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Abstract

Transition-based parsers implemented with
Pointer Networks have become the new state
of the art in dependency parsing, excelling
in producing labelled syntactic trees and out-
performing graph-based models in this task.
In order to further test the capabilities of
these powerful neural networks on a harder
NLP problem, we propose a transition system
that, thanks to Pointer Networks, can straight-
forwardly produce labelled directed acyclic
graphs and perform semantic dependency pars-
ing. In addition, we enhance our approach
with deep contextualized word embeddings
extracted from BERT. The resulting system
not only outperforms all existing transition-
based models, but also matches the best fully-
supervised accuracy to date on the SemEval
2015 Task 18 English datasets among previous
state-of-the-art graph-based parsers.

1 Introduction

In dependency parsing, the syntactic structure of a
sentence is represented by means of a labelled tree,
where each word is forced to be attached exclu-
sively to another that acts as its head. In contrast,
semantic dependency parsing (SDP) (Oepen et al.,
2014) aims to represent binary predicate-argument
relations between words of a sentence, which re-
quires producing a labelled directed acyclic graph
(DAG): not only semantic predicates can have mul-
tiple or zero arguments, but words from the sen-
tence can be attached as arguments to more than
one head word (predicate), or they can be outside
the SDP graph (being neither a predicate nor an
argument) as shown in the examples in Figure 1.
Since existing dependency parsers cannot be di-
rectly applied, most SDP research has focused on
adapting them to deal with the absence of single-
head and connectedness constraints and to produce
an SDP graph instead.

Figure 1: Sentence from the SemEval 2015 Task 18 de-
velopment set parsed with semantic dependencies fol-
lowing the DM, PAS and PSD formalisms.

As in dependency parsing, we can find two main
families of approaches to efficiently generate accu-
rate SDP graphs. On the one hand, graph-based
algorithms have drawn more attention since adapt-
ing them to this task is relatively straightforward.
In particular, these globally optimized methods in-
dependently score arcs (or sets of them) and then
search for a high-scoring graph by combining these
scores. From one of the first graph-based DAG
parsers proposed by McDonald and Pereira (2006)
to the current state-of-the-art models (Wang et al.,
2019; He and Choi, 2019), different graph-based
SDP approaches have been presented, providing ac-
curacies above their main competitors: transition-
based DAG algorithms.

A transition-based parser generates a sequence
of actions to incrementally build a valid graph (usu-
ally from left to right). This is typically done by
local, greedy prediction and can efficiently parse a
sentence in a linear or quadratic number of actions
(transitions); however, the lack of global inference
makes them more prone to suffer from error propa-
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gation: i.e., since transitions are sequentially and
locally predicted, an erroneous action can affect fu-
ture predictions, having a significant impact in long
sentences and being, to date, less appealing for SDP.
In fact, in recent years only a few contributions,
such as the system developed by Wang et al. (2018),
present a purely transition-based SDP parser. It is
more common to find hybrid systems that combine
transition-based approaches with graph-based tech-
niques to alleviate the impact of error propagation
in accuracy (Du et al., 2015), but this penalizes the
efficiency provided by transition-based algorithms.

Away from the current mainstream, we present
a purely transition-based parser that directly gener-
ates SDP graphs without the need of any additional
techniques. We rely on Pointer Networks (Vinyals
et al., 2015) to predict transitions that can attach
multiple heads to the same word and incrementally
build a labelled DAG. This kind of neural networks
provide an encoder-decoder architecture that is ca-
pable of capturing information from the whole sen-
tence and previously created arcs, alleviating the
impact of error propagation and already showing
remarkable results in transition-based dependency
parsing (Ma et al., 2018; Fernández-González and
Gómez-Rodrı́guez, 2019). We further enhance our
neural network with deep contextualized word em-
beddings extracted from the pre-trained language
model BERT (Devlin et al., 2019).

The proposed SDP parser1 can process sentences
in SDP treebanks (where structures are sparse
DAGs with a low in-degree) in O(n2log n) time,
or O(n2) without cycle detection. This is more effi-
cient than the current fully-supervised state-of-the-
art system by Wang et al. (2019) (O(n3) without
cycle detection), while matching its accuracy on
the SemEval 2015 Task 18 datasets (Oepen et al.,
2015). In addition, we also prove that our novel
transition-based model provides promising accu-
racies in the semi-supervised scenario, achieving
some state-of-the-art results.

