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Abstract

Generating fluent and informative responses

is of critical importance for task-oriented di-

alogue systems. Existing pipeline approaches

generally predict multiple dialogue acts first

and use them to assist response generation.

There are at least two shortcomings with such

approaches. First, the inherent structures of

multi-domain dialogue acts are neglected. Sec-

ond, the semantic associations between acts

and responses are not taken into account for

response generation. To address these issues,

we propose a neural co-generation model that

generates dialogue acts and responses concur-

rently. Unlike those pipeline approaches, our

act generation module preserves the semantic

structures of multi-domain dialogue acts and

our response generation module dynamically

attends to different acts as needed. We train the

two modules jointly using an uncertainty loss

to adjust their task weights adaptively. Exten-

sive experiments are conducted on the large-

scale MultiWOZ dataset and the results show

that our model achieves very favorable im-

provement over several state-of-the-art models

in both automatic and human evaluations.

1 Introduction

Task-oriented dialogue systems aim to facilitate

people with such services as hotel reservation and

ticket booking through natural language conversa-

tions. Recent years have seen a rapid proliferation

of interests in this task from both academia and

industry (Bordes et al., 2017; Budzianowski et al.,

2018; Wu et al., 2019). A standard architecture

of these systems generally decomposes this task

into several subtasks, including natural language

understanding (Gupta et al., 2018), dialogue state

tracking (Zhong et al., 2018) and natural language

∗Xiaojun Quan is the corresponding author of this paper.
Most of this work was done when Kai Wang was working as
an intern at Alibaba DAMO Academy.

I'm looking for an expensive Indian restaurant.

That sounds great! Can I get their address and 
phone number?

Belief State: restaurant-{food=Indian, 
name=Curry Garden}

External Database

User

Dialogue Example
System

I have 5. How about Curry Garden? It serves 
Indian food and is in the expensive price range. 

Sure! Their address is 106 regent street city centre1 
and their phone number is 012233023302. Would you 
like me to book a table3 for you?

Dialog Acts: 
1restaurant-inform-address
2restaurant-inform-phone
3book-inform-none

Predict

ID Name Food Address ...

2 Curry Garden Indian 106 ... centre ...

Figure 1: An example of dialogue from the MultiWOZ

dataset, where the dialogue system needs to generate

a natural language response according to current belief

state and related database records.

generation (Su et al., 2018). They can be modeled

separately and combined into a pipeline system.

Figure 1 shows a dialogue example, from which

we can notice that the natural language generation

subtask can be further divided into dialogue act

prediction and response generation (Chen et al.,

2019; Zhao et al., 2019; Wen et al., 2017). While

the former is intended to predict the next action(s)

based on current conversational state and database

information, response generation is used to produce

a natural language response based on the action(s).

In order for dialogues to be natural and effective,

responses should be fluent, informative, and rele-

vant. Nevertheless, current sequence-to-sequence

models often generate uninformative responses like

“I don’t know” (Li et al., 2016a), hindering the di-

alogues to continue or even leading to a failure.

Some researchers (Pei et al., 2019; Mehri et al.,
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hotel

restaurant

attraction

name

request

inform

phone

domain action slot
Dialog Act
Graph

Sequence Generation
(Ours)

Multiple Binary 
Classification (HDSA) 

hotel ... inform...phone

reference

<sos> rest. inform ... area phone

Figure 2: Demonstration of hierarchical dialogue act

structures (top) and different approaches (bottom) for

dialogue act prediction. Classification approaches sep-

arately predict each act item (domain, action and slot),

while generation approaches treat each act as a token

that can be generated sequentially.

2019) sought to combine multiple decoders into a

stronger one to avoid such responses, while others

(Chen et al., 2019; Wen et al., 2015; Zhao et al.,

2019; Wen et al., 2017) represent dialogue acts in a

global, static vector to assist response generation.

As pointed out by Chen et al. (2019), dialogue

acts can be naturally organized in hierarchical

structures, which has yet to be explored seriously.

