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Abstract

Advances in variational inference enable pa-
rameterisation of probabilistic models by deep
neural networks. This combines the statisti-
cal transparency of the probabilistic modelling
framework with the representational power of
deep learning. Yet, due to a problem known
as posterior collapse, it is difficult to estimate
such models in the context of language mod-
elling effectively. We concentrate on one such
model, the variational auto-encoder, which we
argue is an important building block in hierar-
chical probabilistic models of language. This
paper contributes a sober view of the problem,
a survey of techniques to address it, novel tech-
niques, and extensions to the model. To es-
tablish a ranking of techniques, we perform a
systematic comparison using Bayesian optimi-
sation and find that many techniques perform
reasonably similar, given enough resources.
Still, a favourite can be named based on conve-
nience. We also make several empirical obser-
vations and recommendations of best practices
that should help researchers interested in this
exciting field.

1 Introduction

Deep generative models (DGMs) are probabilis-
tic latent variable models parameterised by neural
networks (NNs). Specifically, DGMs optimised
with amortised variational inference and reparam-
eterised gradient estimates (Kingma and Welling,
2014; Rezende et al., 2014), better known as vari-
ational auto-encoders (VAEs), have spurred much
interest in various domains, including computer
vision and natural language processing (NLP).

In NLP, VAEs have been developed for word
representation (Rios et al., 2018), morphological
analysis (Zhou and Neubig, 2017), syntactic and

Work done while the first author was at the University of
Amsterdam. Code is available at https://github.com/
tom-pelsmaeker/deep-generative-lm

semantic parsing (Corro and Titov, 2018; Lyu and
Titov, 2018), document modelling (Miao et al.,
2016), summarisation (Miao and Blunsom, 2016),
machine translation (Zhang et al., 2016; Schulz
et al., 2018; Eikema and Aziz, 2019), language and
vision (Pu et al., 2016; Wang et al., 2017), dialogue
modelling (Wen et al., 2017; Serban et al., 2017),
speech modelling (Fraccaro et al., 2016), and, of
course, language modelling (Bowman et al., 2016;
Goyal et al., 2017). One problem remains common
to the majority of these models, VAEs often learn
to ignore the latent variables.

We investigate this problem, dubbed posterior
collapse, in the context of language models (LMs).
In a deep generative LM (Bowman et al., 2016),
sentences are generated conditioned on samples
from a continuous latent space, an idea with vari-
ous practical applications. For example, one can
constrain this latent space to promote generalisa-
tions that are in line with linguistic knowledge and
intuition (Xu and Durrett, 2018). This also allows
for greater flexibility in how the model is used,
for example, to generate sentences that live—in la-
tent space—in a neighbourhood of a given observa-
tion (Bowman et al., 2016). Despite this potential,
VAEs that employ strong generators (e.g. recurrent
NNs) tend to ignore the latent variable. Figure 1
illustrates this point: neighbourhood in latent space
does not correlate to patterns in data space, and the
model behaves just like a standard LM.

Recently, many techniques have been proposed
to address this problem (§3 and §7) and they range
from modifications to the objective to changes to
the actual model. Some of these techniques have
only been tested under different conditions and un-
der different evaluation criteria, and some of them
have only been tested outside NLP. This paper con-
tributes: (1) a novel strategy based on constrained
optimisation towards a pre-specified upper-bound
on mutual information; (2) multimodal priors that

https://github.com/tom-pelsmaeker/deep-generative-lm
https://github.com/tom-pelsmaeker/deep-generative-lm
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by design promote increased mutual information
between data and latent code; last and, arguably
most importantly, (3) a systematic comparison—
in terms of resources dedicated to hyperparame-
ter search and sensitivity to initial conditions—of
strategies to counter posterior collapse, including
some never tested for language models (e.g. In-
foVAE, LagVAE, soft free-bits, and multimodal
priors).

2 Density Estimation for Text

Density estimation for written text has a long his-
tory (Jelinek, 1980; Goodman, 2001), but in this
work we concentrate on neural network models
(Bengio et al., 2003), in particular, autoregressive
ones (Mikolov et al., 2010). Following common
practice, we model sentences independently, each
a sequence x = 〈x1, . . . , xn〉 of n = |x| tokens.

2.1 Language models
A language model (LM) prescribes the generation
of a sentence as a sequence of categorical draws
parameterised in context, i.e. P (x|θ) =

|x|∏
i=1

P (xi|x<i, θ) =

|x|∏
i=1

Cat(xi|f(x<i; θ)) . (1)

To condition on all of the available context, a fixed
NN f(·) maps from a prefix sequence (denoted
x<i) to the parameters of a categorical distribution
over the vocabulary. We estimate the parameters θ
of the model by searching for a local optimum of
the log-likelihood function L(θ)=EX [logP (x|θ)]
via stochastic gradient-based optimisation (Rob-
bins and Monro, 1951; Bottou and Cun, 2004),
where the expectation is taken w.r.t. the true data
distribution and approximated with samples x ∼ D
from a data set of i.i.d. observations. Throughout,
we refer to this model as RNNLM alluding to a par-
ticular choice of f(·;φ) that employs a recurrent
neural network (Mikolov et al., 2010).

2.2 Deep generative language models
Bowman et al. (2016) model observations as draws
from the marginal of a DGM. An NN maps from a
latent sentence embedding z ∈ Rdz to a distribution
P (x|z, θ) over sentences,

P (x|θ) =

∫
p(z)P (x|z, θ)dz

=

∫
N (z|0, I)

|x|∏
i=1

Cat(xi|f(z, x<i; θ))dz ,

(2)

where z follows a standard Gaussian prior.1 Gen-
eration still happens one word at a time without
Markov assumptions, but f(·) now conditions on z
in addition to the observed prefix. The conditional
P (x|z, θ) is commonly referred to as generator
or decoder. The quantity P (x|θ) is the marginal
likelihood, essential for parameter estimation.

This model is trained to assign a high (marginal)
probability to observations, much like standard
LMs. Unlike standard LMs, it employs a latent
space which can accommodate a low-dimensional
manifold where discrete sentences are mapped to,
via posterior inference p(z|x, θ), and from, via gen-
eration P (x|z, θ). This gives the model an explicit
mechanism to exploit neighbourhood and smooth-
ness in latent space to capture regularities in data
space. For example, it may group sentences accord-
ing to latent factors (e.g. lexical choices, syntactic
complexity, etc.). It also gives users a mechanism
to steer generation towards a specific purpose. For
example, one may be interested in generating sen-
tences that are mapped from the neighbourhood of
another in latent space. To the extent this embed-
ding space captures appreciable regularities, inter-
est in this property is heightened.