2 Related Work

An early approach to DAG parsing was imple-
mented as a modification to a graph-based parser
by McDonald and Pereira (2006). This produced
DAGs using approximate inference by first finding
a dependency tree, and then adding extra edges
that would increase the graph’s overall score. A

1Source code available at https://github.com/
danifg/SemanticPointer.

few years later, this attempt was outperformed by
the first transition-based DAG parser by Sagae and
Tsujii (2008). They extended the existing transition
system by Nivre (2003) to allow multiple heads per
token. The resulting algorithm was not able to pro-
duce DAGs with crossing dependencies, requiring
the pseudo-projective transformation by Nivre and
Nilsson (2005) (plus a cycle removal procedure) as
a post-processing stage.

More recently, there has been a predominance
of purely graph-based DAG models since the Se-
mEval 2015 Task 18 (Oepen et al., 2015). Almeida
and Martins (2015) adapted the pre-deep-learning
dependency parser by Martins et al. (2013) to pro-
duce SDP graphs. This graph-based parser en-
codes higher-order information with hand-crafted
features and employs the AD3 algorithm (Mar-
tins et al., 2011) to find valid DAGs during de-
coding. This was extended by Peng et al. (2017)
with BiLSTM-based feature extraction and mul-
titask learning: the three formalisms considered
in the shared task were jointly learned to improve
final accuracy.

After the success of Dozat et al. (2017) in graph-
based dependency parsing, Dozat and Manning
(2018) proposed minor adaptations to use this bi-
affine neural architecture to produce SDP graphs.
To that end, they removed the maximum span-
ning tree algorithm (Chu and Liu, 1965; Edmonds,
1967) necessary for decoding well-formed depen-
dency trees and simply kept those edges with a pos-
itive score. In addition, they trained the unlabelled
parser with a sigmoid cross-entropy (instead of the
original softmax one) in order to accept multiple
heads.

The parser by Dozat and Manning (2018) was
recently improved by two contributions. Firstly,
Wang et al. (2019) manage to add second-order
information for score computation and then apply
either mean field variational inference or loopy be-
lief propagation information to decode the highest-
scoring SDP graph. While significantly boosting
parsing accuracy, the original O(n2) runtime com-
plexity is modified to O(n3) in the resulting SDP
system. Secondly, He and Choi (2019) significantly
improve the original parser’s accuracy by not only
using contextualized word embeddings extracted
from BERT (Devlin et al., 2019), but also intro-
ducing contextual string embeddings (called Flair)
(Akbik et al., 2018), which consist in a novel type
of word vector representations based on character-

https://github.com/danifg/SemanticPointer
https://github.com/danifg/SemanticPointer
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level language modeling. Both extensions, (Wang
et al., 2019) and (He and Choi, 2019), are currently
the state of the art on the SemEval 2015 Task 18 in
the fully-supervised and semi-supervised scenarios,
respectively.

Kurita and Søgaard (2019) have also recently
proposed a complex approach that iteratively ap-
plies the syntactic dependency parser by Zhang
et al. (2017), sequentially building a DAG structure.
At each iteration, the graph-based parser selects the
highest-scoring arcs, keeping the single-head con-
straint. The process ends when no arcs are added in
the last iteration. The combination of partial parses
results in an SDP graph. Since the graph is built in
a sequential process, they use reinforcement learn-
ing to guide the model through more optimal paths.
Following Peng et al. (2017), multi-task learning is
also added to boost final accuracy.

On the other hand, the use of transition-based
algorithms in the SDP task had been less explored
until very recently. Du et al. (2015) presented
a voting-based ensemble of fourteen graph- and
transition-based parsers. In their work, they no-
ticed that individual graph-based models outper-
form transition-based algorithms, assigning, during
voting, higher weights to them. Among the transi-
tion systems used, we can find the one developed
by Titov et al. (2009), which is not able to cover all
SDP graphs.