Take two acts station-request-stars and restaurant-
inform-address as an example. While the first act

rarely appears in real-world dialogues, the second

is more often. Moreover, there can be multiple

dialogue acts mentioned in a single dialogue turn,

which requires the model to attend to different acts

for different sub-sequences. Thus, a global vector

is unable to capture the inter-relationships among

acts, nor is it flexible for response generation espe-

cially when more than one act is mentioned.

To overcome the above issues, we treat dia-

logue act prediction as another sequence genera-

tion problem like response generation and propose

a co-generation model to generate them concur-

rently. Unlike those classification approaches, act

sequence generation not only preserves the inter-

relationships among dialogue acts but also allows

close interactions with response generation. By

attending to different acts, the response generation

module can dynamically capture salient acts and

produce higher-quality responses. Figure 2 demon-

strates the difference between the classification and

the generation approaches for act prediction.

As for training, most joint learning models rely

on hand-crafted or tunable weights on development

sets (Liu and Lane, 2017; Mrkšić et al., 2017; Ras-

togi et al., 2018). The challenge here is to combine

two sequence generators with varied vocabularies

and sequence lengths. The model is sensitive dur-

ing training and nontrivial to generate an optimal

weight. To address this issue, we opt for an un-

certainty loss (Kendall et al., 2018) to adaptively

adjust the weight according to task-specific uncer-

tainty. We conduct extensive studies on a large-

scale task-oriented dataset to evaluate the model.

The experimental results confirm the effectiveness

of our model with very favorable performance over

several state-of-the-art methods.

The contributions of this work include:

• We model dialogue act prediction as a se-

quence generation problem that allows to ex-

ploit act structures for the prediction.

• We propose a co-generation model to generate

act and response sequences jointly, with an

uncertainty loss used for adaptive weighting.

• Experiments on MultiWOZ verify that our

model outperforms several state-of-the-art

methods in automatic and human evaluations.

2 Related Work

Dialogue act prediction and response generation

are closely related in general in the research of dia-

logue systems (Chen et al., 2019; Zhao et al., 2019;

Wen et al., 2017), where dialogue act prediction is

first conducted and used for response generation.

Each dialogue act can be treated as a triple (domain-

action-slot) and all acts together are represented in

a one-hot vector (Wen et al., 2015; Budzianowski

et al., 2018). Such sparse representation makes

the act space very large. To overcome this issue,

Chen et al. (2019) took into account act structures

and proposed to represent the dialogue acts with

level-specific one-hot vectors. Each dimension of

the vectors is predicted by a binary classifier.

To improve response generation, Pei et al. (2019)

proposed to learn different expert decoders for

different domains and acts, and combined them

with a chair decoder. Mehri et al. (2019) ap-

plied a cold-fusion method (Sriram et al., 2018)

to combine their response decoder with a language

model. Zhao et al. (2019) treated dialogue acts

as latent variables and used reinforcement learn-

ing to optimize them. Reinforcement learning was

also applied to find optimal dialogue policies in

task-oriented dialogue systems (Su et al., 2017;



7127

Williams et al., 2017) or obtain higher dialog-level

rewards in chatting (Li et al., 2016b; Serban et al.,

2017). Besides, Chen et al. (2019) proposed to pre-

dict the acts explicitly with a compact act graph rep-

resentation and employed hierarchical disentangled

self-attention to control response text generation.

Unlike those pipeline architectures, joint learn-

ing approaches try to explore the interactions be-

tween act prediction and response generation. A

large body of research in this direction uses a

shared user utterance encoder and train natural lan-

guage understanding jointly with dialogue state

tracking (Mrkšić et al., 2017; Rastogi et al., 2018).

Liu and Lane (2017) proposed to train a unified

network for two subtasks of dialogue state track-

ing, i.e., knowledge base operation and response

candidate selection. Jiang et al. (2019) showed that

joint learning of dialogue act and response bene-

fits representation learning. These works generally

demonstrate that joint learning of the subtasks of

dialogue systems is able to improve each other and

the overall system performance.

3 Architecture

Let T = {U1, R1, . . . , Ut−1, Rt−1, Ut} denote the

dialogue history in a multi-turn conversational

setting, where Ui and Ri are the i-th user ut-

terance and system response, respectively. D =
{d1, d2, . . . , dn} includes the attributes of related

database records for current turn. The objective of

a dialogue system is to generate a natural language

response Rt = y1y2 . . . yn of n words based on the

current belief state and database attributes.

