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Abstract

Fact Verification requires fine-grained natural
language inference capability that finds sub-
tle clues to identify the syntactical and seman-
tically correct but not well-supported claims.
This paper presents Kernel Graph Attention
Network (KGAT), which conducts more fine-
grained fact verification with kernel-based at-
tentions. Given a claim and a set of po-
tential evidence sentences that form an evi-
dence graph, KGAT introduces node kernels,
which better measure the importance of the ev-
idence node, and edge kernels, which conduct
fine-grained evidence propagation in the graph,
into Graph Attention Networks for more ac-
curate fact verification. KGAT achieves a
70.38% FEVER score and significantly out-
performs existing fact verification models on
FEVER, a large-scale benchmark for fact ver-
ification. Our analyses illustrate that, com-
pared to dot-product attentions, the kernel-
based attention concentrates more on relevant
evidence sentences and meaningful clues in
the evidence graph, which is the main source
of KGAT’s effectiveness. All source codes of
this work are available at https://github.
com/thunlp/KernelGAT.

1 Introduction

Online contents with false information, such as
fake news, political deception, and online rumors,
have been growing significantly and spread widely
over the past several years. How to automatically
“fact check” the integrity of textual contents, to pre-
vent the spread of fake news, and to avoid the un-
desired social influences of maliciously fabricated
statements, is urgently needed for our society.

Recent research formulates this problem as the
fact verification task, which targets to automatically
verify the integrity of statements using trustworthy
corpora, e.g., Wikipedia (Thorne et al., 2018a). For
example, as shown in Figure 1, a system could first

Al Jardine is an American rhythm guitarist Claim

VerificationSUPPORTS REFUTES NOT ENOUGH INFO

Evidence 

Reasoning

Alan Charles Jardine (born 

September 3, 1942) is an 
American musician, singer 

and songwriter who co-

founded the Beach Boys. 

He is best known as the 
band's rhythm guitarist, 

and for occasionally 

singing lead vocals on 

singles.

Figure 1: An Example of Fact Verification System.

retrieve related evidence sentences from the back-
ground corpus, conduct joint reasoning over these
sentences, and aggregate the signals to verify the
claim integrity (Nie et al., 2019a; Zhou et al., 2019;
Yoneda et al., 2018; Hanselowski et al., 2018).

There are two challenges for evidence reasoning
and aggregation in fact verification. One is that
no ground truth evidence is given; the evidence
sentences are retrieved from background corpora,
which inevitably contain noise. The other is that the
false claims are often deliberately fabricated; they
may be semantically correct but are not supported.
This makes fact verification a rather challenging
task, as it requires the fine-grained reasoning ability
to distinguish the subtle differences between truth
and false statements (Zhou et al., 2019).

This paper presents a new neural structural rea-
soning model, Kernel Graph Attention Network
(KGAT), that provides more fine-grained evidence
selection and reasoning capability for fact verifica-
tion using neural matching kernels (Xiong et al.,
2017; Dai et al., 2018). Given retrieved evidence

https://github.com/thunlp/KernelGAT
https://github.com/thunlp/KernelGAT
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pieces, KGAT first constructs an evidence graph,
using claim and evidence as graph nodes and fully-
connected edges. It then utilizes two sets of kernels,
one on the edges, which selectively summarize
clues for a more fine-grained node representation
and propagate clues among neighbor nodes through
a multi-layer graph attention; and the other on the
nodes, which performs more accurate evidence se-
lection by better matching evidence with the claim.
These signals are combined by KGAT, to jointly
learn and reason on the evidence graph for more
accurate fact verification.

In our experiments on FEVER (Thorne et al.,
2018a), a large-scale fact verification benchmark,
KGAT achieves a 70.38% FEVER score, signifi-
cantly outperforming previous BERT and Graph
Neural Network (GNN) based approaches (Zhou
et al., 2019). Our experiments demonstrate
KGAT’s strong effectiveness especially on facts
that require multiple evidence reasoning: our
kernel-based attentions provide more sparse and fo-
cused attention patterns, which are the main source
of KGAT’s effectiveness.