We have to wait until the work by Wang et al.
(2018) to see that a purely transition-based SDP
parser (enhanced with a simple model ensemble
technique) can achieve competitive results. They
simply modified the preconditions of the complex
transition system by Choi and McCallum (2013)
to produce unrestricted DAG structures. In addi-
tion, their system was implemented by means of
stack-LSTMs (Dyer et al., 2015), enhanced with
BiLSTMs and Tree-LSTMs for feature extraction.

We are, to the best of our knowledge, first to ex-
plore DAG parsing with Pointer Networks, propos-
ing a purely transition-based algorithm that can
be a competitive alternative to graph-based SDP
models.

Finally, during the reviewing process of this
work, the proceedings of the CoNLL 2019 shared
task (Oepen et al., 2019) were released. In that
event, SDP parsers were evaluated on updated
versions of SemEval 2015 Task 18 datasets, as
well as on datasets in other semantic formalisms
such as Abstract Meaning Representation (AMR)

(Banarescu et al., 2013) and Universal Cogni-
tive Conceptual Annotation (UCCA) (Abend and
Rappoport, 2013). Although graph-based parsers
achieved better accuracy in the SDP track, sev-
eral BERT-enhanced transition-based approaches
were proposed. Among them we can find an ex-
tension (Che et al., 2019) of the system by Wang
et al. (2018), several adaptations for SDP (Her-
shcovich and Arviv, 2019; Bai and Zhao, 2019)
of the transition-based UCCA parser by Hersh-
covich et al. (2017), as well as an SDP variant (Lai
et al., 2019) of the constituent transition system
introduced by Fernández-González and Gómez-
Rodrı́guez (2019). Also in parallel to the develop-
ment of this research, Zhang et al. (2019) proposed
a transition-based parser that, while it can be ap-
plied for SDP, was specifically designed for AMR
and UCCA parsing (where graph nodes do not cor-
respond with words and must be generated during
the parsing process). In particular, this approach
incrementally builds a graph by predicting at each
step a semantic relation composed of the target and
source nodes plus the arc label. While this can be
seen as an extension of our approach for those tasks
where nodes must be generated, its complexity pe-
nalizes accuracy in the SDP task.

3 Multi-head Transition System

We design a novel transition system that is able
to straightforwardly attach multiple heads to each
word in a single pass, incrementally building, from
left to right, a valid SDP graph: a labelled DAG.

To implement it, we use Pointer Networks
(Vinyals et al., 2015). These neural networks are
able to learn the conditional probability of a se-
quence of discrete numbers that correspond to po-
sitions in an input sequence and, at decoding time,
perform as a pointer that selects a position from
the input. In other words, we can train this neural
network to, given a word, point to the position of
the sentence where its head (Fernández-González
and Gómez-Rodrı́guez, 2019) or dependent words
(Ma et al., 2018) are located, depending on what
interpretation we use during training. In particu-
lar, (Fernández-González and Gómez-Rodrı́guez,
2019) proved to be more suitable for dependency
parsing than (Ma et al., 2018) since it requires half
as many steps to produce the same dependency
parse, being not only faster, but also more accurate
(as this mitigates the impact of error propagation).

Inspired by Fernández-González and Gómez-
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Rodrı́guez (2019), we train a Pointer Network to
point to the head of a given word and propose an
algorithm that does not use any kind of data struc-
tures (stack or buffer, required in classic transition-
based parsers (Nivre, 2008)), but just a focus word
pointer i for marking the word currently being pro-
cessed. More in detail, given an input sentence of n
words w1, . . . , wn, the parsing process starts with i
pointing at the first word w1. At each time step, the
current focus word wi is used by the Pointer Net-
work to return a position p from the input sentence
(or 0, where the ROOT node is located). This infor-
mation is used to choose between the two available
transitions:

• If p 6= i, then the pointed word wp is consid-
ered as a semantic head word (predicate) of
wi and an Attach-p transition is applied, cre-
ating the directed arc wp → wi. The Attach-p
transition is only permissible if the resulting
predicate-argument arc neither exists nor gen-
erates a cycle in the already-built graph, in
order to output a valid DAG.

• On the contrary, if p = i (i.e., the model points
to the current focus word), then wi is consid-
ered to have found all its head words, and a
Shift transition is chosen to move i one po-
sition to the right to process the next word
wi+1.