In our framework, dialogue acts and response

are co-generated based on the transformer encoder-

decoder architecture (Vaswani et al., 2017). A stan-

dard transformer includes a multi-head attention

layer that encodes a value V according to the atten-

tion weights from query Q to key K, followed by

a position-wise feed-forward network (Gf ):

O = V + Gf (MultiHead(Q,K, V )) (1)

where Q,K, V,O ∈ R
n×d. In what follows we use

F(Q,K, V ) to denote the transformer.

Encoder We use E = Emb([T ;D]) to represent

the concatenated word embeddings of dialogue his-

tory T and database attributes D. The transformer

F(Q,K, V ) is then used to encode E and output

its hidden state He:

He = F(E,E,E) (2)

Decoder At each time step t of response genera-

tion, the decoder first computes a self-attention hrt
over already-generated words y1:t−1:

hrt = F(ert−1, e
r
1:t−1, e

r
1:t−1) (3)

where ert−1 is the embedding of the (t− 1)-th gen-

erated word and er1:t−1 is an embedding matrix of

er1 to ert−1. Cross-attention from hrt to dialogue

history T is then executed:

crt = F(hrt , H
e, He) (4)

The resulting vectors of Equations 3 and 4, hrt and

crt , are concatenated and mapped to a distribution

of vocabulary size to predict next word:

p(yt|y1:t−1) = softmax(Wr[c
r
t ;h

r
t ]) (5)

4 The MARCO Approach

Based on the above encoder-decoder architecture,

our model is designed to consist of three compo-

nents, namely, a shared encoder, a dialogue act

generator, and a response generator. As shown in

Figure 3, instead of predicting each act token indi-

vidually and separately from response generation,

our model aims to generate act sequence and re-

sponse concurrently in a joint model which is opti-

mized by the uncertainty loss (Kendall et al., 2018).

4.1 Dialogue Acts Generation
Dialogue acts can be viewed as a semantic plan for

response generation. As shown in Figure 2, they

can be naturally organized in hierarchical struc-

tures, including domain level, action level, and slot

level. Most existing methods treat dialogue acts as

triples represented in one-hot vectors and predict

the vector values with binary classifiers (Wen et al.,

2015; Budzianowski et al., 2018). Such representa-

tions ignore the inter-relationships and associations

among acts, domains, actions and slots. For exam-

ple, the slot area may appear in more than one

domain. Unlike them, we model the prediction of

acts as a sequence generation problem, which takes

into consideration the structures of acts and gener-

ates each act token conditioned on its previously-

generated tokens. In this approach, different do-

mains are allowed to share common slots and the

search space of dialogue act is greatly reduced.

The act generation starts from a special to-

ken “〈SOS〉” and produces dialogue acts A =
a1a2 . . . an sequentially. During training, the act
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Belief State: restaurant-{food=Indian}

Ut Response Generator

Shared Encoder

<SOS>   ...    How           about      <Res.Name>   …      price 

Dialog State 
Tracking

Ut-1

 Rt-1

Rt: I have 5. How about Curry Garden? It serves 
Indian food and is in the expensive price range.

... (History+DB)
Ut: I 'm looking for an expensive Indian 
restaurant.

Post-process

Act Generator
<SOS>     Restaurant   Recommend  ...   Name        Price

External Database

Dynamic Act 
Attention

DB

Figure 3: Architecture of the proposed model for act and response co-generation, where act and response generators

share the same encoder. The response generator is allowed to attend to different act hidden states as needed using

dynamic act attention. The two generators are trained jointly and optimized by the uncertainty loss.

sequence is organized by domain, action and slot,

while items at each level are arranged in dictionary

order, where identical items are merged. When de-

coding each act token, we first represent the current

belief state with an embedding vector vb and add it

to each act word embedding eat as:

uat = Wbvb + eat . (6)

Finally, the decoder of Section 3.2 is used to gener-

ate hidden states Ha and act tokens accordingly.

