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Abstract

Neural machine translation (NMT) has proven
to be facilitated by curriculum learning which
presents examples in an easy-to-hard order at
different training stages. The keys lie in the
assessment of data difficulty and model com-
petence. We propose uncertainty-aware cur-
riculum learning, which is motivated by the
intuition that: 1) the higher the uncertainty in
a translation pair, the more complex and rarer
the information it contains; and 2) the end of
the decline in model uncertainty indicates the
completeness of current training stage. Specif-
ically, we serve cross-entropy of an example
as its data difficulty and exploit the variance of
distributions over the weights of the network
to present the model uncertainty. Extensive ex-
periments on various translation tasks reveal
that our approach outperforms the strong base-
line and related methods on both translation
quality and convergence speed. Quantitative
analyses reveal that the proposed strategy of-
fers NMT the ability to automatically govern
its learning schedule.

1 Introduction

Neural machine translation (NMT) has advanced
the state-of-the-art on various translation tasks
(Hassan et al., 2018; Chen et al., 2018). A well-
performed NMT is trained using an end-to-end
framework (Sutskever et al., 2014) that profits from
large-scale training corpus and various optimiza-
tion tricks (Ott et al., 2018; Xu et al., 2019; Li
et al., 2020). These techniques boost the transla-
tion quality, in the meanwhile, leading to massive
hyper-parameters to be tuned and expensive devel-
opment costs (Popel and Bojar, 2018). Recent stud-
ies (Zhang et al., 2018, 2019; Platanios et al., 2019;
Liu et al., 2020) have proven that feeding training
examples in a meaningful order rather than con-
sidering them randomly can accelerate the model
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Figure 1: The change of confidence in an area dur-
ing the learning. Humans (red) experience the process
of overconfidence=-despair=-enlightenment (Dunning-
Kruger Curve), while prior work that exploits CL in
NMT assumes a monotonically increased curve (green,
Platanios et al., 2019). Interestingly, our model auto-
matically draws a similar tendency as humans (blue).

convergence thus reducing the computational cost.
Such methods refer to curriculum learning (CL,
Bengio et al., 2009), in which a model is taught as
a human from simple concepts to complex ones.
There exists two open problems in the integra-
tion of CL with NMT, i.e. the assessment of data
difficulty and the programme of learning schedule.
Considering the former, prior studies (Kocmi and
Bojar, 2017; Platanios et al., 2019) intuitively treat
human linguistic knowledge, e.g. either sentence
length or word rarity, as the measure of difficulty.
Nevertheless, each linguistic feature merely consid-
ers an aspect of sentences which fails to fully cope
with the data difficulty for a model (Jiang et al.,
2015). For the latter, existing methods pre-define
the duration of curriculum based on an assumption
that the model confidence monotonically increases
with the training (Zhang et al., 2018, 2019). We
argue that this assumption does not conform to
human behavior, i.e. Dunning-Kruger Curve (Fig-
ure 1, Kruger and Dunning, 1999), and limits the
adaptability and flexibility of curriculum learning.
In response to these problems, we propose to
strengthen CL for NMT through determining the
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data difficulty and scheduling the curriculum ac-
cording to model ability rather than human intu-
itions. We introduce a novel uncertainty-aware
curriculum learning framework, which serves un-
certainty as its principle to order the input exam-
ples and control the duration of each training stage.
Specifically, we measure the data uncertainty of
a sentence pair according to its joint distribution
that is estimated by a language model pre-trained
on the training corpus. The intuition behind is that
the higher the cross-entropy and uncertainty have
in an example, the harder it is to learn and trans-
late (Brown et al., 1990). Besides, we calculate the
model uncertainty using the variance of the distribu-
tion over the network presented by Bayesian neural
networks (Buntine and Weigend, 1991). Accord-
ingly, the model uncertainty reflects whether our
model can best describe the data distribution (Xiao
and Wang, 2019), and the stop of its decline indi-
cates the completeness of the current training stage.

One principle in our work is to maintain the sim-
plicity and efficiency in CL. Several researchers
may doubt that the use of Bayesian inference over
the training corpus may significantly raise the com-
putational cost. To this end, we apply Monte Carlo
Dropout (Gal and Ghahramani, 2016) to approxi-
mate Bayesian inference. Besides, we categorize
examples into subsets according to their difficulty,
which is then be progressively added into the train-
ing set at different training stages, namely baby
step (Cirik et al., 2016). The model uncertainty
can be calculated after each epoch using the sam-
ples randomly selected from the current training
set, thus avoiding affect training efficiency.