The parsing ends when the last word from the sen-
tence is shifted, meaning that the input is com-
pletely processed. As stated by Ma et al. (2018)
for attaching dependent words, it is necessary to
fix the order in which (in our case, head) words
are assigned in order to define a deterministic de-
coding. As the sentence is parsed in a left-to-right
manner, we adopt the same order for head assign-
ments. For instance, the SDP graph in Figure 1(a)
is produced by the transition sequence described in
Table 1. We just need n Shift transitions to move
the focus word pointer through the whole sentence
and m Attach-p transitions to create the m arcs
present in the SDP graph.

It is worth mentioning that we manage to signifi-
cantly reduce the amount of transitions necessary
for generating DAGs in comparison to those pro-
posed in the complex transition systems by Choi
and McCallum (2013) and Titov et al. (2009), used
in the SDP systems by Wang et al. (2018) and
Du et al. (2015), respectively. In addition, the
described multi-head transition system is able to

p transition focus wordi added arc

The1
1 Shift results2
1 Attach-1 results2 The1→ results2
4 Attach-4 results2 results2← in4

2 Shift were3
3 Shift in4

0 Attach-0 in4 ROOT0→ in4

6 Attach-6 in4 in4← with6

4 Shift line5
4 Attach-4 line5 in4→ line5
5 Shift with6

6 Shift analysts7
7 Shift ’8
8 Shift expectations9
6 Attach-6 expectations9 with6→ expectations9
7 Attach-7 expectations9 analysts7→ expectations9
9 Shift .10
10 Shift

Table 1: Transition sequence for generating the SDP
graph in Figure 1(a).

directly produce any DAG structure without excep-
tion, while some transition systems, such as the
mentioned (Sagae and Tsujii, 2008; Titov et al.,
2009), are limited to a subset of DAGs.

Finally, while the outcome of the proposed tran-
sition system is a SDP graph without cycles, in
other research, such as (Kurita and Søgaard, 2019)
and state-of-the-art models by Dozat and Manning
(2018) and Wang et al. (2019), the parser is not
forced to produce well-formed DAGs, allowing the
presence of cycles.

4 Neural Network Architecture

4.1 Basic Approach

Vinyals et al. (2015) introduced an encoder-decoder
architecture, called Pointer Network, that uses a
mechanism of neural attention (Bahdanau et al.,
2014) to select positions from the input sequence,
without requiring a fixed size of the output dic-
tionary. This allows Pointer Networks to easily
address those problems where the target classes
considered at each step are variable and depend on
the length of the input sequence. We prove that
implementing the transition system previously de-
fined on this neural network results in an accurate
SDP system.

We follow previous work in dependency parsing
(Ma et al., 2018; Fernández-González and Gómez-
Rodrı́guez, 2019) to design our neural architecture:

Encoder A BiLSTM-CNN architecture (Ma and
Hovy, 2016) is used to encode the input sentence
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w1, . . . , wn, word by word, into a sequence of en-
coder hidden states h1, . . . ,hn. CNNs with max
pooling are used for extracting character-level rep-
resentations of words and, then, each word wi is
represented by the concatenation of character (eci ),
word (ewi ), lemma (eli) and POS tag (epi ) embed-
dings:

xi = eci ⊕ ewi ⊕ eli ⊕ epi

After that, the xi of each word wi is fed one-by-one
into a BiLSTM that captures context information
in both directions and generates a vector represen-
tation hi:

hi = hli ⊕ hri = BiLSTM(xi)

In addition, a special vector representation h0, de-
noting the ROOT node, is prepended at the begin-
ning of the sequence of encoder hidden states.

Decoder An LSTM is used to output, at each
time step t, a decoder hidden state st. As input
of the decoder, we use the encoder hidden state hi
of the current focus word wi plus extra high-order
features. In particular, we take into account the
hidden state of the last head word (hh) attached to
wi, which will be a co-parent of a future predicate
assigned to wi. Following Ma et al. (2018), we use
element-wise sum to add this information without
increasing the dimensionality of the input:

ri = hi + hh; st = LSTM(ri)

Note that feature information like this can be easily
added in transition-based models without increas-
ing the parser’s runtime complexity, something that
does not happen in graph-based models, where, for
instance, the second-order features added by Wang
et al. (2019) penalize runtime complexity.