2 Related Work

The FEVER shared task (Thorne et al., 2018a) aims
to develop automatic fact verification systems to
check the veracity of human-generated claims by
extracting evidence from Wikipedia. The recently
launched FEVER shared task 1.0 is hosted as a
competition on Codalab1 with a blind test set and
has drawn lots of attention from NLP community.

Existing fact verification models usually employ
FEVER’s official baseline (Thorne et al., 2018a)
with a three-step pipeline system (Chen et al.,
2017a): document retrieval, sentence retrieval and
claim verification. Many of them mainly focus
on the claim verification step. Nie et al. (2019a)
concatenates all evidence together to verify the
claim. One can also conduct reasoning for each
claim evidence pair and aggregate them to the
claim label (Luken et al., 2018; Yoneda et al., 2018;
Hanselowski et al., 2018). TwoWingOS (Yin and
Roth, 2018) further incorporates evidence identifi-
cation to improve claim verification.

GEAR (Zhou et al., 2019) formulates claim ver-
ification as a graph reasoning task and provides
two kinds of attentions. It conducts reasoning
and aggregation over claim evidence pairs with

1https://competitions.codalab.org/
competitions/18814

a graph model (Veličković et al., 2017; Scarselli
et al., 2008; Kipf and Welling, 2017). Zhong et al.
(2019) further employs XLNet (Yang et al., 2019)
and establishes a semantic-level graph for reason-
ing for a better performance. These graph based
models establish node interactions for joint reason-
ing over several evidence pieces.

Many fact verification systems leverage Natural
Language Inference (NLI) techniques (Chen et al.,
2017b; Ghaeini et al., 2018; Parikh et al., 2016;
Radford et al., 2018; Peters et al., 2018; Li et al.,
2019) to verify the claim. The NLI task aims to
classify the relationship between a pair of premise
and hypothesis as either entailment, contradiction
or neutral, similar to the FEVER task, though the
later requires systems to find the evidence pieces
themselves and there are often multiple evidence
pieces. One of the most widely used NLI models in
FEVER is Enhanced Sequential Inference Model
(ESIM) (Chen et al., 2017b), which employs some
forms of hard or soft alignment to associate the
relevant sub-components between premise and hy-
pothesis. BERT, the pre-trained deep bidirectional
Transformer, has also been used for better text rep-
resentation in FEVER and achieved better perfor-
mance (Devlin et al., 2019; Li et al., 2019; Zhou
et al., 2019; Soleimani et al., 2019).

The recent development of neural information
retrieval models, especially the interaction based
ones, have shown promising effectiveness in ex-
tracting soft match patterns from query-document
interactions (Hu et al., 2014; Pang et al., 2016; Guo
et al., 2016; Xiong et al., 2017; Dai et al., 2018).
One of the effective ways to model text matches is
to leverage matching kernels (Xiong et al., 2017;
Dai et al., 2018), which summarize word or phrase
interactions in the learned embedding space be-
tween query and documents. The kernel extracts
matching patterns which provide a variety of rele-
vance match signals and shows strong performance
in various ad-hoc retrieval dataset (Dai and Callan,
2019). Recent research also has shown kernels can
be integrated with contextualized representations,
i.e., BERT, to better model the relevance between
query and documents (MacAvaney et al., 2019).

3 Kernel Graph Attention Network

This section describes our Kernel Graph Atten-
tion Network (KGAT) and its application in Fact
Verification. Following previous research, KGAT
first constructs an evidence graph using retrieved

https://competitions.codalab.org/competitions/18814
https://competitions.codalab.org/competitions/18814
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evidence sentences D = {e1, . . . , ep, . . . , el} for
claim c, and then uses the evidence graph to predict
the claim label y (Sec. 3.1 and 3.2). As shown in
Figure 2, the reasoning model includes two main
components: Evidence Propagation with Edge Ker-
nels (Sec. 3.3) and Evidence Selection with Node
Kernels (Sec. 3.4).

3.1 Reasoning with Evidence Graph

Similar to previous research (Zhou et al., 2019),
KGAT constructs the evidence graph G by us-
ing each claim-evidence pair as a node and con-
nects all node pairs with edges, making it a fully-
connected evidence graph with l nodes: N =
{n1, . . . , np, . . . , nl}.