We evaluate the effectiveness of our methods on
WMT16 English-to-German, IWSLT15 English-to-
Vietnamese, and WMT17 Chinese-to-English trans-
lation tasks. The experimental results demonstrate
that the proposed model consistently improves
translation performance over the strong TRANS-
FORMER (Vaswani et al., 2017) baseline and related
methods that exploit CL into NMT. Extensive anal-
yses confirm that: 1) our approach significantly
speeds up the model convergence; 2) using data
uncertainty to present the translation difficulty sur-
passes its sentence length and word rarity counter-
parts, and this superiority can be further expanded
by exploiting a language model that is trained on
large-scale external data, i.e. BERT (Devlin et al.,
2019); 3) the model uncertainty performs a self-
adaptive manner to assess the model competence

regardless the pre-defined patterns.

2 Preliminary

NMT uses a single, large neural network to build
translation model, aiming to maximize the condi-
tional distribution of sentence pairs using parallel
corpus (Sutskever et al., 2014; Bahdanau et al.,
2015; Yang et al., 2019; Wan et al., 2020). For-
mally, the learning objective is to minimize the
following loss function over the training corpus
D = {(z™,y™)}2_,, with the size being N:

L= E(In7yn)N'D[— log P(y"|z"; )] (1)

where 2" and y™ indicate the source and target
sides of the n-th example in training data. 6 de-
notes the trainable parameters of NMT model. Dur-
ing the training, the examples randomly feed to
vanilla model, regardless of their order, making
the development of a well-performed NMT sys-
tem time-consuming (Sennrich et al., 2016a; Popel
and Bojar, 2018; Yang et al., 2020). An alterna-
tive way to speed up the training process and boost
the performance of a neural network is to exploit
CL (Elman, 1993; Krueger and Dayan, 2009; Ben-
gio et al., 2009).

Related Work on Exploring CL.  Several studies
have shown the effectiveness of CL in the field
of computer vision (Sarafianos et al., 2017; Wang
etal., 2019c; Guo et al., 2018), as well as a range of
NLP tasks, including math word problem (Zaremba
and Sutskever, 2014), sentiment analysis (Cirik
et al., 2016), and natural answer generation (Liu
et al., 2018). They point out that CL can solve the
problem in some tasks that is hard to train through
presenting training data in an easy-to-hard order.
Kocmi and Bojar (2017) first apply CL into NMT
and suggest two sticking points, i.e. data diffi-
culty and learning schedule. Partially inspired by
their findings, Thompson et al. (2018), Zhang et al.
(2019), Wang et al. (2019b) and Kumar et al. suc-
ceed on handling the problem in domain translation.
Concerning the general translation tasks, Zhang
et al. (2018) investigate a variety of difficulty crite-
ria based on human intuition, e.g. sentence length
and word rarity, which show distinct performance
across language pairs and model settings. While
Platanios et al. (2019) pay attention to the schedule
that determines the duration of each curriculum.
They introduce monotonically increased curves,
e.g. either linear or square root, to represent the
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changes of the model ability across the training pro-
cess. These early successes presuppose the limited
heuristic knowledge on both the data difficulty and
the tendency of model competence.

3 Methodology

Motivation As mentioned above, one of the
main challenges in CL is the identification of easy
and hard samples which is onerous and concep-
tually difficult in translation community. For ex-
ample, neither the sentence length or word rarity
can fully express the complexity of a translation.
Another problem in CL is the programme of learn-
ing schedule, in which the patterns pre-defined by
humans lack in adaptability and lead to massive
additional hyper-parameters that have to be tuned.
Even if these artificial supervisions are feasible,
what is intuitively “easy” and “competent” for a
human may not match that for neural networks (Ku-
mar et al., 2010; Jiang et al., 2015).

To this end, we approach these problems from
the model perspective. In this section, we first in-
troduce data uncertainty to quantify the translation
difficulty for each training example (Section 3.1).
Then, we propose to predict the model uncertainty
at the training time which is a self-adaptive man-
ner to govern curriculum by the model itself (Sec-
tion 3.2). Finally, we describe how to exploit the
proposed two factors in NMT training (Section 3.3).
The proposed framework is illustrated in Figure 2.