Approximate inference Marginal inference for
this model is intractable and calls for variational
inference (VI; Jordan et al., 1999), whereby an
auxiliary and independently parameterised model
q(z|x, λ) approximates the true posterior p(z|x, θ).
When this inference model is itself parameterised
by a neural network, we have a case of amortised
inference (Kingma and Welling, 2014; Rezende
et al., 2014) and an instance of what is known as
a VAE. Bowman et al. (2016) approach posterior
inference with a Gaussian model

Z|λ, x ∼ N (u,diag(s� s))

[u, s] = g(x;λ)
(3)

whose parameters, i.e. a location vector u ∈ RD
and a scale vector s ∈ RD>0, are predicted by a neu-
ral network architecture g(·;λ) from an encoding
of the complete observation x.2 In this work, we
use a bidirectional recurrent encoder. Throughout
the text we will refer to this model as SENVAE.

Parameter estimation We can jointly estimate
the parameters of both models (i.e. generative and

1We use uppercase P (·) for probability mass functions
and lowercase p(·) for probability density functions.

2We use boldface for deterministic vectors and � for ele-
mentwise multiplication.
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Decoding Generated sentence

Greedy The company said it expects to report net in-
come of $UNK-NUM million

Sample They are getting out of my own things ?
IBM also said it will expect to take next year .

(a) Greedy generation from prior samples (top) yields the
same sentence every time, showing that the latent code is
ignored. Yet, ancestral sampling (bottom) produces good
sentences, showing that the recurrent decoder learns about
the structure of English sentences.

The two sides hadn’t met since Oct. 18.
I don’t know how much money will be involved.
The specific reason for gold is too painful.
The New Jersey Stock Exchange Composite Index gained 1 to 16.
And some of these concerns aren’t known.
Prices of high-yield corporate securities ended unchanged.

(b) Homotopy: ancestral samples mapped from points along a
linear interpolation of two given sentences as represented in latent
space. The sentences do not seem to exhibit any coherent relation,
showing that the model does not exploit neighbourhood in latent
space to capture regularities in data space.

Figure 1: Sentences generated from Bowman et al. (2016)’s VAE trained without special treatment.

inference) by locally maximising a lower-bound on
the log-likelihood function (ELBO)

E(θ, λ) = EX
[
Eq(z|x,λ) [logP (x|z, θ)]
−KL(q(z|x, λ)||p(z))

]
.

(4)

For as long as we can reparameterise samples from
q(z|x, λ) using a fixed random source, automatic
differentiation (Baydin et al., 2018) can be used to
obtain unbiased gradient estimates of the ELBO
(Kingma and Welling, 2014; Rezende et al., 2014).

3 Posterior Collapse

In VI, we make inferences using an approxi-
mation q(z|x, λ) to the true posterior p(z|x, θ)
and choose λ as to minimise the KL divergence
EX [KL(q(z|x, λ)||p(z|x, θ))]. The same principle
yields a lower-bound on log-likelihood used to es-
timate θ jointly with λ, thus making the true pos-
terior p(z|x, θ) a moving target. If the estimated
conditional P (x|z, θ) can be made independent of
z, which in our case means relying exclusively on
x<i to predict the distribution of Xi, the true pos-
terior will be independent of the data and equal to
the prior.3 Based on such observation, Chen et al.
(2017) argue that information that can be modelled
by the generator without using latent variables will
be modelled that way—precisely because when
no information is encoded in the latent variable
the true posterior equals the prior and it is then
trivial to reduce EX [KL(q(z|x, λ)||p(z|x, θ))] to
0. This is typically diagnosed by noting that af-
ter training KL(q(z|x, λ)||p(z))→ 0 for most x:
we say that the true posterior collapses to the
prior. Alemi et al. (2018) show that the rate,
R = EX [KL(q(z|x, λ)||p(z))], is an upperbound
to I(X;Z|λ), the mutual information (MI) be-
tween X and Z. Thus, if KL(q(z|x, λ)||p(z)) is

3This follows trivially from the definition of posterior:
p(z|x) = p(z)P (x|z)

P (x)

X⊥Z
= p(z)P (x)

P (x)
= p(z).

close to zero for most training instances, MI is ei-
ther 0 or negligible. They also show that the distor-
tion, D = −EX [Eq(z|x,λ)[logP (x|z, θ)]], relates
to a lower-bound on MI (the lower-bound being
H −D, where H is the unknown data entropy).

A generator that makes no Markov assumptions,
such as a recurrent LM, can potentially achieve
Xi ⊥ Z | x<i, θ, and indeed many have no-
ticed that VAEs whose observation models are pa-
rameterised by such strong generators (or strong
decoders) tend to ignore the latent representa-
tion (Bowman et al., 2016; Higgins et al., 2017;
Sønderby et al., 2016; Zhao et al., 2018b). For this
reason, a strategy to prevent posterior collapse is to
weaken the decoder (Yang et al., 2017; Semeniuta
et al., 2017; Park et al., 2018). In this work, we are
interested in employing strong generators, thus we
do not investigate weaker decoders. Other strate-
gies involve changes to the optimisation procedure
and manipulations to the objective that target local
optima of the ELBO with non-negligible MI.

Annealing Bowman et al. (2016) propose “KL
annealing”, whereby the KL term in the ELBO
is incorporated into the objective in gradual steps.
This way the optimiser can focus on reducing dis-
tortion early on in training, potentially by increas-
ing MI. They also propose to drop words from
x<i at random to weaken the decoder—intuitively
the model would have to rely on z to compensate
for missing history. We experiment with a slight
modification of word dropout whereby we slowly
vary the dropout rate from 1 → 0. In a sense, we
“anneal” from a weak to a strong generator.

Targeting rates Another idea is to target a pre-
specified rate (Alemi et al., 2018). Kingma
et al. (2016) replace the KL term in the ELBO
with max(r,KL(q(z|x, λ)||p(z))), dubbed free
bits (FB) because it allows encoding the first
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r nats of information “for free”. As long as
KL(q(z|x, λ)||p(z)) < r, this does not optimise
a proper ELBO (it misses the KL term), and the
max introduces a discontinuity. Chen et al. (2017)
propose soft free bits (SFB), that instead multiplies
the KL term in the ELBO with a weighing factor
0 < β ≤ 1 that is dynamically adjusted based on
the target rate r: β is incremented (or reduced) by
ω if R > γr (or R < εr). Note that this technique
requires hyperparameters (i.e. γ, ε, ω) besides r to
be tuned in order to determine how β is updated.

Change of objective We may also seek alterna-
tives to the ELBO as an objective and relate them
to quantities of interest such as MI. A simple adap-
tation of the ELBO weighs its KL-term by a con-
stant factor (β-VAE; Higgins et al., 2017). Setting
β < 1 promotes increased MI. Whilst being a use-
ful counter to posterior collapse, low β might lead
to variational posteriors becoming point estimates.
InfoVAE (Zhao et al., 2018b) mitigates this with
a term aimed at minimising the divergence from
the aggregated posterior q(z|λ) = EX [q(z|x, λ)]
to the prior. Following Zhao et al. (2018b), we ap-
proximate this with an estimate of maximum mean
discrepancy (MMD; Gretton et al., 2012) in our ex-
periments. Lagrangian VAE (LagVAE; Zhao et al.,
2018a) casts VAE optimisation as a dual problem;
it targets either maximisation or minimisation of
(bounds on) I(X;Z|λ) under constraints on the In-
foVAE objective. In MI-maximisation mode, Lag-
VAE maximises a weighted lower-bound on MI,
−αD, under two constraints, a maximum -ELBO
and a maximum MMD, that prevent p(z|x, θ) from
degenerating to a point mass. Reasonable values
for these constraints have to be found empirically.

