS-
ProofWiki, we performed initial experiments using
two Bag-of-words (BoW) baselines: TF-IDF and
PV-DBOW (Le and Mikolov, 2014). We use both
weighting schemes to define the vector represen-
tations for all mathematical statements. Then we
compute the cosine similarity between each entry
and rank the results by their distance. The Mean
Average Precision (MAP) is computed for each
baseline:

MAP =

∑N
i=1AvegP (si)

N
(3)

where N is the total number of statements, si is
the i-th mathematical statement and AvegP is the
average precision. MAP has been used in similar

2https://github.com/ai-systems/premise selection graph

ranking tasks, such as supporting facts (explana-
tions) retrieval (Valentino et al., 2020).

Table 1 presents the results for the BoW base-
lines. Three different types of tokenisations are
compared for encoding the mathematical expres-
sions. In the first instance, we treat the expressions
and equations as single tokens; for example, the
expression “x + y + z” would be considered a
single token. We also considered tokenised expres-
sions, tokenising variables and operators, the exam-
ple would be tokenised as [‘x’,‘+’,‘y’,‘+’,‘z’]. In
both examples, the natural language part of the text
is tokenised as a sequence of words. Finally, we
tokenise the whole text as a sequence of characters.
We run PV-DBOW with the default parameters,
comparing different sizes of embeddings, with the
best results obtained with an embedding size of
100.

From the MAPs obtained by the BoW, we can
conclude that the task is semantically non-trivial
and cannot be addressed with retrieval-based strate-
gies which are based on lexical overlap. We can
also notice that better results are obtained when the
expressions are tokenised as a sequence of opera-
tions and variables, suggesting that the elements
inside the expressions have semantic properties that
are relevant for determining the relevant premises.
For the following experiments, we are using the
tokenised expressions and PV-DBOW with an em-
bedding size of 100 for the encoding of the expres-
sions.

In Table 2 we compare the results for different
sizes of the dataset. We consider the full dataset
and three different subsets with different categories
of mathematical statements. We can notice that
for smaller datasets, both baselines perform better.
This result was expected since with smaller datasets
there are less possible premises, and elements from
the same categories tend to have a higher lexical
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Table 1: MAP results for TF-IDF and PV-DBOW com-
paring different tokenisation strategies for the mathe-
matical expressions.

TF-IDF PV-DBOW
50 100 200

Expression as words 0.073 0.048 0.051 0.046
Tokenised expressions 0.089 0.069 0.073 0.072
Char level 0.051 0.059 0.065 0.061

overlap.

Table 2: Comparing results for different categories (the
number in parenthesis indicates the number of entries
for that category).

TF-IDF PV-DBOW

All Categories 0.089 0.076
Algebra (1,241) 0.183 0.177
Analysis (1,102) 0.191 0.212
Number Theory (741) 0.242 0.188

We can also consider the fact that premises are
transitive, i.e., if one a mathematical text ti has
a premise x and a mathematical text tj has ti as
a premise, then x should also be a premise of tj .
In this case, the task becomes semantically more
challenging, as it can be observed in Table 3, where
we consider the transitivity within two and three
hops of distance. From the results, we notice that
the more hops needed to obtain the premise, the
worse our baselines perform.

Table 3: Comparing number of hops needed for obtain-
ing premises.

TF-IDF PV-DBOW

1-hop premises 0.089 0.073
2-hop premises 0.052 0.047
3-hop premises 0.038 0.031

6.2 Baseline: BERT

In order to use BERT, we reformulate this problem
as a pairwise relevance classification problem, as
done previously in the context of ATP systems. We
have a set of mathematical statements S, a set of
conjectures C and a set of premises P , where C ⊆
P , C ⊆ S and P ⊆ S. Considering a conjecture
c ∈ C and a premise p ∈ P , a function f(c, p)
is defined, where f(c, p) = 1 if p is a part of the
proof of c and f(c, p) = 0 otherwise.