3.1 Data Uncertainty

In order to estimate the data uncertainty, we pro-
pose to pre-train a language model (LM) over the
monolingual sentences from the parallel training
corpus D to account the cross-entropy of each sen-
tence. The intuition behind this is that the higher
cross-entropy and perplexity represents an uncer-
tain sentence, since it is hard to be generated and
determined by the LM (Brown et al., 1990). This
provides an explainable and comprehensive way to
evaluate the difficulty of an example. Accordingly,
we assign several types of data uncertainty, which
can be used individually or combined together:

Source Difficulty The difficulty of a source sen-
tence affects the language understanding of NMT
model. Inspired by Zhang et al. (2018) and Platan-
ios et al. (2019), an interpretable way is to use the
source difficulty to approximate the complexity of
a sentence pair. Given the source sentence =", we
can calculate the source uncertainty u%*®(z™) by
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Figure 2:
aware curriculum learning framework. We categorize
training corpus into baby steps according to their data
uncertainty. The sign of entering the next curriculum
is the stop of decline in model uncertainty which is
estimated over random samples in the current training
stage.

Ilustration of the proposed uncertainty-

estimating its perplexity, namely:

N
1
udam(mn) =—7 leog P(z|2Z;) 2
—

where [ indicates the length of source sentence.

Target Difficulty Since the complex and rare tar-
get sentence directly makes NMT have a harder
time in generating the sentence (Kocmi and Bojar,
2017), another natural choice is to apply the target
uncertainty to present the data difficulty. Anal-
ogous to the source side, the target uncertainty
udata(yn) is:

J

ata n 1 mn n

u(y") = ==Y logP(yllyZ) ()
s

where J denotes the length of target sentence y”.

Joint Difficulty Intuitively, the complexity of a
translation pair should be contributed by two sides,
thus reflecting the difficulty of both understanding
and generating processes in NMT. We can combine
the concepts of source and target uncertainty:

udata (xn’ yn) — udata (xn) + ud(zta (yn) (4)

To our best knowledge, due to the lack of inter-
pretability on scoring the joint difficulty in a sen-
tence pair, all the existing methods that exploit CL
into NMT merely measure data difficulty on either
source or target. Our method provides an alterna-
tive way to tackle this problem with the concept of
joint probability distribution. We expect the joint
uncertainty to further improve the performance.
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In this paper, we examine three widely used LMs
to appraise the data uncertainty: a statistical n-
gram LM — KENLM (Heafield, 2011), a neural LM
— RNNLM (Mikolov et al., 2010), and a multilin-
gual neural LM that trained on billions of external
sentences — BERT (Devlin et al., 2019). Note that,
the modeling of data uncertainty is not limited to
our approach. It can be also quantified by other
manners, e.g. estimating the data likelihood with
Monte Carlo approximation (Der Kiureghian and
Ditlevsen, 2009) or validating the translation dis-
tribution using a well-trained NMT model (Zhang
et al., 2018). In contrast to these time-consuming
techniques, LM marginally increases the computa-
tional cost and easy to be applied, conforming to
the original motivation of CL.

3.2 Model Uncertainty

Moreover, we propose to regulate the duration of
each curriculum by quantifying the model uncer-
tainty rather than presetting before the training.
Model uncertainty, which is also known as epis-
temic uncertainty (Kendall and Gal, 2017), can be
used to measure whether the model parameters are
able to best describe the data distribution (Dong
et al., 2018; Xiao and Wang, 2019). In our work,
a small score of model uncertainty indicates the
model is confident that the current training data
has been well learned (Wang et al., 2019a), and the
termination of the decline in scores represents the
signal to shift to the next curriculum stage.

The model uncertainty can be quantified by
Bayesian neural networks (Buntine and Weigend,
1991; Neal, 1996), which place a probabilistic dis-
tribution over the model parameters on constant in-
put and output data, and serve its variance as the un-
certainty. For reasons of computational efficiency,
we adopt widely used Monte Carlo Dropout (Gal
and Ghahramani, 2016) to approximate Bayesian
inference. Given a dataset used to examine the
model uncertainty DV = {(z™,y™)}M_, which
consists of M sentence pairs, we perform K passes
of forward propagation through the NMT model.'
In each pass, part of neurons in network 6 are ran-
domly deactivated. Eventually, we yield K sam-
ples on model parameters {0, -- ,#%} and cor-
responding translation probabilities. The model

'K is empirically set to 10 in our work.