KGAT unifies both multiple and single evidence
reasoning scenarios and produces a probability
P (y|c,D) to predict claim label y. Different from
previous work (Zhou et al., 2019), we follow the
standard graph label prediction setting in graph neu-
ral network (Veličković et al., 2017) and split the
prediction into two components: 1) the label predic-
tion in each node conditioned on the whole graph
P (y|np, G); 2) the evidence selection probability
P (np|G):

P (y|c,D) =

l∑
p=1

P (y|c, ep, D)P (ep|c,D), (1)

or in the graph notation:

P (y|G) =

l∑
p=1

P (y|np, G)P (np|G). (2)

The joint reasoning probability P (y|np, G) calcu-
lates node label prediction with multiple evidence.
The readout module (Knyazev et al., 2019) calcu-
lates the probability P (np|G) and attentively com-
bines per-node signals for prediction.

The rest of this section describes the initializa-
tion of node representations (np) in Sec. 3.2, the cal-
culation of per-node predictions P (y|np, G) with
Edge Kernels (Sec. 3.3), and the readout module
P (np|G) with Node Kernels (Sec. 3.4).

3.2 Initial Node Representations

The node representations are initialized by feed-
ing the concatenated sequence of claim, document
(Wiki) title, and evidence sentence, to pre-trained
BERT model (Devlin et al., 2019). Specifically, in
the node np, the claim and evidence correspond
to m tokens (with “[SEP]”) and n tokens (with
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Figure 2: KGAT Architecture.

Wikipedia title and “[SEP]”) . Using the BERT en-
coder, we get the token hidden states Hp with the
given node np:

Hp = BERT(np). (3)

The representation of the first token (“[CLS]”)
is denoted as the initial representation of node np:

zp = Hp
0 . (4)

The rest of the sequences Hp
1:m+n are also used

to represent the claim and evidence tokens: Hp
1:m

for the claim tokens and Hp
m+1:m+n for the evi-

dence tokens.

3.3 Edge Kernel for Evidence Propagation

The evidence propagation and per-node label pre-
diction in KGAT are conducted by Edge Kernels,
which attentively propagate information among
nodes in the graph G along the edges with the
kernel attention mechanism.

Specifically, KGAT calculates the node np’s rep-
resentation vp with the kernel attention mechanism,
and uses it to produce the per-node claim prediction
y:

vp = Edge-Kernel(np, G),

P (y|np, G) = softmaxy(Linear(vp)).
(5)

The edge kernel of KGAT conducts a hierarchi-
cal attention mechanism to propagate information
between nodes. It uses token level attentions to
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produce node representations and sentence level
attentions to propagate information along edges.

Token Level Attention. The token level atten-
tion uses kernels to get the fine-grained representa-
tion ẑq→p of neighbor node nq, according to node
np. The content propagation and the attention are
controlled by kernels.

To get the attention weight αq→p
i for i-th token

in nq, we first conduct a translation matrix M q→p

between q-th node and p-th node. Each element of
the translation matrixM q→p

ij inM q→p is the cosine
similarity of their corresponding tokens’ BERT rep-
resentations:

Mq→p
ij = cos(Hq

i , H
p
j ). (6)

Then we use K kernels to extract the match-
ing feature ~K(M q→p

i ) from the translation matrix
M q→p (Xiong et al., 2017; Dai et al., 2018; Qiao
et al., 2019; MacAvaney et al., 2019):

~K(Mq→p
i ) = {K1(M

q→p
i ), ...,KK(Mq→p

i )}. (7)

Each kernelKk utilizes a Gaussian kernel to extract
features and summarizes the translation score to
support multi-level interactions:

Kk(M
q→p
i ) = log

∑
j

exp(−
(Mq→p

ij − µk)
2

2δ2k
), (8)

where µk and δk are the mean and width for the
k-th kernel, which captures a certain level of inter-
actions between the tokens (Xiong et al., 2017).

Then each token’s attention weight αq→p
i is cal-

culated using a linear layer:

αq→p
i = softmaxi(Linear( ~K(Mq→p

i ))). (9)

The attention weights are used to combine the
token representations (ẑq→p):

ẑq→p =

m+n∑
i=1

αq→p
i ·Hq

i , (10)

which encodes the content signals to propagate
from node nq to node np.