For this experiment, we used the pre-trained
BERT model bert-base-uncased, fine-tuning it for

the target task with a sequence classifier, adding a
linear layer on top of the transformer embeddings.

6.3 Quantitative analysis

The dataset is imbalanced by the nature of the natu-
ral premise selection problem. In order to solve the
natural premise selection task, any approach would
have to be able to handle a large number of neg-
ative examples. There are 10k different possible
premises, and some conjectures are only connected
to one premise, creating a large number of negative
pairs in our dataset, requiring the definition of a cap
for the number of negative samples. In order to pro-
vide a more constrained setting, we define a subset
of the PS-ProofWiki, named PS-ProofWikiTRIG

targeting trigonometric functions.
The proposed approach outperforms the BERT-

based model by 41% in terms of F1-score, as shown
in Table 4. We hypothesise that the encoding of the
structural patterns of the dependency relations in
addition to the content-based similarity better cap-
tures the semantic nature of the proof (fundamental
to interpret a proof by its neighbourhood).

6.4 Scalability & Imbalance Robustness
analysis

In order to evaluate the robustness of the proposed
approach and the baseline with regard to an in-
crease in imbalance (reflecting a notion of scalabil-
ity of the quality of the inference within the KB),
we compare how the F1-score changes as we add
more (random) negative examples to the dataset.

Figure 5a and Figure 5b presents a compari-
son between BERT and our approach for the PS-
ProofWikiTRIG and the PS-ProofWiki datasets, re-
spectively.

The results indicate that the BERT-based clas-
sifier performance degrades faster as we increase
the number of negative samples in the dataset. For
n = 30, the F1-score reaches a value of almost
zero. In contrast, the proposed model presents a
significantly slower decline (25%), showing better
scalability properties in the context of the premise
selection problem.

Finally we experiment on how BERT and the
proposed model compares when we consider tran-
sitivity between premises (n-hop relations), using
PS-ProofWikiTRIG and 10 negative examples for
each positive example. We report the results in
Table 5, where we can see that the proposed model
obtains better overall performance as the number of
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Table 4: Precision (P), recall (R), and F1-score (F1) for the BERT baseline and the proposed approach, with 30
negative examples for each positive case (values are multiplied by 100).

BERT Proposed Model
P R F1 P R F1

PS-ProofWikiTRIG 39.9 22.9 29.1 34.0 50.0 40.5 (+ 39%)
PS-ProofWiki 47.1 26.7 34.1 48.5 47.7 48.1 (+ 41%)

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Negative samples (n)

30

40

50

60

70

F1
-s

co
re

Our Approach
BERT

(a) Evaluating on PS-ProofWikiTRIG

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Negative samples (n)

40

50

60

70

F1
-s

co
re

Our Approach
BERT

(b) Evaluating on PS-ProofWiki

Figure 5: Comparison of the proposed model and
BERT, showing how both models perform (in terms of
F1-score) when adding more negative examples to the
training and test set.

hops is increased. These results reinforce the archi-
tectural design supported by graph-based models.

6.5 Qualitative analysis

From the results obtained from our model we ob-
served that the model struggles to encode state-
ments which are centered around pure equational
(formulae) content. Embeddings for mathematical
symbols should take into consideration more spe-
cific semantics of operators: such semantics is not
obtained using PV-DM (Doc2Vec) or BERT. This
provides evidence on the need for more principled
structural embeddings for mathematical formulas,
which could most certainly improve the prediction
of future work in the natural premise selection task.

Table 5: Comparison of BERT and the proposed model
for different levels of transitivity between premises
(values are multiplied by 100).

BERT Proposed Model

P R F1 P R F1
2-hop 47.5 78.9 59.3 54.8 68.7 61.0 (+ 3%)
3-hop 41.0 45.1 49.2 58.8 63.3 61.2 (+ 24%)

Even though BERT is not trained in a mathemat-
ical corpus, it still obtains relevant results, hinting
that training BERT on a mathematical corpus could
achieve better results. However, this task is outside
the scope of this work and will be left for future
work.