We experimented with other high-order features
such as grandparent or sibling information of the
current focus word wi, but no significant improve-
ments were obtained from their addition, so they
were discarded for simplicity. Further feature ex-
ploration might improve parser performance, but
we leave this for future work.

Once st is generated, the attention vector at,
which will work as a pointer over the input, must
be computed in the pointer layer. First, following
the previously cited work, the scores between st
and each encoder hidden representation hj from
the input sentence are computed using this biaffine
attention scoring function (Dozat and Manning,

2017):

vtj = score(st,hj) = f1(st)
TWf2(hj)

+UT f1(st) + VT f2(hj) + b

where parameter W is the weight matrix of the bi-
linear term, U and V are the weight tensors of the
linear terms and b is the bias vector. In addition,
f1(·) and f2(·) are two single-layer multilayer per-
ceptrons (MLP) with ELU activation, proposed by
(Dozat and Manning, 2017) for reducing dimen-
sionality and minimizing overfitting.

Then, a softmax is applied on the resulting score
vector vt to compute a probability distribution over
the input words:

at = softmax(vt)

The resulting attention vector at can now be used
as a pointer to select the highest-scoring position p
from the input. This information will be employed
by the transition system to choose between the two
available actions and create a predicate-argument
relation between wp and wi (Attach-p) or move
the focus word pointer to wi+1 (Shift). In case the
chosen Attach-p is forbidden due to the acyclicity
constraint, the next highest-scoring position in at

is considered as output instead. Figure 2 depicts
the neural architecture and the decoding procedure
for the SDP structure in Figure 1(a).

Label prediction We jointly train a multi-class
classifier that scores every label for each pair of
words. This shares the same encoder and uses the
same biaffine attention function as the pointer:

sltp = score(st,hp, l) = g1(st)
TWlg2(hp)

+UT
l g1(st) + VT

l g2(hp) + bl

where a distinct weight matrix Wl, weight tensors
Ul and Vl and bias bl are used for each label l,
where l ∈ {1, 2, . . . , L} and L is the number of
labels. In addition, g1(·) and g2(·) are two single-
layer MLPs with ELU activation.

The scoring function is applied over each pre-
dicted arc between the dependent word wi (repre-
sented by st) and the pointed head word wp in posi-
tion p (represented by hp) to compute the score of
each possible label and assign the highest-scoring
one.

Training Objectives The Pointer Network is
trained to minimize the negative log likelihood
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Figure 2: Neural network architecture and decoding steps to partially parse the SDP graph in Figure 1.

(implemented as cross-entropy loss) of producing
the correct SDP graph y for a given sentence x:
Pθ(y|x). Let y be a DAG for an input sentence x
that is decomposed into a set of m directed arcs
a1, . . . , am following a left-to-right order. This
probability can be factorized as follows:

Pθ(y|x) =

m∏
k=1

Pθ(ak|a<k, x)

where a<k denotes previous predicted arcs.
On the other hand, the labeler is trained with

softmax cross-entropy to minimize the negative log
likelihood of assigning the correct label l, given a
dependency arc with head word wh and dependent
word wi.

The whole neural model is jointly trained by
summing the parser and labeler losses prior to com-
puting the gradients. In that way, model parame-
ters are learned to minimize the sum of the cross-
entropy loss objectives over the whole corpus.

4.2 Deep Contextualized Word Embeddings
Augmentation

In order to further improve the accuracy of our
approach, we augment our model with deep contex-
tualized word embeddings provided by the widely-
used pre-trained language model BERT (Devlin
et al., 2019).

Instead of including and training the whole
BERT model as encoder of our system, we fol-
low the common, greener and more cost-effective
approach of leveraging the potential of BERT by
extracting the weights of one or several layers
as word-level embeddings. To that end, the pre-
trained uncased BERTBASE model is used.