Sentence Level Attention. The sentence level
attention combines neighbor node information to
node representation vp. The aggregation is done
by a graph attention mechanism, the same with
previous work (Zhou et al., 2019).

It first calculate the attention weight βq→p of nq

node according to the p-th node np:

βq→p = softmaxq(MLP(zp ◦ ẑq→p)), (11)

where ◦ denotes the concatenate operator and zp is
the initial representation of np.

Then the p-th node’s representation is updated
by combining the neighbor node representations
ẑq→p with the attention:

vp = (

l∑
q=1

βq→p · ẑq→p) ◦ zp. (12)

It updates the node representation with its neigh-
bors, and the updated information are selected first
by the token level attention (Eq. 9) and then the
sentence level attention (Eq. 11).

Sentence Level Claim Label Prediction. The
updated p-th node representation vp is used to cal-
culate the claim label probability P (y|np):

P (y|np, G) = softmaxy(Linear(vp)). (13)

The prediction of the label probability for each
node is also conditioned on the entire graph G,
as the node representation is updated by gather
information from its graph neighbors.

3.4 Node Kernel for Evidence Aggregation
The per-node predictions are combined by the
“readout” function in graph neural networks (Zhou
et al., 2019), where KGAT uses node kernels to
learn the importance of each evidence.

It first uses node kernels to calculate the readout
representation φ(np) for each node np:

φ(np) = Node-Kernel(np). (14)

Similar to the edge kernels, we first conduct a
translation matrix M c→ep between the p-th claim
and evidence, using their hidden state set Hp

1:m and
Hp

m+1:m+n. The kernel match features ~K(M c→ep
i )

on the translation matrix are combined to produce
the node selection representation φ(np):

φ(np) =
1

m
·

m∑
i=1

~K(Mc→ep

i ). (15)

This representation is used in the readout to cal-
culate p-th evidence selection probability P (np|G):

P (np|G) = softmaxp(Linear(φ(np))). (16)

KGAT leverages the kernels multi-level soft
matching capability (Xiong et al., 2017) to weight
the node-level predictions in the evidence graph
based on their relevance with the claim:

P (y|G) =

l∑
p=1

P (y|np, G)P (np|G). (17)



7346

The whole model is trained end-to-end by minimiz-
ing the cross entropy loss:

L = CrossEntropy(y∗, P (y|G)), (18)

using the ground truth verification label y∗.

4 Experimental Methodology

This section describes the dataset, evaluation met-
rics, baselines, and implementation details in our
experiments.

Dataset. A large scale public fact verification
dataset FEVER (Thorne et al., 2018a) is used in
our experiments. The FEVER consists of 185,455
annotated claims with 5,416,537 Wikipedia docu-
ments from the June 2017 Wikipedia dump. All
claims are classified as SUPPORTS, REFUTES or
NOT ENOUGH INFO by annotators. The dataset
partition is kept the same with the FEVER Shared
Task (Thorne et al., 2018b) as shown in Table 1.

Evaluation Metrics. The official evaluation
metrics2 for claim verification include Label Ac-
curacy (LA) and FEVER score. LA is a general
evaluation metric, which calculates claim classifi-
cation accuracy rate without considering retrieved
evidence. The FEVER score considers whether one
complete set of golden evidence is provided and
better reflects the inference ability.

We also evaluate Golden FEVER (GFEVER)
scores, which is the FEVER score but with golden
evidence provided to the system, an easier setting.
Precision, Recall and F1 are used to evaluate ev-
idence sentence retrieval accuracy using the pro-
vided sentence level labels (whether the sentence
is evidence or not to verify the claim).

Baselines. The baselines include top models
during FEVER 1.0 task and BERT based models.

Three top models in FEVER 1.0 shared task are
compared. Athene (Hanselowski et al., 2018) and
UNC NLP (Nie et al., 2019a) utilize ESIM to en-
code claim evidence pairs. UCL MRG (Yoneda
et al., 2018) leverages Convolutional Neural Net-
work (CNN) to encode claim and evidence. These
three models aggregate evidence by attention mech-
anism or label aggregation component.