4.2 Acts and Response Co-Generation

Dialogue acts and responses are closely related in

dialogue systems. On one hand, system responses

are generated based on dialogue acts. On the other,

their shared information can improve each other

through joint learning.

Shared Encoder Our dialogue act generator and

response generator share one same encoder and

input, but having different masking strategies for

the input to focus on different information. In par-

ticular, only the current utterance is kept for act

generation, while the entire history utterances are

used for response generation.1

1Empirical evidences show that act generation is more
related to the current utterance, while response generation
benefits more from long dialogue history.

Dynamic Act Attention A response usually cor-

responds to more than one dialogue act in multi-

domain dialogue systems. Nevertheless, existing

methods mostly use a static act vector to represent

all the acts, and add the vector to each response to-

ken representation. They ignore the fact that differ-

ent subsequences of a response may need to attend

to different acts. To address this issue, we compute

dynamic act attention ort from the response to acts

when generating a response word:

ort = F(hrt , H
a, Ha) (7)

where hrt is the current hidden state produced by

Equation 3. Then, we combine ort and hrt with

response-to-history attention crt (by Equation 4) to

estimate the probabilities of next word:

p(yt|y1:t−1) = softmax(Wr[h
r
t ; c

r
t ; o

r
t ]) (8)

Uncertainty Loss The cross-entropy function is

used to measure the generation losses, La(θ) and

Lr(θ), of dialogue acts and responses, respectively:

La(θ) = −
Ta∑

j=1

log p(a
∗(i)
j |a(i)1:j−1, T,D, vb) (9)

Lr(θ) = −
Tr∑

j=1

log p(y
∗(i)
j |y(i)1:j−1, T,D,A) (10)
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where the ground-truth tokens of acts and response

of each turn are represented by A∗ and Y ∗, while

the predicted tokens by A and Y .

To optimize the above functions jointly, a general

approach is to compute a weighted sum like:

L(θ) = αLa(θ) + (1− α)Lr(θ) (11)

However, dialogue acts and responses vary seri-

ously in sequence length and vocabulary size, mak-

ing the weight α unstable to tune. Instead, we opt

for an uncertainty loss (Kendall et al., 2018) to

adjust it adaptively:

L(θ, σ1, σ2) = 1

2σ2
1

La(θ)+
1

2σ2
2

Lr(θ)+log σ2
1σ

2
2

(12)

where σ1 and σ2 are two learnable parameters. The

advantage of this uncertainty loss is that it models

the homoscedastic uncertainty of each task and pro-

vides task-dependent weight for multi-task learning

(Kendall et al., 2018). Our experiments also con-

firm that it leads to more stable weighting than the

traditional approach (Section 6.3).

5 Experiments

5.1 Dataset and Metrics
MultiWOZ 2.0 (Budzianowski et al., 2018) is a

large-scale multi-domain conversational datatset

consisting of thousands of dialogues in seven do-

mains. For fair comparison, we use the same val-

idation set and test set as previous studies (Chen

et al., 2019; Zhao et al., 2019; Budzianowski et al.,

2018), each set including 1000 dialogues.2 We

use the Inform Rate and Request Success metrics

to evaluate dialog completion, with one measur-

ing whether a system has provided an appropriate

entity and the other assessing if it has answered

all requested attributes. Besides, we use BLEU

(Papineni et al., 2002) to measure the fluency of

generated responses. To measure the overall sys-

tem performance, we compute a combined score:

(Inform Rate+Request Success)×0.5+BLEU as

before (Budzianowski et al., 2018; Mehri et al.,

2019; Pei et al., 2019).

5.2 Implementation Details
The implementation3 is on a single Tesla P100

GPU with a batch size of 512. The dimension of
2There are only five domains (restaurant, hotel, attract,

taxi, train) of dialogues in the test set as the other two (hospital,
police) have insufficient dialogues.