Since BERT is trained on subwords (i.e., sub-
strings of the original token), we take the 768-
dimension vector of each subword of an input to-
ken and use the average embedding as the final
representation eBERTi . Finally, this is directly con-
catenated to the resulting basic word representation
before feeding the BiLSTM-based encoder:

x′
i = xi ⊕ eBERTi ; hi = BiLSTM(x′

i)

Higher performances can be achieved by summing
or concatenating (depending on the task) several
layers of BERT; however, exploring these combi-
nations is out of the scope of this paper and we
simply use embeddings extracted from the second-
to-last hidden layer (since the last layer is biased to
the target objectives used to train BERT’s language
model).

5 Experiments

5.1 Data
In order to test the proposed approach, we conduct
experiments on the SemEval 2015 Task 18 English
datasets (Oepen et al., 2015), where all sentences
are annotated with three different formalisms:
DELPH-IN MRS (DM) (Flickinger et al., 2012),
Predicate-Argument Structure (PAS) (Miyao and
Tsujii, 2004) and Prague Semantic Dependencies
(PSD) (Hajič et al., 2012). Standard split as in pre-
vious work (Almeida and Martins, 2015; Du et al.,
2015) results in 33,964 training sentences from
Sections 00-19 of the Wall Street Journal corpus
(Marcus et al., 1993), 1,692 development sentences
from Section 20, 1,410 sentences from Section 21
as in-domain test set, and 1,849 sentences sam-
pled from the Brown Corpus (Francis and Kucera,
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Architecture hyper-parameters
CNN window size 3
CNN number of filters 50
BiLSTM encoder layers 3
BiLSTM encoder size 512
LSTM decoder layers 1
LSTM decoder size 512
LSTM layers dropout 0.33
Word/POS/Char./Lemma embedding dimension 100
BERT embedding dimension 768
Embeddings dropout 0.33
MLP layers 1
MLP activation function ELU
Arc MLP size 512
Label MLP size 128
UNK replacement probability 0.5
Adam optimizer hyper-parameters
Initial learning rate 0.001
β1, β2 0.9
Batch size 32
Decay rate 0.75
Gradient clipping 5.0

Table 2: Model hyper-parameters.

1982) as out-of-domain test data. For the evalua-
tion, we use the official script,2 reporting labelled
F-measure scores (LF1) (including ROOT arcs)
on the in-domain (ID) and out-of-domain (OOD)
test sets for each formalism as well as the macro-
average over the three of them.

5.2 Settings

We use the Adam optimizer (Kingma and Ba, 2014)
and follow (Ma et al., 2018; Dozat and Manning,
2017) for parameter optimization. We do not specif-
ically perform hyper-parameter selection for SDP
and just adopt those proposed by Ma et al. (2018)
for syntactic dependency parsing (detailed in Ta-
ble 2). For initializing word and lemma vectors,
we use the pre-trained structured-skipgram embed-
dings developed by Ling et al. (2015). POS tag
and character embeddings are randomly initialized
and all embeddings (except the deep contextualized
ones) are fine-tuned during training. Due to random
initializations, we report average accuracy over 5
repetitions for each experiment. In addition, during
a 500-epoch training, the model with the highest
labelled F-score on the development set is chosen.
Finally, while further beam-size exploration might
improve accuracy, we use beam-search decoding
with beam size 5 in all experiments.

2https://github.com/
semantic-dependency-parsing/toolkit

5.3 Results and Discussion

Table 3 reports the accuracy obtained by state-of-
the-art SDP parsers detailed in Section 2 in compar-
ison to our approach. To perform a fair comparison,
we group SDP systems in three blocks dependend-
ing on the embeddings provided to the architecture:
(1) just basic pre-trained word and POS tag embed-
dings, (2) character and pre-trained lemma embed-
dings augmentation and (3) pre-trained deep con-
textualized embeddings augmentation. As proved
by these results, our approach outperforms all ex-
isting transition-based models and the widely-used
approach by Dozat and Manning (2018) with or
without character and lemma embeddings, and it
is on par with the best graph-based SDP parser
by (Wang et al., 2019) on average in the fully-
supervised scenario.3

In addition, our model achieves the best fully-
supervised accuracy to date on the PSD formalism,
considered the hardest to parse. We hypothesize
that this might be explained by the fact that the PSD
formalism is the more tree-oriented (as pointed out
by Oepen et al. (2015)) and presents a lower ratio
of arcs per sentence, being more suitable for our
transition-based approach.