Algorithm 1: Uncertainty-Aware CL
Input: Train set D = {(z", y")}V

n=1*

1 Compute the data uncertainty u9%® for each
sentence pair in D (Section 3.1).

Split D into T baby steps according to u4*® in
ascending order, {D1,--- ,Dr}.

Initialize cumulative dataset C = D;.

for training epoche =1, ... do

Train NMT model 4 using C.

DY« Sample M examples from C.

7 Calculate the model uncertainty 1% ()

on DY (Section 3.2).

8 if u™? stop decline then

9 L C < Pull next baby step Dj,cq; into C.

[S]

A B W

10 Use C for next epoch training.

uncertainty on DV can be formally expressed as:

1 & K
mod _ m|..m pk
u(9) = 3 Var [P(y 2™, 0| )
m=1

Here, Var|[-] denotes the variance of a distribution
which calculated following the common setting in
Dong et al. (2018) and Xiao and Wang (2019). In
this way, the model is offered the ability to deter-
mine its model competence by itself.

3.3 Self-Adaptive Training Strategy

In this work, we adopt a widely used CL strategy
called baby step (Cirik et al., 2016; Zhang et al.,
2018) to arrange training data and organize the
training process. Specifically, the whole training
set D is divided into different buckets, i.e. steps
{D1, -, Dr}, in which those examples with sim-
ilar data uncertainty scores u9%® are categorized
into the same bucket. The training starts from the
step that consists of examples with the lowest uncer-
tainty. After that, data in the next step is aggregated
to the current training dataset C when the model
uncertainty ceases its reduction. Following existing
studies (Platanios et al., 2019; Kocmi and Bojar,
2017) that the model should be trained from easy
samples to hard ones, we schedule the curriculum
with the order of increasing uncertainty.” To avoid
overfitting and useless training, partially inspired
by early stopping, we treat the third time when
current model uncertainty is higher than the score

20ur preliminary experiments show that the model with a

reverse order does not gain any performance improvement to
the baseline model.
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evaluated last time as the sign that the model is
at the level of “expert” for the current curriculum.
The hyperparameter of stopping criterion is impor-
tant. A small value makes the training to easily
enter the next baby step, and the current baby step
fails to be fully trained, while a large value reduces
training efficiency and cause over-fitting.
Considering that performing Monte Carlo
Dropout over the NMT model on all the exam-
ples in C is time-consuming, while the superiority
of CL lies in its ability to accelerate the model
convergence. In order to maintain this advantage,
we propose to estimate the model uncertainty after
each epoch rather than every model updating steps.
Furthermore, we randomly extract M = 1k sam-
ples from current training dataset C as DV. Then,
the evaluation of model uncertainty is conducted
on DY to mirror the confidence over the current
curriculum. Therefore, our approach reserves the
efficiency in CL, in the meanwhile, guiding the du-
ration of each curriculum in a self-adaptive fashion.
The overall procedure is described in Algorithm 1.

4 Experiments

We examine our method upon advanced TRANS-
FORMER (Vaswani et al., 2017) and conduct exper-
iments on widely used translation tasks: IWSLT15
English-to-Vietnamese (En=-Vi), WMT16 English-
to-German (En=-De) and WMT17 Chinese-to-
English (Zh=-En).’

4.1 Experimental Setting

Dataset To compare with the results reported by
previous work (Platanios et al., 2019), we evaluate
our methods on IWSLT15 En=-Vi and WMT16
En=-De translation tasks. Our models are trained
using all of the available parallel corpora from the
IWSLT15 and WMT16 datasets, consisting of 133k
and 4.5M sentence pairs. In order to verify the uni-
versality of the proposed method, we also conduct
experiments on the large-scale training corpus, i.e.
WMT17 Zh=-En, in which, 20M examples are ex-
tracted as the training set. We use the standard
validation and test sets provided in each transla-
tion task. The Chinese sentences are segmented
by the word segmentation toolkit Jieba,* while the
sentences in other languages are tokenized using
the scripts provided in Moses.> All the data are

30ur code is available at https://github.com/
NLP2CT/ua-cl-nmt

‘nttps://github.com/fxshy/jieba
‘https://github.com/mosesdecoder

processed by byte-pair encoding to alleviate the
Out-of-Vocabulary problem (Sennrich et al., 2016b)
with 32K merge operations for both language pairs.
The case-sensitive 4-gram NIST BLEU score (Pap-
ineni et al., 2002) is used as the evaluation metric.