3https://github.com/InitialBug/
MarCo-Dialog

word embeddings and hidden size are both set to

128. We use a 3-layer transformer with 4 heads for

the multi-head attention layer. For decoding, we

use a beam size of 2 to search for optimal results,

and apply trigram avoidance (Paulus et al., 2018) to

fight trigram-level repetition. During training, we

first train the act generator for 10 epochs for warm-

up and then optimize the uncertainty loss with the

Adam optimizer (Kingma and Ba, 2015).

5.3 Baselines
A few mainstream models are used as baselines for

comparison with our neural co-generation model

(MARCO), being categorized into three categories:

• Without Act. Models in this category directly

generate responses without act prediction, in-

cluding LSTM (Budzianowski et al., 2018),

Transformer (Vaswani et al., 2017), Token-

MoE (Pei et al., 2019) and Structured Fusion

(Mehri et al., 2019).

• One-Hot Act. In SC-LSTM (Wen et al.,

2015), dialogue acts are treated as triples and

information flow from acts to response genera-

tion is controlled by gates. HDSA (Chen et al.,

2019) is a strong two-stage model, which re-

lies on BERT (Devlin et al., 2019) to predict

a one-hot act vector for response generation.

• Sequential Act. Since our model does not

rely on BERT, to make a fair comparison with

HDSA, we design the experiments from two

aspects to ensure they have the same dialogue

act inputs for response generation. First, the

act sequences produced by our co-generation

model are converted into one-hot vectors and

fed to HDSA. Second, the predicted one-hot

act vectors by BERT are transformed into act

sequences and passed to our model as inputs.

5.4 Overall Results
The overall results are shown in Table 1, in which

HDSA (MARCO) means HDSA using MARCO’s

dialogue act information, and MARCO (BERT)

means MARCO based on BERT’s act prediction.

From the table we can notice that our co-generation

model (MARCO) outperforms all the baselines in

Inform Rate, Request Success, and especially in

combined score which is an overall metric. By

comparing the two HDSA models, we can find

HDSA derives its main performance from the ex-

ternal BERT, which can also be used to improve our

MARCO considerably (MARCO (BERT)). These
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Dialog Act Model Inform Success BLEU Combined Score

Without Act

LSTM 71.29 60.96 18.80 84.93

Transformer 71.10 59.90 19.10 84.60

TokenMoE 75.30 59.70 16.81 84.31

Structured Fusion 82.70 72.10 16.34 93.74

One-hot Act

SC-LSTM 74.50 62.50 20.50 89.00

HDSA (MARCO) 76.50 62.30 21.85 91.25

HDSA 82.90 68.90 23.60 99.50

Sequential Act
MARCO 90.30 75.20 19.45 102.20

MARCO (BERT) 92.30 78.60 20.02 105.47

Table 1: Overall results on the MultiWOZ 2.0 dataset.

Hotel
Train

Restaurant

Attra
ction Taxi

Single-domain

Multi-d
omain

85

90

95

100

105

110

115

HDSA
MARCO

Figure 4: Combined score of MARCO vs. HDSA

across different domains. If a dialogue involves more

than one domain, it is copied into each domain. Single-

domain includes dialogues with only one domain men-

tioned, while the rest belongs to the multi-domain.

results confirm the success of MARCO by mod-

eling act prediction as a generation problem and

training it jointly with response generation.

Another observation is that despite its strong

overall performance, MARCO shows inferior

BLEU performance to the two HDSA models. The

reason behind this is studied and analyzed in hu-

man evaluation (Section 7), showing that our model

often generates responses inconsistent with refer-

ences but favored by human judges.

The performance of our model across differ-

ent domains is also compared against HDSA.

The average number of turns is 8.93 for single-

domain dialogues and 15.39 for multi-domain di-

alogues (Budzianowski et al., 2018). As in Fig-

ure 4, our model shows superior performance to

HDSA across all domains. The results suggest that

MARCO is good at dealing with long dialogues.

Results on MultiWOZ 2.1 We also conducted

experiments on MultiWOZ 2.1 (Eric et al., 2019),

Model Inform Success BLEU Score

Transformer 72.50 52.70 19.08 81.68

HDSA 86.30 70.60 22.36 100.81

MARCO 91.50 76.10 18.52 102.32

MARCO (BERT) 92.50 77.80 19.54 104.69

Table 2: Overall results on the MultiWOZ 2.1 dataset.

which is an updated version of MultiWOZ 2.0. As

shown in Table 2, the overall results are consistent

with that on MultiWOZ 2.0.