In the semi-supervised scenario, BERT-based
embeddings proved to be more beneficial for the
out-of-domain data. In fact, while not being a fair
comparison since we neither include contextual
string embeddings (Flair) (Akbik et al., 2018) nor
explore different BERT layer combinations, our
new transition-based parser manages to outperform
the state-of-the-art system by He and Choi (2019)4

on average on the out-of-domain test set, obtaining
a remarkable accuracy on the PSD formalism.

5.4 Complexity

Given a sentence with length n whose SDP graph
has m arcs, the proposed transition system requires
n Shift plus m Attach-p transitions to parse it.
Therefore, since a DAG can have at most Θ(n2)
edges (as is also the case for general directed
graphs), it could potentially need O(n2) transitions
in the worst case. However, we prove that this does
not happen in practice and real sentences can be

3It is common practice in the literature that systems that
only use standard pre-trained word or lemma embeddings are
classed as fully-supervised models, even though, strictly, they
are not trained exclusively on the official training data.

4He and Choi (2019) do not specify in their paper the
BERT layer configuration used for generating the word em-
beddings.

https://github.com/semantic-dependency-parsing/toolkit
https://github.com/semantic-dependency-parsing/toolkit
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DM PAS PSD Avg
Parser ID OOD ID OOD ID OOD ID OOD
Du et al. (2015) TbGb+Ens 89.1 81.8 91.3 87.2 75.7 73.3 85.3 80.8
Almeida and Martins (2015) Gb 88.2 81.8 90.9 86.9 76.4 74.8 85.2 81.2
Peng et al. (2017) Gb 89.4 84.5 92.2 88.3 77.6 75.3 86.4 82.7
Peng et al. (2017) Gb+MT 90.4 85.3 92.7 89.0 78.5 76.4 87.2 83.6
Wang et al. (2018) Tb 89.3 83.2 91.4 87.2 76.1 73.2 85.6 81.2
Wang et al. (2018) Tb+Ens 90.3 84.9 91.7 87.6 78.6 75.9 86.9 82.8
Dozat and Manning (2018) Gb 91.4 86.9 93.9 90.8 79.1 77.5 88.1 85.0
Kurita and Søgaard (2019) Gb 91.1 - 92.4 - 78.6 - 87.4 -
Kurita and Søgaard (2019) Gb+MT+RL 91.2 - 92.9 - 78.8 - 87.6 -
Wang et al. (2019) Gb 93.0 88.4 94.3 91.5 80.9 78.9 89.4 86.3
This work Tb 92.5 87.7 94.2 91.0 81.0 78.7 89.2 85.8
Dozat and Manning (2018) Gb+char+lemma 93.7 88.9 93.9 90.6 81.0 79.4 89.5 86.3
Kurita and Søgaard (2019) Gb+MT+RL+lemma 92.0 87.2 92.8 88.8 79.3 77.7 88.0 84.6
Wang et al. (2019) Gb+char+lemma 94.0 89.7 94.1 91.3 81.4 79.6 89.8 86.9
This work Tb+char+lemma 93.9 89.6 94.2 91.2 81.8 79.8 90.0 86.9
Zhang et al. (2019) Tb+char+BERTLARGE 92.2 87.1 - - - - - -
He and Choi (2019) Gb+lemma+Flair+BERTBASE 94.6 90.8 96.1 94.4 86.8 79.5 92.5 88.2
This work Tb+char+lemma+BERTBASE 94.4 91.0 95.1 93.4 82.6 82.0 90.7 88.8

Table 3: Accuracy comparison of state-of-the-art SDP parsers on the SemEval 2015 Task 18 datasets. Gb and
Tb stand for graph- and transition-based models, +char and +lemma for augmentations with character-level and
lemma embeddings, +Flair and +BERT BASE|LARGE for augmentations with deep contextualized character-level
and word-level embeddings, and, finally, +MT , +RL and +Ens for the application of multi-task, reinforcement
learning and ensemble techniques.

parsed with O(n) transitions instead.