Model Our experiments are based on TRANS-
FORMER (Vaswani et al., 2017) and the compared
methods are re-implemented on top of our in-house
codes. Considering the small-scale translation task
En=-Vi, we use the setting same as Platanios et al.
(2019) in which the dropout ratio is set to 0.3 and
each iteration batch consists of 4,096 tokens. For
translation models on En=-De and Zh=-En, we
follow the common Base setting in Vaswani et al.
(2017) except that we set dropout ratio to 0.1 and
train models with a total batch of 32,768 tokens.
As to LMs, we train 4-gram KENLM (Heafield,
2011)° and 2 layers RNNLM (Mikolov et al., 2010)
with dimensionality being 200 on monolingual side
of each training corpus. Besides, we also score
sentences using multilingual BERT (Devlin et al.,
2019) that pre-trained on external data with Base
setting for comparison.
We investigate the following methods:

e LENGTH measures data difficulty with sen-
tence length (Kocmi and Bojar, 2017).

e RARITY measures data difficulty with word
rarity (Zhang et al., 2018).

e DATA-U represents the proposed method
which measures difficulty with data uncer-
tainty on source sentence (src), target sentence
(trg), and both sides (joint).

e SQRT governs curriculum with the square root
model competence (Platanios et al., 2019).

e MoD-U governs curriculum with the pro-
posed model uncertainty. In our experiments,
we set baby steps to 4 as default.

4.2 Ablation Study

In this section, we evaluate the effectiveness of
different components in CL on the En=-De task. In
the first two series of experiments, we investigate
the effects of different measures of data difficulty
and model competence. Then, we check how the
baby steps applied in our training strategy affect the
performance. The results are concluded in Table 1.

*https://github.com/kpu/kenlm
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Model | Sqrt | Mop-U
TRANSFORMER 32.76
LENGTH 32.80 | 33.23T
RARITY 32.84 | 33.39T
KENLM (src) 33.03 | 33.64"
D KENLM (trg) 33.09 | 33.69"
s KENLM (joint) || 33.15 | 33.85"
S [ RNNLM (joint) || 33.17 | 33737
BERT (joint) 33.35% | 33.93™

Table 1: Ablation study of various measures with re-
spect to data difficulty and model competence for CL
in NMT. The results are evaluated using BLEU on
En=-De translation task, where * indicates that the re-
sult is produced with a LM trained on external data. “T/
T indicates statistically significant difference from the
SQRT counterpart (p < 0.05/0.01), tested by bootstrap
resampling (Koehn, 2004).

Effectiveness of Data Uncertainty We first
compare different difficulty measures in CL. Con-
sidering the existing methods, both the LENGTH
and RARITY yield improvements over the base-
line model, which is consistent with prior findings
in Kocmi and Bojar (2017), Zhang et al. (2018)
and Platanios et al. (2019). The proposed data
uncertainty strategies outperform the baseline and
existing measures. This verifies our hypothesis that
data uncertainty is of higher relevance in respect to
the difficulty of an example for a NMT model than
its sentence length and word rarity counterparts.

Specifically, the results show the utility of esti-
mating the uncertainty on either the source or target
side of a translation pair. Among the two strate-
gies, the target one performs better. We attribute
this to the fact that the target uncertainty brings a
more direct reflex of the sentence generation diffi-
culty, thus playing a crucial role in CL. Moreover,
“joint”, which provides a more comprehensive way
to model data uncertainty, achieves the best results.
This success indicates that the two strategies are
complementary to each other and the complexity
of a translation pair is contributed by both sides.

We attempt three kinds of LMs to quantify
data uncertainty. As seen, all the models con-
tribute to the model performance. Concerning LMs
trained on the monolingual side of a parallel corpus,
KENLM and RNNLM get comparable translation
qualities. Besides, as a state-of-the-art LM, BERT
has recently attracted a lot of interests since it learns
from billions of external sentences. As expected,

it outperforms all the LMs trained on internal data.
Although this comparison is unfair, the results sug-
gest that the performance of LM significantly af-
fects the evaluation of data uncertainty. Since the
statistical approach can be faster developed and it
does not rely on external data, we choose KENLM
as the default in the subsequent experiments.