The BERT based models are our main base-
lines, they significantly outperform previous meth-
ods without pre-training. BERT-pair, BERT-concat
and GEAR are three baselines from the previous

2https://github.com/sheffieldnlp/
fever-scorer

Split SUPPORTED REFUTED NOT ENOUGH INFO
Train 80,035 29,775 35,639
Dev 6,666 6,666 6,666
Test 6,666 6,666 6,666

Table 1: Statistics of FEVER Dataset.

work (Zhou et al., 2019). BERT-pair and BERT-
concat regard claim-evidence pair individually or
concatenate all evidence together to predict claim
label. GEAR utilizes a graph attention network
to extract supplement information from other ev-
idence and aggregate all evidence through an at-
tention layer. Soleimani et al. (2019); Nie et al.
(2019b) are also compared in our experiments.
They implement BERT sentence retrieval for a bet-
ter performance. In addition, we replace kernel
with dot product to implement our GAT version,
which is similar to GEAR, to evaluate kernel’s ef-
fectiveness.

Implementation Details. The rest of this sec-
tion describes our implementation details.

Document retrieval. The document retrieval
step retrieves related Wikipedia pages and is kept
the same with previous work (Hanselowski et al.,
2018; Zhou et al., 2019; Soleimani et al., 2019).
For a given claim, it first utilizes the constituency
parser in AllenNLP (Gardner et al., 2018) to ex-
tract all phrases which potentially indicate enti-
ties. Then it uses these phrases as queries to find
relevant Wikipedia pages through the online Me-
diaWiki API3. Then the convinced article are re-
served (Hanselowski et al., 2018).

Sentence retrieval. The sentence retrieval part fo-
cuses on selecting related sentences from retrieved
pages. There are two sentence retrieval models in
our experiments: ESIM based sentence retrieval
and BERT based sentence retrieval. The ESIM
based sentence retrieval keeps the same as the pre-
vious work (Hanselowski et al., 2018; Zhou et al.,
2019). The base version of BERT is used to im-
plement our BERT based sentence retrieval model.
We use the “[CLS]” hidden state to represent claim
and evidence sentence pair. Then a learning to rank
layer is leveraged to project “[CLS]” hidden state
to ranking score. Pairwise loss is used to optimize
the ranking model. Some work (Zhao et al., 2020;
Ye et al., 2020) also employs our BERT based sen-
tence retrieval in their experiments.

Claim verification. During training, we set the

3https://www.mediawiki.org/wiki/API:
Main_page

https://github.com/sheffieldnlp/fever-scorer
https://github.com/sheffieldnlp/fever-scorer
https://www.mediawiki.org/wiki/API: Main_page
https://www.mediawiki.org/wiki/API: Main_page
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Model Dev Test
LA FEVER LA FEVER

Athene (Hanselowski et al., 2018) 68.49 64.74 65.46 61.58
UCL MRG (Yoneda et al., 2018) 69.66 65.41 67.62 62.52
UNC NLP (Nie et al., 2019a) 69.72 66.49 68.21 64.21
BERT Concat (Zhou et al., 2019) 73.67 68.89 71.01 65.64
BERT Pair (Zhou et al., 2019) 73.30 68.90 69.75 65.18
GEAR (Zhou et al., 2019) 74.84 70.69 71.60 67.10
GAT (BERT Base) w. ESIM Retrieval 75.13 71.04 72.03 67.56
KGAT (BERT Base) w. ESIM Retrieval 75.51 71.61 72.48 68.16
SR-MRS (Nie et al., 2019b) 75.12 70.18 72.56 67.26
BERT (Base) (Soleimani et al., 2019) 73.51 71.38 70.67 68.50
KGAT (BERT Base) 78.02 75.88 72.81 69.40
BERT (Large) (Soleimani et al., 2019) 74.59 72.42 71.86 69.66
KGAT (BERT Large) 77.91 75.86 73.61 70.24
KGAT (RoBERTa Large) 78.29 76.11 74.07 70.38

Table 2: Fact Verification Accuracy. The performances
of top models during FEVER 1.0 shared task and BERT
based models with different scenarios are presented.

batch size to 4 and accumulate step to 8. All models
are evaluated with LA on the development set and
trained for two epochs. The training and develop-
ment sets are built with golden evidence and higher
ranked evidence with sentence retrieval. All claims
are assigned with five pieces of evidence. The
BERT (Base), BERT (Large) and RoBERTa (Liu
et al., 2019) are evaluated in claim verification.