4 Minimum Desired Rate

We propose minimum desired rate (MDR), a tech-
nique to attain ELBO values at a pre-specified rate
r that does not suffer from the gradient discontinu-
ities of FB, and does not introduce the additional
hyperparameters of SFB. The idea is to optimise
the ELBO subject to a minimum rate constraint r:

max
θ,λ
E(θ, λ),

s.t. EX [KL(q(z|x, λ)||p(z))] > r .
(5)

Because constrained optimisation is generally in-
tractable, we optimise the Lagrangian (Boyd and
Vandenberghe, 2004) Φ(θ, λ, u) =

E(θ, λ)− u(r − EX [KL(q(z|x, λ)||p(z))]) (6)

where u ∈ R≥0 is a positive Lagrangian mul-
tiplier. We define the dual function φ(u) =
maxθ,λ Φ(θ, λ, u) and solve the dual problem
minu∈R≥0

φ(u). Local minima of the resulting
min-max objective can be found by performing
stochastic gradient descent with respect to u and
stochastic gradient ascent with respect to θ, λ.

4.1 Relation to other techniques

It is insightful to compare MDR to the various
techniques we surveyed in terms of the gradients
involved in their optimisation. The losses min-
imised by KL annealing, β-VAE, and SFB have
the form `β(θ, λ) = D + βR, where β ≥ 0. FB
minimises the loss `FB(θ, λ) = D + max(r,R),
where r > 0 is the target rate. Last, with respect
to θ and λ, MDR minimises the loss `MDR(θ, λ) =
D + R + u(r − R), where u ∈ R≥0 is the La-
grangian multiplier. And with respect to u, MDR
minimises φ(u) = −D −R− u(R− r).

Let us inspect gradients with respect to the pa-
rameters of the VAE, namely, θ and λ. FB’s gradi-
ent ∇θ,λ`FB(θ, λ) =

∇θ,λD +

{
0 if R ≤ r
∇θ,λR otherwise

(7a)

is discontinuous, that is, there is a sudden ‘jump’
from zero to a (possibly) large gradient w.r.t. R
when the rate dips above r. KL annealing, β-VAE,
and SFB do not present such discontinuity

∇θ,λ`β(θ, λ) = ∇θ,λD + β∇θ,λR , (7b)

for β scales the gradient w.r.t. R. The gradient of
the MDR objective is

∇θ,λ`MDR(θ, λ) = ∇θ,λD+(1−u)∇θ,λR (7c)

which can be thought of as ∇θ,λ`β(θ, λ) with β
dynamically set to 1− u at every gradient step.

Hence, MDR is another form of KL weighing,
albeit one that targets a specific rate. Compared
to β-VAE, MDR has the advantage that β is not
fixed but estimated to meet the requirements on
rate. Compared to KL-annealing, MDR dispenses
with a fixed schedule for updating β, not only an-
nealing schedules are fixed, they require multiple
decisions (e.g. number of steps, linear or expo-
nential increments) whose impact on the objective
are not directly obvious. Most similar then, seems
SFB. Like MDR, it flexibly updates β by targeting
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a rate. However, differences between the two tech-
niques become apparent when we observe how β
is updated. In case of SFB:

β(t+1) = β(t) +

{
ω if R > γr

−ω if R < εr
(8a)

where ω, γ and ε are hyperparameters. In case of
MDR (not taking optimiser-specific dynamics into
account):

u(t+1) = u(t)− ρ∂φ(u)

∂u
= u(t) + ρ(R− r) (8b)

where ρ is a learning rate. From this, we conclude
that MDR is akin to SFB, but MDR’s update rule is
a direct consequence of Lagrangian relaxation and
thus dispenses with the additional hyperparameters
in SFB’s handcrafted update rule.4

5 Expressive Priors

Suppose we employ a multimodal prior p(z|θ),
e.g. a mixture of Gaussians, and suppose we
employ a unimodal posterior approximation, e.g.
the typical diagonal Gaussian. This creates a
mismatch between the prior and the posterior ap-
proximation families that makes it impossible for
KL(q(z|x, λ)||p(z|θ)) to be precisely 0. For the ag-
gregated posterior q(z|λ) to match the prior, the in-
ference model would have to—on average—cover
all of the prior’s modes. Since the inference net-
work is deterministic, it can only do so as a func-
tion of the conditioning input x, thus increasing
I(X;Z|λ). Admittedly, this conditioning might
still only capture shallow features of x, and the
generator may still choose to ignore the latent code,
keeping I(X;Z|θ) low, but the potential seems to
justify an attempt. This view builds upon Alemi
et al. (2018)’s information-theoretic view which
suggests that the prior regularises the inference
model capping I(X;Z|λ). Thus, we modify SEN-
VAE to employ a more complex, ideally multi-
modal, parametric prior p(z|θ) and fit its parame-
ters.

MoG Our first option is a uniform mixture of
Gaussians (MoG), i.e. p(z|θ) =

1

C

C∑
c=1

N (z|µ(c), diag(σ(c) � σ(c))) (9)

4Note that if we set γ = 1, ε = 1, and ω = ρ(R − r) at
every step of SFB, we recover MDR.

where the Gaussian parameters are optimised along
with other generative parameters. Note that though
we give this prior up to C modes, the optimiser
might merge some of them (by learning approxi-
mately the same location and scale).

VampPrior Motivated by the fact that, for a fixed
posterior approximation, the prior that optimises
the ELBO equals EX [q(z|x, λ)], Tomczak and
Welling (2018) propose the VampPrior, a varia-
tional mixture of posteriors:

p(z|θ) =
1

C

C∑
c=1

q(z|v(c), λ) (10)

where v(c) is a learned pseudo input—in their case
a continuous vector. Again the parameters of the
prior, i.e. {v(c)}Cc=1, are optimised in the ELBO.
In our case, the input to the inference network is a
discrete sentence, which is incompatible with the
design of the VampPrior. Thus, we propose to by-
pass the inference network’s embedding layer and
estimate a sequence of word embeddings, which
makes up a pseudo input. That is, v(c) is a sequence
〈v(c)

1 , . . . ,v
(c)
lc
〉 where v

(c)
i has the dimensionality

of our embeddings, and lc is the length of the se-
quence (fixed at the beginning of training). Note,
however, that for this prior to be multimodal, the
inference model must already encode information
in Z, thus there is some gambling in its design.

6 Experiments

Our goal is to identify which techniques are effec-
tive in training VAEs for language modelling. Our
evaluation concentrates on intrinsic metrics: neg-
ative log-likelihood (NLL), perplexity per token
(PPL), rate (R), distortion (D), the number of ac-
tive units (AU; Burda et al., 2015))5 and gap in
the accuracy of next word prediction (given gold
prefixes) when decoding from a posterior sample
versus decoding from a prior sample (Accgap).