Parsing complexity of a transition-based depen-
dency parsing algorithm can be determined by the
number of transitions performed with respect to
the number of words in a sentence (Kübler et al.,
2009). Therefore, we measure the transition se-
quence length predicted by the system to analyze
every sentence from the development sets of the
three available formalisms and depict the relation
between them and sentence lengths. As shown in
Figure 3, a linear behavior is observed in all cases,
proving that the number of Attach-p transitions
evaluated by the model at each step is considerably
low (behaving practically like a constant).

This can be explained by the fact that, on average
on the training set, the ratio of predicate-argument
dependencies per word in a sentence is 0.79 in DM,
0.99 in PAS and 0.70 in PSD, meaning that the
transition sequence necessary for parsing a given
sentence will need no more Attach-p transitions
than Shift ones (which are one per word in the sen-
tence). It is true that one argument can be attached
to more than one predicate; however, the amount
of words unattached in the resulting DAG (single-

tons)5 can be significant in some formalisms (as
described graphically in Figure 1): on average on
the training set, 23% of words per sentence in DM,
6% in PAS and 35% in PSD. In addition, edge den-
sity on non-singleton words, computed by Oepen
et al. (2015) on the test sets, also backs the linear
behavior shown in our experiments: 0.96 in DM,
1.02 in PAS and 1.01 in PSD for the in-domain set
and 0.95 in DM, 1.02 in PAS and 0.99 in PSD for
the out-of-domain data. In conclusion, we can state
that, on the datasets tested, the proposed transition
system executes O(n) transitions.

To determine the runtime complexity of the im-
plementation of the transition system, we need
to consider the following: firstly, at each transi-
tion, the attention vector at needs to be computed,
which means that each of the O(n) transitions takes
O(n) time to run. Therefore, the overall time com-
plexity of the parser, ignoring cycle detection, is
O(n2). Note that this is in contrast to algorithms
like (Wang et al., 2019), which takes cubic time
even though it does not enforce acyclicity.

5A singleton is a word that has neither incoming nor out-
going edges.



7043

Figure 3: Number of predicted transitions relative to
the length of the sentence, for the three SDP for-
malisms on the development set from SemEval 2015
Task 18.

If we add cycle detection, needed to forbid tran-
sitions that would create cycles and therefore to en-
force that the output is a DAG, then the complexity
becomes O(n2log n). This is because an efficient
implementation of cycle detection contributes an
additive factor of O(n2log n) to worst-case time
complexity, which becomes the dominant factor.
To achieve this efficient implementation, we incre-
mentally keep two data structures: on the one hand,
we keep track of weakly connected components
using path compression and union by rank, which
can be done in inverse Ackermann time, as is com-

monly done for cycle detection in tree and forest
parsers (Covington, 2001; Gómez-Rodrı́guez and
Nivre, 2010). On the other hand, we keep a weak
topological numbering of the graph using the algo-
rithm by Bender et al. (2015), which takes overall
O(n2log n) time over all edge insertions. When
these two data structures are kept, cycles can be
checked in constant time: an arc a → b creates a
cycle if the involved nodes are in the same weakly
connected component and a has a greater topologi-
cal number than b.

Therefore, the overall expected worst-case
running time of the proposed SDP system is
O(n2log n) for the range of data attested in the
experiments, and can be lowered to O(n2) if we
are willing to forgo enforcing acyclicity.

6 Conclusions and Future work

Our multi-head transition system can accurately
parse a sentence in quadratic worst-case runtime
thanks to Pointer Networks. While being more effi-
cient, our approach outperforms the previous state-
of-the-art parser by Dozat and Manning (2018) and
matches the accuracy of the best model to date
(Wang et al., 2019), proving that, with a state-of-
the-art neural architecture, transition-based SDP
parsers are a competitive alternative.

By adding BERT-based embeddings, we signifi-
cantly improve our model accuracy by marginally
affecting computational cost, achieving state-of-
the-art F-scores in out-of-domain test sets.

Despite the promising results, the accuracy of
our approach could probably be boosted further by
experimenting with new feature information and
specifically tuning hyper-parameters for the SDP
task, as well as using different enhancements such
as implementing the hierarchical decoding recently
presented by Liu et al. (2019), including contextual
string embeddings (Akbik et al., 2018) like He and
Choi (2019), or applying multi-task learning across
the three formalisms like Peng et al. (2017).
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