In our experiments, the max length is set to 130.
All models are implemented with PyTorch. BERT
inherits huggingface’s implementation4. Adam op-
timizer is used with learning rate = 5e-5 and warm
up proportion = 0.1. The kernel size is set to 21,
the same as previous work (Qiao et al., 2019).

5 Evaluation Result

The experiments are conducted to study the perfor-
mance of KGAT, its advantages on different rea-
soning scenarios, and the effectiveness of kernels.

5.1 Overall Performance

The fact verification performances are shown in
Table 2. Several testing scenarios are conducted
to compare KGAT effectiveness to BERT based
baselines: BERT (Base) Encoder with ESIM re-
trieved sentences, with BERT retrieved sentences,
and BERT (Large) Encoder with BERT retrieved
sentences.

Compared with baseline models, KGAT is the
best on all testing scenarios. With ESIM sen-
tence retrieval, same as the previous work (Zhou
et al., 2019; Hanselowski et al., 2018), KGAT out-
performs the graph attention models GEAR and
our GAT on both development and testing sets.

4https://github.com/huggingface/
pytorch-transformers

Model Prec@5 Rec@5 F1@5 FEVER

Dev ESIM 24.08 86.72 37.69 71.70
BERT 27.29 94.37 42.34 75.88

Test ESIM 23.51 84.66 36.80 68.16
BERT 25.21 87.47 39.14 69.40

Table 3: Evidence Sentence Retrieval Accuracy. Sen-
tence level Precision, Recall and F1 are evaluated by
official evaluation (Thorne et al., 2018a).

It illustrates the effectiveness of KGAT among
graph based reasoning models. With BERT based
sentence retrieval, our KGAT also outperforms
BERT (Base) (Soleimani et al., 2019) by almost
1% FEVER score, showing consistent effectiveness
with different sentence retrieval models. When us-
ing BERT (Large) as the encoder, KGAT also out-
performs the corresponding version of Soleimani
et al. (2019). KGAT with RoBERTa performs the
best compared with all previously published re-
search on all evaluation metrics. CorefBERT (Ye
et al., 2020) extends our KGAT architecture and ex-
plicitly models co-referring relationship in context
for better performance.

The sentence retrieval performances of ESIM
and BERT are compared in Table 3. The BERT sen-
tence retrieval outperforms ESIM sentence retrieval
significantly, thus also helps improve KGAT’s rea-
soning accuracy. Nevertheless, for more fair com-
parisons, our following experiments are all based
on ESIM sentence retrieval, which is the one used
by GEAR, our main baseline (Zhou et al., 2019).

5.2 Performance on Different Scenarios

This experiment studies the effectiveness of kernel
on multiple and single evidence reasoning scenar-
ios, as well as the contribution of kernels.

The verifiable instances are separated (except
instances with “NOT ENOUGH INFO” label ) into
two groups according to the golden evidence la-
bels. If more than one evidence pieces are required,
the claim is considered as requiring multi-evidence
reasoning. The single evidence reasoning set and
the multiple evidence reasoning set contain 11,372
(85.3%) and 1,960 (14.7%) instances, respectively.
We also evaluate two additional KGAT variations:
KGAT-Node which only uses kernels on the node,
with the edge kernels replaced by standard dot-
production attention, and KGAT-Edge which only
uses kernels on the edge. The results of these sys-
tems on the two scenarios are shown in Table 4.