For VAE models, NLL (and thus PPL) can only
be estimated. We use importance sampling (IS)

P (x|θ) =

∫
p(z, x|θ)dz IS

=

∫
q(z|x)

p(z, x|θ)
q(z|x)

dz

MC
≈ 1

S

S∑
s=1

p(z(s), x|θ)
q(z(s)|x)

where z(s)∼ q(z|x) (11)

5A latent unit (a single dimension of z) is denoted active
when its variance with respect to x is larger than 0.01.
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Technique Hyperparameters

KL annealing increment γ (2× 10−5)
Word dropout (WD) decrement γ (2× 10−5)
FB and MDR target rate r (5)
SFB r (6.46), γ (1.05), ε (1), ω (0.01)
β-VAE KL weight β (0.66)
InfoVAE β (0.7), λ (31.62)
LagVAE α (−21.7), target MMD (0.0017)

target -ELBO (100.8)

Table 1: Techniques and their hyperparameters.

with our trained approximate posterior as impor-
tance distribution (we use S = 1000 samples).

We first report on experiments using the English
Penn Treebank (PTB; Marcus et al., 1993).6

RNNLM The baseline RNNLM generator is a
building block for all of our SENVAEs, thus we
validate its performance as a strong standalone gen-
erator. We highlight that it outperforms an exter-
nal baseline that employs a comparable number of
parameters (Dyer et al., 2016) and that this perfor-
mance boost is mostly due to tying embeddings
with the output layer.7 Appendix A.1 presents the
complete architecture and a comparison.

Bayesian optimisation The techniques we com-
pare are sensitive to one or more hyperparameters
(see Table 1), which we tune using Bayesian opti-
misation (BO) towards minimising estimated NLL
of the validation data. For each technique, we ran
25 iterations of BO, each iteration encompassing
training a model to full convergence. This was suf-
ficient for the hyperparameters of each technique
to converge. See Appendix A.2 for details.

On optimisation strategies First, we assess the
effectiveness of techniques that aim at promoting
local optima of SENVAE with better MI trade-
off. As for the architecture, the approximate pos-
terior q(z|x, λ) employs a bidirectional recurrent
encoder, and the generator P (x|z, θ) is essentially
our RNNLM initialised with a learned projection
of z (complete specification in A.1). We train with
Adam (Kingma and Ba, 2014) with default param-
eters and a learning rate of 10−3 until convergence
five times for each technique.

Results can be found in Table 2. First, note how
6We report on Dyer et al. (2016)’s pre-processing, rather

than Mikolov et al. (2010)’s. Whereas our findings are quanti-
tatively similar, qualitative analysis based on generations are
less interesting with Mikolov’s far too small vocabulary.

7Stronger RNN-based models can be designed (Melis et al.,
2018), but those use vastly more parameters.

Mode D R PPL↓ AU↑ Accgap

RNNLM - - 107.1±0.5 - -
Vanilla 118.4 0.0 105.7±0.4 0 0.0
Annealing 115.3 3.3 103.7±0.3 17 6.0
WD 117.6 0.0 102.5±0.6 0 0.0
FB 113.3 5.0 101.9±0.8 14 5.8
SFB 112.0 6.4 101.0±0.5 18 7.0
MDR 113.5 5.0 102.1±0.5 13 6.2
β-VAE 113.0 5.3 101.7±0.5 11 6.1
InfoVAE 113.5 4.3 100.8±0.4 10 5.2
LagVAE 112.1 6.5 101.6±0.7 24 6.9

Table 2: Performance (avg±std across 5 independent
runs) of SENVAE on the PTB validation set. Standard
deviations for D and R are at most 0.2.

the vanilla VAE (no special treatment) encodes no
information in latent space (R = 0). Then note that
all techniques converged to VAEs that attain better
PPL than the RNNLM and vanilla VAE, and all but
annealed word dropout did so at non-negligible rate.
Notably, the two most popular techniques, word
dropout and KL annealing, perform sub-par to the
other techniques.8 The techniques that work well
at non-negligible rates can be separated into two
groups: one based on a change of objective (i.e.,
β-VAE, InfoVAE and LagVAE), another based on
targeting a specific rate (i.e., FB, SFB, and MDR).
InfoVAE, LagVAE and SFB all require tuning of
multiple hyperparameters. InfoVAE and LagVAE,
in particular, showed poor performance without
this careful tuning. In the first group, consider
LagVAE, for example. Though Zhao et al. (2018a)
argue that the magnitude of α is not particularly
important (in MI-maximisation mode, they fixed it
to −1), we could not learn a useful SENVAE with
LagVAE until we allowed BO to also estimate the
magnitude of α. Once BO converges to the values
in Table 1, the method does perform quite well.

Generally, it is hard to believe that hyperparame-
ters transfer across data sets, thus it is fair to expect
that this exercise will have to be repeated every
time. We argue that the rate hyperparameter com-
mon to the techniques in the second group is more
interpretable and practical in most cases. For ex-
ample, it is easy to grid-search against a handful
of values. Hence, we further investigate FB and
MDR by varying the target rate further (from 5 to
50). SFB is left out, for MDR generalises SFB’s
handcrafted update rule. We observe that FB and
MDR attain essentially the same PPL across rates,

8Though here we show annealed word dropout, to focus
on techniques that do not weaken the generator, standard word
dropout also converged to negligible rates.
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Anneal
FB5

MDR5

JS(Cat( i), Cat( i)) JS(Cat( i), Cat( ′
i))
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JS(Cat( i), Cat( i)) JS(Cat( i), Cat( ′
i))

Figure 2: Sensitivity of output distributions to poste-
rior samples measured in terms of symmetrised KL
(JS). We obtain 51 (top) validation and 84 (bottom)
test instances of length 20 and report on their out-
put distributions per time step. To account for ex-
pected variability, we report JS(Cat(πi)||Cat(ηi)) −
JS(Cat(πi)||Cat(π′

i)), where ηi conditions on a prior
sample, and πi and π′

i condition on different posterior
samples, averaged over 10 experiments.

Model D R PPL↓ AU↑ Accgap

RNNLM - - 84.5± 0.5 - -
N /N 103.5 5.0 81.5± 0.5 13 5.4
MoG/N 103.3 5.0 81.4± 0.5 32 5.8
Vamp/N 103.1 5.0 81.2± 0.4 22 5.8

Table 3: Performance on the PTB test set for different
priors (N , MoG, Vamp). Standard deviations of D, R,
and Accgap are at most 0.1.

though MDR attains the desired rate earlier on in
training, especially for higher targets (where FB
fails at reaching the specified rate). Importantly,
at the end of training, the validation rate is closer
to the target for MDR. Appendix B supports these
claims. Though Accgap already suggests it, Figure
2 shows more visibly that MDR leads to output
Categorical distributions that are more sensitive to
the latent encoding. We measure this sensitivity in
terms of symmetrised KL between output distribu-
tions obtained from a posterior sample and output
distributions obtained from a prior sample for the
same time step given an observed prefix.