6 Further Analysis

More thorough studies and analysis are conducted

in this section, trying to answer three questions:

(1) How is the performance of our act generator in

comparison with existing classification methods?

(2) Can our joint model successfully build seman-

tic associations between acts and responses? (3)

How does the uncertainty loss contribute to our

co-generation model?

6.1 Dialogue Act Prediction

To evaluate the performance of our act genera-

tor, we compare it with several baseline methods

mentioned in (Chen et al., 2019), including BiL-

STM, Word-CNN, and 3-layer Transformer. We

use MARCO to represent our act generator which

is trained jointly with the response generator, and

use Transformer (GEN) to denote our act generator

without joint training. From Table 3, we notice that

the separate generator, Transformer (GEN), per-

forms much better than BiLSTM and Word-CNN,

but comparable with Transformer. But after trained

jointly with the response generator, MARCO man-

ages to show the best performance, confirming the

effect of the co-generation.
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Method F1

BiLSTM 71.4

Word-CNN 71.5

Transformer 73.1

Transformer (GEN) 73.2

MARCO 73.9

Table 3: Results of different act generation methods,

where BiLSTM, Word-CNN and Transformer are base-

lines from (Chen et al., 2019). MARCO is our act gen-

erator trained jointly with the response generator and

Transformer (GEN) is that without joint training.

Model Inform Succ BLEU Combined

HDSA 82.9 68.9 23.60 99.50

Pipeline1 84.3 54.4 16.00 85.35

Pipeline2 86.6 66.0 18.31 94.61

Joint 90.3 75.2 19.45 102.20

Table 4: Results of response generation by joint and

pipeline models, where Pipeline1 and Pipeline2 repre-

sent two pipeline approaches with or without using dy-

namic act attention. The performance of HDSA, as the

best pipeline model, is provided for comparison.

6.2 Joint vs. Pipeline

To study the influence of the joint training and the

dynamic act attention on response generation, we

implement two pipeline approaches for compari-

son. We first train our act generator separately from

response generation. Then, we keep its parame-

ters fixed and train the response generator. The

first baseline is created by replacing the dynamic

act attention (Equation 7) with an average of the

act hidden states, while the second baseline uses

the dynamic act attention. As shown in Table 4,

Pipeline2 with dynamic act attention is superior to

Pipeline1 without it in all metrics, but inferior to the

joint approach. Our joint model also surpasses the

currently state-of-the-art pipeline system HDSA,

even HDSA uses BERT. We find that by utilizing

sequential acts, the dynamic act attention mecha-

nism helps the response generator capture the local

information by attending to different acts.

An illustrative example is shown in Figure 5,

where the response generator can attend to the lo-

cal information such as “day” and “stay” as needed

when generating a response asking about picking

a different day or shorter stay. We reckon that by

utilizing sequential acts, response generation ben-

efits in two ways. First, the dynamic act attention

allows the generator to attend to different acts when

Sequencial  Act

Response Sequence

Figure 5: An illustrative example of the dynamic act at-

tention mechanism. Response (row) subsequence can

attend to the act (column) token “day” or “stay” as

needed when generating a response asking about pick-

ing a different day or shorter stay.

Figure 6: Performance of the uncertainty loss and the

weighted-sum loss on the development dataset.

generating a subsequence. Second, the joint train-

ing makes the two stages interact with each other,

easing error propagation of pipeline systems.

6.3 Uncertainty Loss
We opt for an uncertainty loss to optimize our joint

model, rather than a traditional weighted-sum loss.

To illustrate their difference, we conduct an exper-

iment on the development set. For the traditional

loss (Equation 11), we run for each weight from 0

to 1 stepped by 0.1. Note that since the weights, σ1
and σ2, in the uncertainty loss are not hyperparam-

eters but learned internally to each batch, we only

record the best score within each round without

giving the values of σ1 and σ2. As shown in Figure

6, the uncertainty loss can learn adaptive weights

with consistently superior performance.