KGAT-Node outperforms GAT by more than
0.3% on both single and multiple reasoning sce-

https://github.com/huggingface/pytorch-transformers
https://github.com/huggingface/pytorch-transformers
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Reasoning Model LA GFEVER FEVER

Multiple

GEAR 66.38 n.a. 37.96 -0.25%
GAT 66.12 84.39 38.21 -
KGAT-Node 65.51 83.88 38.52 0.31%
KGAT-Edge 65.87 84.90 39.08 0.87%
KGAT-Full 65.92 85.15 39.23 1.02%

Single

GEAR 78.14 n.a. 75.73 -1.69%
GAT 79.79 81.96 77.42 -
KGAT-Node 79.92 82.29 77.73 0.31%
KGAT-Edge 79.90 82.41 77.58 0.16%
KGAT-Full 80.33 82.62 78.07 0.65%

Table 4: Claim Verification Accuracy on Claims that
requires Multiple and Single evidence Pieces. Stan-
dard GAT with no kernel (GAT), with only node ker-
nel (KGAT-Node), with only edge kernel (KGAT-Edge)
and the full model (KGAT-Full) are compared.

narios. As expected, it does not help much on
GFEVER, because the golden evidence is given
and node selection is not required. It illustrates
KGAT-Node mainly focuses on choosing appro-
priate evidence and assigning accurate combining
weights in the readout.

KGAT-Edge outperforms GAT by more than
0.8% and 0.1% on multiple and single evidence
reasoning scenarios, respectively. Its effectiveness
is mostly on combining the information from mul-
tiple evidence pieces.

The multiple and single evidence reasoning sce-
narios evaluate the reasoning ability from different
aspects. The single evidence reasoning mainly fo-
cuses on selecting the most relevant evidence and
inference with single evidence. It mainly evalu-
ates model de-noising ability with the retrieved
evidence. The multiple evidence reasoning is a
harder and more complex scenario, requiring mod-
els to summarize necessary clues and reason over
multiple evidence. It emphasizes to evaluate the ev-
idence interactions for the joint reasoning. KGAT-
Node shows consistent improvement on both two
reasoning scenarios, which demonstrates the impor-
tant role of evidence selection. KGAT-Edge, on the
other hand, is more effective on multiple reasoning
scenarios as the Edge Kernels help better propagate
information along the edges.

5.3 Effectiveness of Kernel in KGAT

This set of experiments further illustrate the influ-
ences of kernels in KGAT.

More Concentrated Attention. This ex-
periment studies kernel attentions by their en-
tropy, which reflects whether the learned attention
weights are focused or scattered. The entropy of
the kernel attentions in KGAT, the dot-product at-

(a) Edge Attention. (b) Node Attention.

Figure 3: Attention Weight Entropy on Evidence
Graph, from KGAT and GAT, of graph edges and nodes.
Uniform weights’ entropy is also shown for compari-
son. Less entropy shows more concentrated attention.

(a) Attention Distribution. (b) Evidence Recall.

Figure 4: Evidence Selection Effectiveness of KGAT
and GAT. Fig 4(a) shows the distribution of atten-
tion weights on evidence nodes p(np), sorted by their
weights; Fig 4(b) evaluates the recall of selecting the
golden standard evidence nodes at different depths.

tentions in GAT, and the uniform attentions are
shown in Figure 3.

The entropy of Edge attention is shown in Fig-
ure 3(a). Both GAT and KGAT show a smaller
entropy of the token attention than the uniform dis-
tribution. It illustrates that GAT and KGAT have
the ability to assign more weight to some impor-
tant tokens with both dot product based and kernel
based attentions. Compared to the dot-product at-
tentions in GAT, KGAT’s Edge attention focuses
on fewer tokens and has a smaller entropy.

The entropy of Node attentions are plotted in
Figure 3(b). GAT’s attentions distribute almost the
same with the uniform distribution, while KGAT
has concentrated Node attentions on a few evidence
sentences. As shown in the next experiment, the
kernel based node attentions focus on the correct
evidence pieces and de-noises the retrieved sen-
tences, which are useful for claim verification.

More Accurate Evidence Selection. This ex-
periment evaluates the effectiveness of KGAT-
Node through attention distribution and evidence
recall. The results are shown in Figure 4.

We first obtain the node attention score in the
evidence graph from KGAT or GAT, and calcu-
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(a) GAT. (b) KGAT.

Figure 5: The Attention Weight Distribution from GAT
and KGAT on evidence sentence tokens. Top 10% to-
kens are presented. The rest follows standard long tail
distributions.

late the statistics of the maximum one for each
claim, as most of which only require single evi-
dence to verify. The attention score of the highest
attended evidence node for each claim is plotted
in Figure 4(a). As expected, KGAT concentrates
its weight to select evidence nodes and provides a
focused attention.