The proposed DGCNN-based model is capable
of finding structural patterns between the state-
ments and to reinforce content-based semantic evi-
dence. We observed that statements that are similar
in content, commonly have a significant intersec-
tion of premises, as a result of the graph embedding,
the DGCNN-model is able to better discriminate
more fine-grained semantic cues better.

7 Conclusion & Future Work

In this work, we introduced an approach for natural
language premise selection (finding relevant theo-
rems, axioms and definitions) in large natural lan-
guage mathematical texts. The proposed approach,
which uses Deep Graph Convolutional Neural Net-
works (DGCNNs) combines both structural and
content elements of mathematical statements for
addressing the premise selection problem as a link
prediction classification problem. Results show
that the approach outperforms a BERT-based base-
line by 41% in F1-score. Moreover, the proposed
model shows significantly lower F1-score degra-
dation concerning class imbalance, a fundamental
desirable scalability property for the problem of
premise selection.

Our approach is also able to obtain better per-
formance when we consider the transitivity of
premises. The qualitative analysis indicates that
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there is the demand to design principled embed-
dings for better capturing the semantics of proofs
which are denser in mathematical formulae. As
future work, we will explore different heuristics for
navigating in the premises graph, as researched be-
fore for textual entailment (Silva et al., 2019, 2018)
and selective reasoning (Freitas et al., 2014).
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Vivian S Silva, André Freitas, and Siegfried Hand-
schuh. 2019. Exploring knowledge graphs in an in-
terpretable composite approach for text entailment.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 7023–7030.

Daniel Solow. 2002. How to read and do proofs an
introduction to mathematical thought processes.

Marco Valentino, Mokanarangan Thayaparan, and
Andr Freitas. 2020. Unification-based reconstruc-
tion of explanations for science questions.

Eric Wallace, Yizhong Wang, Sujian Li, Sameer Singh,
and Matt Gardner. 2019. Do nlp models know num-
bers? probing numeracy in embeddings. arXiv
preprint arXiv:1909.07940.

https://doi.org/10.1007/s10817-013-9286-5
https://doi.org/10.1007/s10817-013-9286-5
https://doi.org/10.1007/s10817-013-9286-5
https://doi.org/10.1145/2676724.2693173
https://doi.org/10.1145/2676724.2693173
http://arxiv.org/abs/1905.08359
http://arxiv.org/abs/1905.08359
http://dl.acm.org/citation.cfm?id=3045390.3045603
http://dl.acm.org/citation.cfm?id=3045390.3045603
http://arxiv.org/abs/2004.00061
http://arxiv.org/abs/2004.00061


7374

Lei Wang, Yan Wang, Deng Cai, Dongxiang Zhang,
and Xiaojiang Liu. 2018. Translating a math word
problem to an expression tree. arXiv preprint
arXiv:1811.05632.

Zhipeng Xie and Shichao Sun. 2019. A goal-driven
tree-structured neural model for math word prob-
lems. In Proceedings of the 28th International Joint
Conference on Artificial Intelligence, pages 5299–
5305. AAAI Press.

Muhan Zhang and Yixin Chen. 2018. Link predic-
tion based on graph neural networks. In Advances
in Neural Information Processing Systems, pages
5165–5175.

Muhan Zhang, Zhicheng Cui, Marion Neumann, and
Yixin Chen. 2018. An end-to-end deep learning ar-
chitecture for graph classification. In Thirty-Second
AAAI Conference on Artificial Intelligence.

Claus Zinn. 2003. A computational framework for un-
derstanding mathematical discourse. Logic Journal
of IGPL, 11(4):457–484.

Yanyan Zou and Wei Lu. 2019. Text2math: End-to-end
parsing text into math expressions. arXiv preprint
arXiv:1910.06571.