On expressive priors Second, we compare the
impact of expressive priors. This time, prior hy-
perparameters were selected via grid search and
can be found in Appendix A.1. All models are
trained with a target rate of 5 using MDR, with
settings otherwise the same as the previous experi-
ment. In Table 3 it can be seen that more expressive
priors do not improve perplexity further,9 though

9Here we remark that best runs (based on validation per-
formance) do show an advantage, which stresses the need to
report multiple runs as we do.

they seem to encode more information in the la-
tent variable—note the increased number of active
units and the increased gap in accuracy. One may
wonder whether stronger priors allow us to target
higher rates without hurting PPL. This does not
seem to be the case: as we increase rate to 50, all
models perform roughly the same, and beyond 20
performance degrades quickly.10 The models did,
however, show a further increase in active units
(VampPrior) and accuracy gap (both priors). Again,
Appendix B contains plots supporting these claims.

Generated samples Figure 3 shows samples
from a well-trained SENVAE, where we decode
greedily from a prior sample—this way, all variabil-
ity is due to the generator’s reliance on the latent
sample. Recall that a vanilla VAE ignores z and
thus greedy generation from a prior sample is es-
sentially deterministic in that case (see Figure 1a).
Next to the samples we show the closest training
instance, which we measure in terms of an edit
distance (TER; Snover et al., 2006).11 This “near-
est neighbour” helps us assess whether the genera-
tor is producing novel text or simply reproducing
something it memorised from training. In Figure 4
we show a homotopy: here we decode greedily
from points lying between a posterior sample con-
ditioned on the first sentence and a posterior sample
conditioned on the last sentence. In contrast to the
vanilla VAE (Figure 1b), neighbourhood in latent
space is now used to capture some regularities in
data space. These samples add support to the quan-
titative evidence that our DGMs have been trained
not to neglect the latent space. In Appendix B we
provide more samples.

Other datasets To address the generalisability
of our claims to other, larger, datasets, we report
results on the Yahoo and Yelp corpora (Yang et al.,
2017) in Table 4. We compare to the work of
He et al. (2019), who proposed to mitigate pos-
terior collapse with aggressive training of the in-
ference network, optimising the inference network
multiple steps for each step of the generative net-
work.12. We report on models trained with the
standard prior as well as an MoG prior both op-

10We also remark that, without MDR, the MoG model at-
tains validation rate of about 2.5.

11This distance metric varies from 0 to 1, where 1 indicates
thesentence iscompletelynoveland0 indicates thesentence is
essentiallycopiedfromthe trainingdata.

12Toenabledirectcomparisonwereplicated theexperimental
setup from (He et al., 2019) and built our methods into their
codebase.
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Yahoo Yelp

Model R NLL↓ PPL↓ AU↑ R NLL↓ PPL↓ AU↑
RNNLM - 328.0±0.3 - - - 358.1±0.6 - -
Lagging 5.7±0.7 326.7±0.1 - 15.0±3.5 3.8±0.2 355.9±0.1 - 11.3±1.0

β-VAE (β = 0.4) 6.3±1.7 328.7±0.1 - 8.0±5.2 4.2±0.4 358.2±0.3 - 4.2±3.8

Annealing 0.0±0.0 328.6±0.0 - 0.0±0.0 0.0±0.0 357.9±0.1 - 0.0±0.0

Vanilla 0.0±0.0 328.9±0.1 61.4±0.1 0.0±0.0 0.0±0.0 358.3±0.2 40.8±0.1 0.0±0.0

N /N 5.0±0.0 328.1±0.1 60.8±0.1 4.0±0.7 5.0±0.0 357.5±0.2 40.4±0.1 4.2±0.4

MoG/N 5.0±0.1 327.5±0.2 60.5±0.1 5.0±0.7 5.0±0.0 359.5±0.5 41.2±0.3 2.2±0.4

Table 4: Performance on the Yahoo/Yelp corpora. Top rows taken from (He et al., 2019)

Sample Closest training instance TER

For example, the Dow Jones Industrial Average fell almost
80 points to close at 2643.65.

By futures-related program buying, the Dow Jones Indus-
trial Average gained 4.92 points to close at 2643.65.

0.38

The department store concern said it expects to report
profit from continuing operations in 1990.

Rolls-Royce Motor Cars Inc. said it expects its U.S. sales
to remain steady at about 1,200 cars in 1990.

0.59

The new U.S. auto makers say the accord would require
banks to focus on their core businesses of their own ac-
count.

International Minerals said the sale will allow Mallinck-
rodt to focus its resources on its core businesses of medical
products, specialty chemicals and flavors.

0.78

Figure 3: Samples from SENVAE (MoG prior) trained via MDR: we sample from the prior and decode greedily.
We also show the closest training instance in terms of a string edit distance (TER).

The inquiry soon focused on the judge.
Thejudgedeclinedtocommentonthefloor.
Thejudgewasdismissedaspartof thesettlement.
Thejudgewassentencedtodeath inprison.
Theannouncementwasfiledagainst theSEC.
Theofferwasmisstated in lateSeptember.
Theofferwasfiledagainstbankruptcycourt inNewYork.
The letter was dated Oct. 6.

Figure 4: Latent space homotopy from a properly
trained SENVAE. Note the smooth transition of topic
and grammatically of the samples.

timised with MDR, and a model trained without
optimisation techniques.13 It can be seen that MDR
compares favourably to other optimisation tech-
niques reported in (He et al., 2019). Whilst ag-
gressive training of the inference network performs
slightly better in terms of NLL and leads to more
active units, it slows down training by a factor of
4. The MoG prior improves results on Yahoo but
not on Yelp. This may indicate that a multimodal
prior does offer useful extra capacity to the latent
space,14 at the cost of more instability in optimisa-
tion. This confirms that targeting a pre-specified
rate leads to VAEs that are not collapsed without
hurting NLL.

13We focus on MoG since the PTB experiments showed the
VampPrior tounderperformintermsofAU.

14We tracked the average KL divergence between any two
components of the prior and observed that the prior remained
multimodal.

Recommendations We recommend targeting a
specific rate via MDR instead of annealing (or word
dropout). Besides being simple to implement, it
is fast and straightforward to use: pick a rate by
plotting validation performance against a handful
of values. Stronger priors, on the other hand, while
showing indicators of higher mutual information
(e.g. AU and Accgap), seem less effective than
MDR. Use IS estimates of NLL, rather than single-
sample ELBO estimates, for model selection, for
the latter can be too loose of a bound and too heav-
ily influenced by noisy estimates of KL.15 Use
many samples for a tight bound.16 Inspect sen-
tences greedily decoded from a prior (or posterior)
sample as this shows whether the generator is at
all sensitive to the latent code. Retrieve nearest
neighbours to spot copying behaviour.

7 Related Work

In NLP, posterior collapse was probably first no-
ticed by Bowman et al. (2016), who addressed it via
word dropout and KL scaling. Further investigation
revealed that in the presence of strong generators,

15This point seems obvious to many, but enough published
papers reportexponentiated lossordistortionper token,which,
besidesunreliable,makecomparisonsacrosspapersdifficult.