Then the evidence selection accuracy is eval-
uated by their evidence recall. We first rank all
evidence pieces for each claim. Then the evidence
recall with different ranking depths is plotted in
Figure 4(b). KGAT achieves a much higher recall
on top ranking positions—only the first ranked sen-
tence covers nearly 80% of ground truth evidence,
showing the node kernels’ ability to select correct
evidence. This also indicates the potential of the
node kernels in the sentence retrieval stage, which
we reserve for future work as this paper focuses on
the reasoning stage.

Fine-Grained Evidence Propagation. The
third analysis studies the distribution of KGAT-
Edge’s attention which is used to propagate the
evidence clues in the evidence graph.

Figure 5 plots the attention weight distribution
of the edge attention scores in KGAT and GAT, one
from kernels and one from dot-products. The ker-
nel attentions again are more concentrated: KGAT
focuses fewer words while GAT’s dot-product
attentions are almost equally distributed among
all words. This observation of the scattered dot-
product attention is consistent with previous re-
search (Clark et al., 2019). As shown in the next
case study, the edge kernels provide a fine-grained
and intuitive attention pattern when combining evi-
dence clues from multiple pieces.

Figure 6: Edge Attention Weights on Evidence Tokens.
Darker red indicates higher attention weights.

Claim: Al Jardine is an American rhythm guitarist.
(1) [Al Jardine] Alan Charles Jardine (born September 3,
1942) is an American musician, singer and songwriter who
co-founded the Beach Boys.
(2) [Al Jardine] He is best known as the band’s rhythm gui-
tarist, and for occasionally singing lead vocals on singles such
as “Help Me, Rhonda” (1965), “Then I Kissed Her” (1965)
and “Come Go with Me” (1978).
(3) [Al Jardine] In 2010, Jardine released his debut solo stu-
dio album, A Postcard from California.
(4) [Al Jardine] In 1988, Jardine was inducted into the Rock
and Roll Hall of Fame as a member of the Beach Boys.
(5) [Jardine] Ray Jardine American rock climber, lightweight
backpacker, inventor, author and global adventurer.
Label: SUPPORT

Table 5: An example claim (Zhou et al., 2019) whose
verification requires multiple pieces of evidence.

6 Case Study

Table 5 shows the example claim used in
GEAR (Zhou et al., 2019) and the evidence sen-
tences retrieved by ESIM, among which the first
two are required evidence pieces. Figure 6 presents
the distribution of attentions from the first evidence
to the tokens in the second evidence (α2→1

i ) in
KGAT (Edge Kernel) and GAT (dot-product).

The first evidence verifies that “Al Jardine is
an American musician” but does not enough in-
formation about whether “Al Jardine is a rhythm
guitarist”. The edge kernels from KGAT accurately
pick up the additional information evidence (1) re-
quired from evidence (2): “rhythm guitarist”. It
effectively fills the missing information and com-
pletes the reasoning chain. Interesting, “Al Jardine”
also receives more attention, which helps to verify
if the information in the second evidence is about
the correct person. This kernel attention pattern is
more intuitive and effective than the dot-product
attention in GAT. The later one scatters almost uni-
formly across all tokens and hard to explain how
the joint reasoning is conducted. This seems to be
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a common challenge of the dot-product attention
in Transformers (Clark et al., 2019).

7 Conclusion

This paper presents KGAT, which uses kernels in
Graph Neural Networks to conduct more accurate
evidence selection and fine-grained joint reasoning.
Our experiments show that kernels lead to the more
accurate fact verification. Our studies illustrate the
two kernels play different roles and contribute to
different aspects crucial for fact verification. While
the dot-product attentions are rather scattered and
hard to explain, the kernel-based attentions show
intuitive and effective attention patterns: the node
kernels focus more on the correct evidence pieces;
the edge kernels accurately gather the necessary
information from one node to the other to complete
the reasoning chain. In the future, we will further
study this properties of kernel-based attentions in
neural networks, both in the effectiveness front and
also the explainability front.
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