Effectiveness of Model Uncertainty In this ex-
periment, we evaluate the impacts of different as-
sessments on model competence. Obviously, our
approach “MoOD-U” consistently gains improve-
ments over the vanilla method “SQRT” with the
same setting. These results reveal that applying
model uncertainty to determine the duration of each
curriculum by the model itself is conductive to CL
in NMT. Moreover, the combination of data un-
certainty and model uncertainty can progressively
boost the model performance, confirming that the
two methods are complementary to each other.

Different Baby Steps We further explore the ef-
fects of the number of baby steps on En=- De trans-
lation task. The experiments are conducted on the
proposed uncertainty-aware CL model as plotted in
Figure 3. The vanilla NMT system without using
any curriculum strategy could be considered as the
model that sets the total number of steps to 1. As
seen, dividing training corpus into 4 baby steps is
superior to other settings. Before that, the trans-
lation performance increases with progressively
subdividing baby steps, since the model with fine-
grained steps can benefit more from CL. When
the total number of subsets is greater than 4, the
tendency of translation qualities decreases. A plau-
sible explanation is that to train the model on an
over-small subset leads to the problem of overfit-
ting.

4.3 Main Results

In this section, we evaluate the proposed approach
on both IWSLT15 En=-Vi, WMT16 En=-De, as
well as WMT17 Zh=-En tasks, as listed in Table 2.
Our baseline TRANSFORMER and re-implemented
existing methods outperform the reported results
in Platanios et al. (2019), which we believe makes
the evaluation convincing. As seen, the proposed
uncertainty-aware curriculum learning strategy
consistently outperforms strong baselines and re-
cent studies that exploit CL into NMT across lan-
guage pairs. These results demonstrate the univer-
sality and effectiveness of the proposed approach.
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Model | WMT16 En=De | IWSLT15 En=Vi | WMT17 Zh=En
Baseline & Related Methods

TRANSFORMER 32.76 30.01 - 24.19 -
+SQRT+LENGTH 32.80  +0.04 | 29.83 -0.18 2417  -0.02
+SQRT+RARITY 32.84  +0.08 | 30.10  +0.09 | 2431  +0.12

The Proposed Models
Uncertainty-Aware 33.85"  +1.09 | 30.75"  +0.74 | 25.04"  +0.85
Uncertainty-Aware with BERT || 33.93"  +1.17 | 30.94"  +0.93 25.02"  +0.83

Table 2: Comparing with baseline and existing methods that exploit CL. on IWSLT15 En=-Vi, WMT16 En=-De,
as well as WMT17 Zh=-En translation tasks. The evaluation metric is BLEU.

34

32

Figure 3: Evaluation of our models trained with differ-
ent total number of baby steps, where the number of
baby step being 1 represents the vanilla NMT system.
The experiments are conducted on En=-De task.

It is encouraging to see that the improvement
does not diminish but enlarges with the increase
of training data, indicating that the model is con-
ducive to the large scale translation tasks. Inter-
estingly, our model with BERT is superior to that
with KENLM trained on small scale data, while
the gap becomes minor when KENLM learns from
a larger training corpus (e.g. 20M Zh=-En task).
We attribute this to the fact that, with the use of
the large-scale training examples, KENLM can de-
scribe its data distribution well, and the superiority
of BERT tends to marginal in these tasks.

5 Analysis

We conduct extensive analyses on En=-De task to
better understand our model. We investigate three
problems: 1) whether the proposed model indeed
speeds up the model convergence; 2) how different
are between difficulty measures; and 3) how the
model uncertainty exactly changes during training.

B Uncertainty-Aware Curriculum
B SQRT + RARITY B TRANSFORMER

30

Figure 4: Convergence curves of different models on
En=-De development set. Obviously, our model is able
to achieve the same performance as baseline with the
reduction in update steps of 53.6%.

5.1 Model Convergence

As aforementioned, one intuition of CL is to speed
up the model convergence. Figure 4 shows the
learning curves of different models on En=-De val-
idation set. As seen, the conventional NMT model
reaches the highest BLEU at 140k steps, while re-
lated CL method SQRT+RARITY obtains the same
performance at step 98k, which achieves 30% ac-
celerate rate. The acceleration effect is slightly as-
thenic than that reported in Platanios et al. (2019).
This could be explained by the fact that their ex-
amined models are trained with a batch of 5,120
tokens, which is much smaller than 32,768 used
in our experiments. The large batch facilitates the
training (Popel and Bojar, 2018), thus weakening
the acceleration effect. In spite of that, our model
converges 53.6% faster than the baseline to get the
same BLEU score (step 65k), showing the action of
the proposed method on speeding up the training.
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Figure 5: Statistics on the percentage of difference set
between the corresponding baby steps that produced by
our model (KENLM) and others. As seen, there exist
obvious diversities among these methods.