16Weuse1000samples. Comparedtoasinglesampleestimate,
we have observed differences up to 5 perplexity points in non-
collapsedmodels. From100 to1000samples,differencesare in
theorderof0.1suggestingourISestimateisclosetoconvergence.
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the ELBO itself becomes the culprit (Chen et al.,
2017; Alemi et al., 2018), as it lacks a preference
regarding MI. Posterior collapse has also been as-
cribed to approximate inference (Kim et al., 2018;
Dieng and Paisley, 2019). Beyond the techniques
compared and developed in this work, other solu-
tions have been proposed, including modifications
to the generator (Semeniuta et al., 2017; Yang et al.,
2017; Park et al., 2018; Dieng et al., 2019), side
losses based on weak generators (Zhao et al., 2017),
factorised likelihoods (Ziegler and Rush, 2019; Ma
et al., 2019), cyclical annealing (Liu et al., 2019)
and changes to the ELBO (Tolstikhin et al., 2018;
Goyal et al., 2017).

Exploiting a mismatch in correlation between
the prior and the approximate posterior, and thus
forcing a lower-bound on the rate, is the princi-
ple behind δ-VAEs (Razavi et al., 2019) and hy-
perspherical VAEs (Xu and Durrett, 2018). The
generative model of δ-VAEs has one latent variable
per step of the sequence, i.e. z = 〈z1, . . . , z|x|〉,
making it quite different from that of the SEN-
VAEs considered here. Their mean-field infer-
ence model is a product of independent Gaussians,
one per step, but they construct a correlated Gaus-
sian prior by making the prior distribution over
the next step depend linearly on the previous step,
i.e. Zi|zi−1 ∼ N (αzi−1, σ) with hyperparame-
ters α and σ. Hyperspherical VAEs work on the
unit hypersphere with a uniform prior and a non-
uniform VonMises-Fisher posterior approximation
(Davidson et al., 2018). Note that, though in this pa-
per we focused on Gaussian (and mixture of Gaus-
sians, e.g. MoG and VampPrior) priors, MDR is
applicable for whatever choice of prescribed prior.
Whether its benefits stack with the effects due to
different priors remains an empirical question.

GECO (Rezende and Viola, 2018) casts VAE op-
timisation as a dual problem, and in that it is closely
related to our MDR and the LagVAE. GECO tar-
gets minimisation of EX [KL(q(z|x, λ)||p(z))] un-
der constraints on distortion, whereas LagVAE
targets either maximisation or minimisation of
(bounds on) I(X;Z|λ) under constraints on the
InfoVAE objective. Contrary to MDR, GECO fo-
cuses on latent space regularisation and offers no
explicit mechanism to mitigate posterior collapse.

Recently Li et al. (2019) proposed to combine
FB, KL scaling, and pre-training of the inference
network’s encoder on an auto-encoding objective.
Their techniques are complementary to ours in so

far as their main finding—the mutual benefits of an-
nealing, pre-training, and lower-bounding KL—is
perfectly compatible with ours (MDR and multi-
modal priors).

8 Discussion

SENVAE is a deep generative model whose gener-
ative story is rather shallow, yet, due to its strong
generator component, it is hard to make effective
use of the extra knob it offers. In this paper, we
have introduced and compared techniques for effec-
tive estimation of such a model. We show that many
techniques in the literature perform reasonably sim-
ilarly (i.e. FB, SFB, β-VAE, InfoVAE), though
they may require a considerable hyperparameter
search (e.g. SFB and InfoVAE). Amongst these,
our proposed optimisation subject to a minimum
rate constraint is simple enough to tune (as FB it
only takes a pre-specified rate and unlike FB it does
not suffer from gradient discontinuities), superior
to annealing and word dropout, and require less
resources than strategies based on multiple anneal-
ing schedules and/or aggressive optimisation of the
inference model. Other ways to lower-bound rate,
such as by imposing a multimodal prior, though
promising, still require a minimum desired rate.

The typical RNNLM is built upon an exact fac-
torisation of the joint distribution, thus a well-
trained architecture is hard to improve upon in
terms of log-likelihood of gold-standard data. Our
interest in latent variable models stems from the de-
sire to obtain generative stories that are less opaque
than that of an RNNLM, for example, in that they
may expose knobs that we can use to control gen-
eration and a hierarchy of steps that may award a
degree of interpretability to the model. The SEN-
VAE is not that model, but it is a crucial building
block in the pursue for hierarchical probabilistic
models of language. We hope this work, i.e. the
organised review it contributes and the techniques
it introduces, will pave the way to deeper—in sta-
tistical hierarchy—generative models of language.
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A Architectures and Hyperparameters

In order to ensure that all our experiments are fully
reproducible, this section provides an extensive
overview of the model architectures, as well as
model and optimisation hyperparameters.

Some hyperparameters are common to all ex-
periments, e.g. optimiser and dropout, they can
be found in Table 5. All models were optimised
with Adam using default settings (Kingma and Ba,
2014). To regularise the models, we use dropout
with a shared mask across time-steps (Zaremba
et al., 2014) and weight decay proportional to the
dropout rate (Gal and Ghahramani, 2015) on the
input and output layers of the generative networks
(i.e. RNNLM and the recurrent decoder in SEN-
VAE). No dropout is applied to layers of the in-
ference network as this does not lead to consistent
empirical benefits and lacks a good theoretical ba-
sis. Gradient norms are clipped to prevent explod-
ing gradients, and long sentences are truncated to
three standard deviations above the average sen-
tence length in the training data.

Parameter Value

Optimizer Adam
OptimizerParameters β1 = 0.9, β2 = 0.999
LearningRate 0.001
BatchSize 64
DecoderDropoutRate(ρ) 0.4
WeightDecay 1−ρ

|D|
MaximumSentenceLength 59
MaximumGradientNorm 1.5

Table 5: Experimental settings.

A.1 Architectures
This section describes the components that param-
eterise our models.17 We use mnemonic blocks
layer(inputs; parameters) to describe architectures.
Table 6 lists hyperparameters for the models dis-
cussed in what follows.

RNNLM At each step, an RNNLM parame-
terises a categorical distribution over the vocab-
ulary, i.e. Xi|x<i ∼ Cat(f(x<i; θ)), where
f(x<i; θ) = softmax(oi) and

ei = emb(xi; θemb) (12a)

hi = GRU(hi−1, ei−1; θgru) (12b)

oi = affine(hi; θout) . (12c)
17Allmodelswere implementedwith the PYTORCH library

(Paszke et al., 2017), using default modules for the recurrent
networks,embeddersandoptimisers.

Model Parameter Value

A embeddingunits (de) 256
A vocabularysize(dv) 25643
RandS decoder layers (Lθ) 2
RandS decoderhiddenunits (dθh) 256
S encoderhiddenunits (dλh) 256
S encoder layers (Lλ) 1
S latentunits (dz) 32
MoG mixturecomponents (C) 100
VampPrior pseudoinputs (C) 100

Table 6: Architecture parameters: all (A), RNNLM (R),
SENVAE (S).