7 Human Evaluation

We conduct a human study to evaluate our model

by crowd-sourcing.4 For this purpose we randomly

selected 100 sample dialogues (742 turns in total)

from the test dataset and constructed two groups of

systems for comparison: MARCO vs. HDSA and

4The annotation results are available at https:
//github.com/InitialBug/MarCo-Dialog/
tree/master/human_evaluation
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MARCO HDSA

MARCO vs. HDSA

Readability

Completion 17

2

74

94

9

4

Win Tie Lose

MARCO Human Response

MARCO vs. Human Response

Readability

Completion 30

9

47

75

23

16

100

100

100

100

Figure 7: Results of human study in response quality.

Two groups of systems are studied, where the top fig-

ure corresponds to results of MARCO vs. HDSA and

the bottom figure represents MARCO vs. Human Re-

sponse (ground-truth). “Win”, “Tie” or “Lose” respec-

tively indicate the proportions that our MARCO system

wins over, ties with or loses to its counterpart.

MARCO vs. Human Response, where Human Re-

sponse means the reference responses. Responses

generated by each group were randomly assigned

in pairs to 3 judges, who ranked them according to

their completion and readability (Chen et al., 2019;

Zhang et al., 2019). Completion measures if the

response correctly answers a user query, including

relevance and informativeness. Readability reflects

how fluent, natural and consistent the response is.

The results of this study are shown in Figure 7,

where “Win”, “Tie” or “Lose” mean our MARCO

system wins over, ties with or loses to its counter-

part, respectively. From the results we note that

MARCO outperforms HDSA and Human Response

in completion, and ties 94% with HDSA in read-

ability while underperforming Human Response.

Overall speaking, MARCO is superior to HDSA

and comparable with Human Response. We further

analyzed the bad cases of our model in readability

and found that our model slightly suffers from to-

ken level repetition, a problem that can be solved

by methods like the coverage mechanism (Mi et al.,

2016; Tu et al., 2016). In completion, our model

can understand the users’ need and tends to pro-

vides them more relevant information, so that they

can finish their goals in shorter turns.

We present two examples in Figure 8. In the

first example, the user requests the hotel type while

HDSA ignores it. The user requests to book one

ticket in the second example, yet both HDSA and

Human Response ask about the number once again.

In contrast, our model directly answers the ques-

tions with correct information. To sum up, MARCO

successfully improves the dialogue system by gen-

erating relevant and informative responses.

Example 1

User:
I’m trying to plan a trip there but need a cheap place to

stay.

. . .

System: Finches Bed and Breakfast is cheap.

User:
Okay. Sounds good. Can you tell me the type of hotel

and provide me with the hotel’s phone number?

Results

Reference:
Finches is a guesthouse, and their number is 012***53.

Can I help with anything else today?

HDSA: The phone number for Finches is 012***53.

MARCO: Finches is a guesthouse, and their number is 012***53.

Example 2

User:
I am looking for a train that leaves on Thursday going

to Cambridge.

. . .

System:
TR1149 departs London Kings Cross at 17:17 and

arrives in Cambridge at 18:08. Will that work?

User:
Yes it will. Can you book that for just me and provide

the reference number?

Results
Reference:Sure thing! How many tickets do you need?

HDSA: How many tickets would you like me to book for you?

MARCO:
I was able to book one ticket for you. Your reference

number is R57G4DU4.

Figure 8: Two examples to show that MARCO success-

fully improves the dialogue system by generating rele-

vant and informative responses.

8 Conclusion

In this paper, we presented a novel co-generation

model for dialogue act prediction and response gen-

eration in task-oriented dialogue systems. Unlike

previous approaches, we modeled act prediction as

a sequence generation problem to exploit the se-

mantic structures of acts and trained it jointly with

response generation via dynamic attention from re-

sponse generation to act prediction. To train this

joint model, we applied an uncertainty loss for

adaptive weighting of the two tasks. Extensive stud-

ies were conducted on a large-scale task-oriented

dataset to evaluate the proposed model, and the re-

sults confirm its effectiveness with very favorable

performance over several state-of-the-art methods.
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