5.2 Difference among Difficulty Measures

It is interesting to investigate the discrepancy
among data difficulty measures. Accordingly, we
compare the composition of the corresponding
baby steps sorted by different difficulty methods.
Figure 5 shows the percentage of distinct sentence
contained in each subset of our method (KENLM)
to that in others (LENGTH, RARITY, and BERT).
As seen, there exists considerable diversity among
associated baby steps produced by our method and
existing approaches. Moreover, the difference in
the middle period of curriculums, i.e. step 2 and
step 3, is greater than that in step 1 and step 4.
This phenomenon reveals that the most “simple”
and “complex” sentences quantified by different
measures are relatively similar, and the main diver-
sity lies in those sentences of which the difficulties
hardly to be distinguished. Therefore, we argue
that the improvements of the proposed method may
mainly contribute by the differences in these two
steps. Besides, the subsets divided by KENLM
and BERT have big gaps, which suggest again that
the performance of LM plays a crucial role in our
approach.

5.3 Variety in Model Uncertainty

In this section, we discuss the training process from
the model uncertainty perspective. For better illus-
tration, we define the model confidence as the recip-
rocal of model uncertainty (1/ u™%) since the two
features are negative correlation (Dong et al., 2018;
Wang et al., 2019a). Figure 6 visualizes the curves
concerning the average of model confidence on
En=-De validation set during the curriculum learn-
ing. We analyze those models trained on two baby

steps divided by different data difficulty measures,
i.e. KENLM, BERT, and RARITY, for comparison.

Obviously, different models draw similar chang-
ing trends of model confidence during training,
that is, the model confidence first increases sharply,
then drops and rises, eventually balances. Surpris-
ingly, the tendency highly accords with the psy-
chology of human students when they getting into
a new area, i.e. Dunning Kruger Curve (Figure 1,
Kruger and Dunning, 1999). That is, starting from
scratch, peoples rapidly grow their knowledge, they
therefore have a large amount of confidence. Then,
peoples begin to have awareness about how lit-
tle they really know and are discouraged by their
inability. Over time, humans gradually improve,
making them more and more confident, and expe-
rienced. To some extent, both the artificial neural
networks and human beings can be regarded as
connectionist models (Munakata and McClelland,
2003). Accordingly, this interpretation can be also
used to explain the phenomenon in NMT training.
Such kind of fluctuates model confidence confirms
that the curriculum duration should not be fixed,
and the predefined strategies may be insufficient
to cope with the model training. In addition, the
models trained in different curriculums with var-
ious difficulty measures perform distinct change
amplitudes on model uncertainty, indicating the
adaptability of our method. These findings support
our assumption that the model uncertainty is an
effective and self-adaptive indicator to guide the
CL.

6 Conclusion and Future Work

We propose a novel uncertainty-aware framework
to improve the two key components in CL for NMT,
i.e. data difficulty measurement and curriculum
arrangement. Our contributions are mainly in:

e We propose to estimate the data uncertainty of
each training example as its difficulty, which
is more explainable and comprehensive.

e We introduce a self-adaptive CL strategy that
evaluates the model uncertainty to govern the
curriculum by the model itself.

e The extensive experiments on various transla-
tion tasks and model settings demonstrate the
universal-effectiveness of the proposed frame-
work. Our method is able to achieve over 50%
accelerate rate on model convergence.

o Quantitative and qualitative analyses indicate
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Figure 6: Curves of model confidence (1 /um"d) on
En=-De validation set at different checkpoints. We
evaluate the model uncertainties of CL models that ex-
ploit different data difficulty measures. It is clear to see
that different methods have the same change trend of
model confidence but distinct change amplitudes.

that the model confidence is fluctuant at the
training time. It surprisingly draws a similar
changing curve as human confidence.

As our model is not limited to machine translation,
it is interesting to validate the proposed framework
into other NLP tasks that need to exploit CL. An-
other promising direction is to design more power-
ful training strategies to replace the baby step.
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