We employ an embedding layer (emb), one (or
more) GRU cell(s) (h0 ∈ θ is a parameter of the
model), and an affine layer to map from the dimen-
sionality of the GRU to the vocabulary size. Table 7
compares our RNNLM to an external baseline with
a comparable number of parameters.

Model PPL↓ PPLDyer ↓

Dyer et al. (2016) 93.5 113.4
RNNLM 84.5± 0.52 102.1

Table 7: Baseline LMs on the PTB test set: avg ± std
over 5 independent runs. Unlike us, Dyer et al. (2016)
removed the end of sentence token for evaluation, thus
the last column reports perplexity computed that way.

Gaussian SENVAE A Gaussian SENVAE also
parameterises a categorical distribution over the
vocabulary for each given prefix, but, in addi-
tion, it conditions on a latent embedding Z ∼
N (0, I), i.e. Xi|z, x<i ∼ Cat(f(z, x<i; θ))
where f(z, x<i; θ) = softmax(oi) and

ei = emb(xi; θemb) (13a)

h0 = tanh(affine(z; θinit)) (13b)

hi = GRU(hi−1, ei−1; θgru) (13c)

oi = affine(hi; θout) . (13d)

Compared to RNNLM, we modify f only slightly
by initialising GRU cell(s) with h0 computed as a
learnt transformation of z. Because the marginal
of the Gaussian SENVAE is intractable, we train it
via variational inference using an inference model
q(z|x, λ) = N (z|u, diag(s� s)) where

ei = emb(xi; θemb) (14a)

hn1 = BiGRU(en1 ,h0;λenc) (14b)

u = affine(hn;λloc) (14c)

s = softplus(affine(hn;λscale)) . (14d)
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Parameter Value

Objective Function Validation NLL
Kernel Matern52
Acquisition Function Expected Improvement
Parameter Inference MCMC
MCMC Samples 10
Leapfrog Steps 20
Burn-in Samples 100

Table 8: Bayesian optimisation settings.

Note that we reuse the embedding layer from the
generative model. Finally, a sample is obtained via
z = u + s� ε where ε ∼ N (0, Idz).

MoG prior We parameterise C diagonal Gaus-
sians, which are mixed uniformly. To do so we
need C location vectors, each in Rdz , and C scale
vectors, each in Rdz

>0. To ensure strict positivity for
scales we make σ(c) = softplus(σ̂(c)). The set of
generative parameters θ is therefore extended with
{µ(c)}Cc=1 and {σ̂(c)}Cc=1, each in Rdz .

VampPrior For this we estimate C sequences
{v(c)}Cc=1 of input vectors, each sequence v(c) =

〈v(c)
1 , . . . ,v

(c)
lk
〉 corresponds to a pseudo-input.

This means we extend the set of generative pa-
rameters θ with {v(c)

i }
lc
i=1, each in Rde , for c =

1, . . . , C. For each c, we sample lc at the begin-
ning of training and keep it fixed. Specifically, we
drew C samples from a normal, lc ∼ N (·|µl, σl),
which we rounded to the nearest integer. µl and σl
are the dataset sentence length mean and variance
respectively.

A.2 Bayesian optimisation

Bayesian optimisation (BO) is an efficient method
to approximately search for global optima of a (typ-
ically expensive to compute) objective function
y = f(x), where x ∈ RM is a vector containing
the values of M hyperparameters that may influ-
ence the outcome of the function (Snoek et al.,
2012). Hence, it forms an alternative to grid search
or random search (Bergstra and Bengio, 2012) for
tuning the hyperparameters of a machine learning
algorithm. BO works by assuming that our obser-
vations yn|xn (for n = 1, . . . , N ) are drawn from
a Gaussian process (GP; Rasmussen and Williams,
2005). Then based on the GP posterior, we can
design and infer an acquisition function. This ac-
quisition function can be used to determine where

to “look next” in parameter-space, i.e. it can be
used to draw xN+1 for which we then evaluate the
objective function f(xN+1). This procedure iter-
ates until a set of optimal parameters is found with
some level of confidence.

In practice, the efficiency of BO hinges on multi-
ple choices, such as the specific form of the acqui-
sition function, the covariance matrix (or kernel)
of the GP and how the parameters of the acquisi-
tion function are estimated. Our objective func-
tion is the (importance-sampled) validation NLL,
which can only be computed after a model con-
vergences (via gradient-based optimisation of the
ELBO). We follow the advice of Snoek et al. (2012)
and use MCMC for estimating the parameters of
the acquisition function. This reduced the amount
of objective function evaluations, speeding up the
overall search. Other settings were also based on
results by Snoek et al. (2012), and we refer the
interested reader to that paper for more information
about BO in general. A summary of all relevant
settings of BO can be found in Table 8. We used
the GPYOPT library (authors, 2016) to implement
this procedure.

B Additional Empirical Evidence

In Figure 5 we inspect how MDR and FB approach
different target rates (namely, 10, 20, and 30). Note
how MDR does so more quickly, especially at
higher rates. Figure 6a shows that in terms of vali-
dation perplexity, MDR and FB perform very simi-
larly across target rates. However, Figure 6b shows
that at the end of training the difference between
the target rate and the validation rate is smaller for
MDR.

Figure 7 compares variants of SENVAE trained
with MDR for various rates: a Gaussian-posterior
and Gaussian-prior (blue-solid) to a Gaussian-
posterior and Vamp-prior (orange-dashed). They
perform essentially the same in terms of perplexity
(Figure 7a), but the variant with the stronger prior
relies more on posterior samples for reconstruction
(Figure 7b).

Finally, we list additional samples: Figure 8 lists
samples from RNNLM, vanilla SENVAE and ef-
fectively trained variants (via MDR with target rate
r = 10); Figure 9 lists homotopies from SENVAE
models.
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(c)Rateover timeforr = 30.

Figure 5: Rate progression on the training set in the first 20 epochs of training for SENVAE trained with free bits
(FB) or minimum desired rate (MDR). One can observe that at higher rates, FB struggles to achieve the target rate,
whereas MDR achieves the target rate after a few epochs.
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(a)PPL(↓) forvarious target rates.
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Figure 6: Validation results for SENVAE trained with free bits (FB) or minimum desired rate (MDR).
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(a) Perplexity on validation set: models perform similarly
wellandperplexitydegradesconsiderablyforr > 20.

10 20 30 40 50
Target Rate

0

10

20

30

40

50

Ac
cu

ra
cy

 G
ap

 (%
)

Gauss
Vamp

(b) Accuracy gap: VAEs with stronger latent components
relymoreonposteriorsamplesfor reconstruction.

Figure 7: Comparison of SENVAEs trained with standard prior and Gaussian posterior (Gauss) and Vamp prior
and Gaussian posterior (Vamp) to attain pre-specified rates.
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Model Sample Closest training instance TER

RNNLM
The Dow Jones Industrial Average jumped 26.23
points to2662.91on2643.65.

The Dow Jones Industrial Average fell 26.23
points to 2662.91.

0.23

Thecompaniessaidtheyareinvestigatingtheirown
mindswithseveralcarriers, including theNational
Institutes of Health and Human Services Depart-
mentofHealth,,

The Health and Human Services Department cur-
rently forbids the National Institutes of Health
from funding abortion research as part of its $8
million contraceptive program.

0.69

Andyou’llhavenolongersurewhetheryouwould
doanythingnot– ifyouwant togetyoudon’tknow
whatyou’re,

Reaching for that extra bit of yield can be a big
mistake – especially if you don’t understand what
you’re investing.

0.81

SENVAE
The company said it expects to report net income
of $UNK-NUM million, or $1.04 a share, from
$UNK-NUMmillion,or,

Nine-month net climbed 19% to $UNK-NUM mil-
lion, or $2.21 a primary share, from $UNK-NUM
million, or $1.94 a share.

0.50

The company said it expects to report net income
of $UNK-NUM million, or $1.04 a share, from
$UNK-NUMmillion,or,

Nine-month net climbed 19% to $UNK-NUM mil-
lion, or $2.21 a primary share, from $UNK-NUM
million, or $1.94 a share.

0.50

The company said it expects to report net income
of $UNK-NUM million, or $1.04 a share, from
$UNK-NUMmillion,or,

Nine-month net climbed 19% to $UNK-NUM mil-
lion, or $2.21 a primary share, from $UNK-NUM
million, or $1.94 a share.

0.50

+MDRtraining
They have been growing wary of institutional in-
vestors.

People have been very respectful of each other. 0.46

ThePaloAlto retaileradds that it expects toposta
third-quarter lossofabout$1.8million,or68cents
ashare,compared

Not counting the extraordinary charge, the com-
pany said it would have had a net loss of $3.1
million, or seven cents a share.

0.62

ButMr. Chandidn’t expect tobe thefirst time ina
seriesofcasesof rapeandincest, includingaclaim
of two,

For the year, electronics emerged as Rockwell’s
largest sector in terms of sales and earnings.

0.80

+Vampprior
Butdespite thefact that they’re losing. As for the women, they’re UNK-LC. 0.45

Other companies are also trying to protect their
holdingsfromsmallercompanies.

And ship lines carrying containers are also trying
to raise their rates.

0.60

Dr. Novello said he has been able to unveil a new
proposal forWarnerCommunicationsInc.,which
hasbeentryingtoparticipate in theU.S.

President Bush says he will name Donald E.
UNK-INITC to the new Treasury post of inspector
general, which has responsibilities for the IRS...

0.78

+MoGPrior
At American Stock Exchange composite trading
Friday, Bear Stearns closed at $25.25 an ounce,
down75cents.

In American Stock Exchange composite trading
yesterday , Westamerica closed at $22.25 a share,
down 75 cents.

0.32

Mr. Patel,yes, says themusicwas“extremelyeffec-
tive.”

Mr. Giuliani’s campaign chairman, Peter Powers,
says the Dinkins ad is “deceptive.”

0.57

The pilots will be able to sell the entire insurance
contractonNov. 13.

The proposed acquisition will be subject to ap-
proval by the Interstate Commerce Commission,
Soo Line said.

0.60

Figure 8: Sentences sampled from various models considered in this paper. For the RNNLM, we ancestral-sample
directly from the softmax layer. For SENVAE, we sample from the prior and decode greedily. The vanilla SENVAE
consistently produces the same sample in this setting, that is because it makes no use of the latent space and all
source of variability is encoded in the dynamics of its strong generator. Other SENVAE models were trained with
MDR targeting a rate of 10. Next to each sample we show in italics the closest training instance in terms of an edit
distance (i.e. TER). The higher this distance (it varies from 0 to 1), the more novel the sentence is. This gives us
an idea of whether the model is generating novel outputs or copying from the training data.
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Revenue rose 12% to $UNK-NUM billion from $UNK-NUM billion.
It isnowaytogeta lotofways togetawayfromitsbooks.
AtonepointafterCongresssentCongress toask theSenateDemocrats toextendthebill.
Sofar.
But thenumberofpeoplewhowant topredict that theycanbeusedtokeeptheirownportfolios,
TheU.S.governmenthasbeenannouncedin1986,but itwas introducedinDecember1986
Thecompanysaid itplans tosell itsC$400millionmillionsharesoutstanding
Revenue slipped 4.6% to $UNK-NUM million from $UNK-NUM million.

(a)Vanilla SENVAE withancestral sampling.

Mr. Vinson estimates the industry’s total revenues approach $200 million.
Thecompanysaid itexpects to reportnet incomeof$UNK-NUMmillion,or$1.04ashare,
Thecompanysaid itexpects to reportnet incomeof$UNK-NUMmillion,or$1.04ashare,
Thecompanysaid itexpects to reportnet incomeof$UNK-NUMmillion,or$1.04ashare,
Thecompanysaid itexpects to reportnet incomeof$UNK-NUMmillion,or$1.04ashare,
Thecompanysaid itexpects to reportnet incomeof$UNK-NUMmillion,or$1.04ashare,
Thecompanysaid itexpects to reportnet incomeof$UNK-NUMmillion,or$1.04ashare,
“That’s not what our fathers had in mind.”

(b)Vanilla SENVAE withgreedydecoding.

He could grasp an issue with the blink of an eye.”
Hecouldbecalledforafewmonthsbefore theSenateJudiciaryCommitteeCommittee.
Hewouldbeable toacceptaclueas thepresident’sargument.
But there isnolonger reasontoseewhether theSovietUnionis interested.
But itdoesn’tmeananyformalcommentonthebasis.
However, there isnolonger reasonfor theHart-Scott-RodinoAct.
However,Genentechisn’tpredictinganysignificantslowdownin thefuture.
However, StatesWest isn’t abandoning its pursuit of the much-larger Mesa.

(c) SENVAE trainedwith MDR (r = 10).

Sony was down 130 to UNK-NUM.
Thepricewasdownfrom$UNK-NUM.
Thepricewasdownfrom$UNK-NUMabarrel to$UNK-NUM.
Thepricewasdownabout$130million.
Theyieldonsix-monthCDsrose to7.93%from8.61%.
Friday’ssell-offwasdownabout60%fromayearago.
Friday’sMarketActivity
Friday’s edition misstated the date

(d) SENVAE with MOG prior trainedwith MDR (r = 10).

Lawyers for the Garcias said they plan to appeal.
Lawyers for theagencysaid theycan’tafford tosettle.
Lawyers for therestof theventurewon’tbereached.
Thiswouldbemadefor thepast fewweeks.
Thishasbeenlosing themoneyfor theirown.
Thishasbeenafewweeksago.
Thishasbeenaverydisturbingproblem.
This market has been very badly damaged.”

(e) SENVAE withVampprior trainedwith MDR (r = 10).

Figure 9: Latent space homotopies for various SENVAE models. Note the smooth transition of topic and gram-
matically of the samples in properly trained SENVAE models. Also note the absence of such a smooth transition
in the softmax samples from the vanilla SENVAE model.


